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Abstract: Crack detection is an important component of dam safety monitoring. Detection methods
based on deep convolutional neural networks (DCNNs) are widely used for their high efficiency and
safety. Most existing DCNNs with high accuracy are too complex for users to deploy for real-time
detection. However, compressing models face the dilemma of sacrificing detection accuracy. To
solve this dilemma, an improved residual neural network (ResNet)-based algorithm for concrete dam
crack detection using dynamic knowledge distillation is proposed in this paper in order to obtain
higher accuracy for small models. To see how well distillation works, preliminary experiments were
carried out on mini-ImageNet. ResNet18 was trained by adding additional tasks to match soft targets
generated by ResNet50 under dynamic high temperatures. Furthermore, these pre-trained teacher
and student models were transferred to experiments on concrete crack detection. The results showed
that the accuracy of the improved algorithm was up to 99.85%, an increase of 4.92%.

Keywords: residual neural network; knowledge distillation; transfer learning; concrete dam; crack
detection

1. Introduction

Concrete structures are widely used in the construction of dams because of their
high compressive strength. Under the influence of external forces [1] such as cyclic loads,
temperature changes, and destructive earthquakes during long-term service, their surfaces
are prone to cracks. In addition, cavitation [2–5] plays a significant role in dam damage. The
development of cracks will destroy the integrity of concrete structures, which will cause
leakage problems and affect the overall strength and stability of structures. Even worse,
dams will end up in catastrophic accidents such as collapses and dam breaks. Therefore,
crack detection is essential for the safety inspection of concrete dams to detect faults and
repair them in a timely manner.

Historically, crack detection in concrete dams mainly depended on manual inspection.
However, the results of manual detection are highly subjective, time-consuming, and labo-
rious in the case of extensive fracture data. In addition, reservoir dams are primarily built
in mountainous or hilly areas with complex terrain conditions, resulting in poor efficiency
and safety in the detection process, especially in harsh environmental conditions such as
underwater, where localization is even more prominent. In order to reduce the limitations
of naked-eye observation and improve detection accuracy and efficiency, automatic de-
tection technologies have emerged, such as vibrating wire sensors, fiber grating sensors,
acoustic emission equipment, etc. However, these detection methods must determine
where cracks are in advance, and their detection area is significantly small. In recent years,
with the improvement of computer equipment performance and the rapid development of
computer vision technology, crack detection methods based on artificial intelligence and
deep learning have ushered in a tumultuous period of growth. Crack images of concrete
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structures are collected by image acquisition systems such as unmanned aerial vehicles
(UAV) [6] and underwater detection robots and then processed by digital image processing
techniques [7] or deep learning methods to classify and identify whether there are cracks
in these images. Among them, image classification methods based on deep convolutional
neural networks (DCNNs) are superior to digital image processing methods that rely on
manual intervention and discrimination because they automatically extract image features.
They have brought a series of breakthroughs in image classification and are widely used in
crack detection.

Because of the complexity of computing, memory, and storage requirements, the
training phase of the networks is performed on CPU or GPU clusters in a distributed
computing environment. These networks, however, typically involve large models with
numerous parameters. Once trained, a challenging aspect is the deployment of the trained
models on resource-constrained inference systems such as portable devices, including
underwater detection robots, as mentioned above, or sensor networks, and on applications
in which real-time predictions are required. Performing inference on edge devices comes
with severe memory, computing, and power constraints. We hope to deploy deep neural
networks for real-time operations, which have more stringent requirements for latency
and computing resources. We need to use smaller models to extract structures from less
abundant data sets without losing accuracy.

Quantization using low-precision numerics [8–10] and model compression [11] have
emerged as popular solutions for resource-constrained deployment scenarios. With quan-
tization, a low-precision version of the network model is generated and deployed on the
device. Operating in lower precision mode reduces computation, data movement, and
storage requirements. However, the majority of existing works in low-precision DCNNs
sacrifice accuracy over the baseline full-precision networks [12]. Therefore, we propose
an improved DCNN crack detection algorithm using knowledge distillation. A smaller,
low-memory footprint network is trained to mimic the behavior of the original complex
network, “transferring” knowledge from the complex network to the smaller network,
compressing the model without reducing accuracy, and allowing the smaller network to
achieve accuracy equivalent to or slightly better than the original complex model.

The knowledge distillation system consists of a teacher network (large model) and a
student network (small model). The category probability generated by the teacher model
under high temperature is used as the “soft target” for training the student model, and
knowledge is transferred from the large model in the training stage to the small model that
is more suitable for deployment to obtain more accurate crack detection results on the small
model [13,14]. It is necessary to select appropriate teacher networks and student networks
for crack detection to ensure the benchmark accuracy of the knowledge distillation system.
Common neural networks for crack detection include LeNet [15], AlexNet [16], VGG-
Net [17], etc. These DCNNs improve model accuracy by increasing the depth of networks.
However, as network layers continue to rise, training accuracy and testing accuracy rapidly
decline when network layers increase to a certain number, indicating that the deeper these
networks continue to grow, the more activation functions are introduced and the more
discretely data are mapped, making it difficult to return to the origin space (also known as
identity transformation), which means that DCNNs have a degradation problem. Therefore,
residual neural networks (ResNet) are introduced as the basic framework of the improved
crack detection algorithm. By adding a short-cut connection (also known as a residual
connection) to nonlinear convolution layers, ResNet improves the efficiency of information
dissemination and solves the problem of degradation. With ResNet50 used as the teacher
model and ResNet18 used as the student model, knowledge distillation is performed to
ensure basic accuracy.

On the other hand, scholars have continuously improved DCNNs used in crack
detection, but they are all oriented toward enhancing their accuracy. Although the accuracy
of these models has improved, there is still a large gap between the accuracy of training sets
and validation sets, indicating that there is still considerable room for improvement in the
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generalization ability of networks. The improved algorithm has better model generalization
ability, which is also a contribution to this paper.

In addition, the most critical parameter in knowledge distillation systems is distillation
temperature [18–22]. However, current work generally uses fixed temperature parameters,
which are usually set to 4. Although some research and experiments have verified this
empirical value, it does not apply to all knowledge distillation tasks and models. For
specific tasks, if one wants to match the soft targets of the teacher model and the student
models’ soft targets under the optimal temperature parameters, an exhausting search
method is required, which poses a great challenge to computing resources and efficiency. In
this context, we propose a dynamic temperature search method for knowledge distillation,
adding an adversarial dynamic temperature module. As the main contribution of this paper,
the proposed method makes it possible for the network to adjust temperature parameters
by itself, and in each epoch of training, a suitable temperature can be found for distillation.

It is worth noting that the initial training samples of this algorithm were not concrete
crack datasets because this type of dataset has a relatively small size and a single type,
which are sometimes not easy to obtain. Applying this algorithm directly to concrete
crack datasets for classification cannot guarantee a satisfactory training result. Therefore,
preliminary experiments were carried out on mini-ImageNet and then transferred their
training results to experiments on concrete crack detection to ensure more accurate detection
of concrete cracks. Through experiments, the contribution of transfer learning (pretraining)
to the improvement of model accuracy was proven.

This paper is organized as follows: Section 2 explains the proposed methodology,
including knowledge distillation and transfer learning; Section 3 illustrates preliminary
experiments conducted on mini-ImageNet and discusses the findings; Section 4 transfers
the improved algorithm pre-trained in Section 3 to crack detection and discusses the results;
and Section 5 applies the improved algorithm to the crack detection task of HKC Dam.
Finally, Section 6 discusses the main conclusions.

2. Methodology
2.1. ResNet-Based Dynamic Knowledge Distillation Architecture

Large DCNNs have achieved remarkable success with good performance, especially in
cases with large-scale data, because the over-parameterization improves the generalization
performance when new data are considered [23–26]. With the significant breakthrough
of DCNNs in image classification, much research has emerged that applies them to crack
detection. However, deploying deep models on mobile devices and embedded systems is a
great challenge due to the devices’ limited computational capacity and memory. Model
compression [11] was proposed to address this issue by transferring the information from a
large model or an ensemble of models into training a small model without a significant
drop in accuracy. The improved algorithm using dynamic knowledge distillation proposed
in this paper regards large models as “teachers” and small models as “students”. In this
algorithm, a small student model is generally supervised by a large teacher model [27–29],
and a temperature parameter [28] is introduced into the softmax function. Taking the
probability distribution generated by the teacher model as “soft targets” for training the
student model, it can be softened by adjusting the temperature. Soft targets usually have
high entropy, providing much more information for each training case than hard targets,
and the gradient variance between training cases is much smaller. If the student model
is trained at the same temperature, it can learn such knowledge from the teacher model,
achieving competitive and even superior performance.

A knowledge distillation system is composed of three key components: teacher-
student architecture, knowledge, and distillation loss. A general framework for knowledge
distillation is shown in Figure 1.
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As seen in Figure 1, in the process of knowledge distillation, a teacher model with a
complex network structure needs to be trained on datasets at a high temperature in advance.
Thereafter, a simplified student network must be guided to carry out the same task at
the same temperature and at a low temperature for model migration. Neural networks
typically use a converted softmax output layer to generate class probabilities. The difference
among probability distributions is significantly small. Generally, softmax classifiers use an
exponential function to amplify the gap between logits. After standardizing these logits,
it will output a one-hot vector, which is also called a hard target. One variable of the
one-hot vector equals 1, indicating that the input data belongs to a specific class, while
the other variables are all 0, containing too little information, which is not conducive to
the optimization of the network. Knowledge distillation provides a generalized softmax
function to soften the output:

qi =
exp(zi/T)

∑N
1 exp(zi/T)

(1)

where zi represents logits generated by networks, qi is a soft target, and T is a temperature
usually set to 1. Using a higher T will produce a softer probability distribution over classes.

The temperature represents the softening degree of targets. When T approaches 0,
the softmax function is still the standard softmax function and will still output a one-hot
vector without the softening effect. When T approaches infinity, the output of the softmax
function will be very soft, and more adequate information can be obtained from soft targets.
Therefore, when training the teacher network, a higher T was set to make the output
of softmax sufficiently soft target, and the output of the student network at the same
temperature would be close to the teacher model. Finally, we trained the student network
again at the normal temperature (T = 1) to output hard targets.

2.1.1. Selection of Appropriate Teacher and Student Models

DCNNs are continuously optimized by various means to improve detection accuracy,
most of which are to deepen the networks. In a network without residual blocks, the
deeper the network is, the stronger its learning ability should become. However, in
practice, features learned from input data are often far from those we need because of
gradient disappearance or explosion. The network needs to be improved to make it, once
deepened, still extract more valuable features for training that are not worse than the
shallower networks.

In this paper, two residual neural networks [30] with different depths were introduced
as the teacher model and student model for knowledge distillation to solve the problem
that the classification effect of convolutional neural networks deteriorates with the increase
of depth and ensure the benchmark accuracy of subsequent experiments.
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Taking a two-layer neural network as an example, as shown in Figure 2, the left part of
the figure is an ordinary neural network, while the right one is a residual neural network.
The main path of a common neural network is to input an x into the network. After two
weight layers and one ReLU nonlinear activation, F(x) is outputted. Thereafter, F(x) is used
as a new input to experience the next ReLU nonlinear activation. The difference between
an ordinary neural network and a residual neural network is that there is an additional
shortcut connection in the latter one. The input x of the residual neural network enters
the deeper layer along with the output F(x) of its last layer, which acts together on the
subsequent ReLU nonlinear activation function, forming a residual block. The curved
arrow in Figure 2 is a “shortcut”, which means that the input x should not only go through
the main path of the ordinary neural network but also affect the deeper network with the
output F(x). A convolutional neural network with such shortcut connections is a residual
block, and several residual blocks constitute ResNet.
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The structures of ResNet18 and ResNet50 are shown in Figure 3. They are divided into
six stages. The first stage is convolution and maximum pooling once data are input. Data
are convolved with residual blocks from the second to the fifth stage. Each stage has two
different basic residual blocks: the Conv Block and the Identity Block (ID Block). The data
are convolved three times in each residual block. Conv Blocks’ function is to change the
dimension of the network, so the input and output dimensions of these blocks are different
and cannot be connected in series. In contrast, ID Blocks’ input and output dimensions are
the same, so they can be concatenated to deepen the network. In the sixth stage, data are
pooled globally and flattened, and then data can be classified. The structure of ResNet18 is
quite similar to that of ResNet50. The only difference is that the number of residual blocks
differs from [2, 2, 2, 2] to [3, 4, 6, 3].
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2.1.2. Distillation Loss Function

Knowledge distillation aims to minimize the difference between the output of the
student network and that of the teacher network. A distillation loss function can quantify
this objective. As shown in Figure 1, the loss function in the distillation process consists of
distillation loss (soft loss) and student loss (hard loss).

When the correct labels are known for all or some of the datasets, this method can
be significantly improved by training the distilled model (the student model) to produce
the correct labels. One way to achieve this is to use the correct labels to modify the soft
targets, but we found that a better way is to simply use a weighted average of two different
objective functions.

L = αLsoft + (1− α)Lhard (2)

here, Lsoft is the first objective function, representing the cross entropy with the soft targets,
and this cross-entropy is computed using the same high temperature in the softmax of the
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distilled model as was used for generating the soft targets from the cumbersome teacher
model. The formula is as follows:

Lsoft = −∑N
1 tT

i log
(

sT
i

)
(3)

where N represents the total number of labels/classes, and tT
i and sT

i are soft targets of the
teacher and student models in class i when the temperature is T. The formulae to calculate
tT
i and sT

i are as follows:

tT
i =

exp(ui/T)

∑N
1 exp(ui/T)

(4)

sT
i =

exp(vi/T)

∑N
1 exp(vi/T)

(5)

where ui and vi represent the logits of teacher and student networks, respectively.
The second objective function is Lhard. It represents the cross-entropy with the correct

labels (hard labels). It is computed using exactly the same logits in the softmax function of
the distilled model, but at a temperature of 1:

Lhard = −∑N
1 ci

vi

∑N
1 exp(vi)

(6)

where ci represents the correct label on class j. In ci ∈ {0, 1} 1 is the positive label and 0 is
the negative one.

Since the magnitudes of the gradients produced by the soft targets scale as 1/T2, it is
essential to multiply them by T2 when considering soft loss. This ensures that the relative
contributions of the hard and soft targets remain roughly unchanged if the temperature
used for distillation is changed while experimenting with meta-parameters.

2.1.3. Dynamic Temperature for Knowledge Distillation

For a knowledge distillation system, the temperature parameter controls the smooth-
ness of two prediction results and determines the distance between two probability distri-
butions. The higher the temperature is, the smoother the probability distribution will be;
otherwise, the closer the temperature is to zero, the sharper the probability distribution
will be. At the same time, temperature affects how difficult it is for the student model to
mimic the teacher model during the distillation process. Different distillation results will
be produced at different temperatures. The common method in existing work is to use a
fixed temperature parameter, generally set to 4.

However, the optimal temperature parameter for different distillation systems for
various tasks is not necessarily equal to 4. Suppose we want to find the optimal temperature
parameter for a specific task. In that case, we need to perform an exhaustive search,
which will result in a large amount of computation, and the entire training process is very
inefficient. At the same time, maintaining a static and fixed temperature parameter is
not the best choice for student models. Based on curriculum learning [31], humans learn
from simplicity to difficulty in the learning process. We also hope to form a step-by-step
distillation difficulty model for the student during the distillation process.

Therefore, we propose to dynamically adjust the temperature during the training
process by adding an antagonistic dynamic temperature module, making it possible for the
network to automatically select a suitable temperature for distillation in each training epoch.
After adding the dynamic temperature module, the overall architecture of knowledge
distillation is shown in Figure 4.
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As shown in Figure 4, a dynamic temperature parameter is implemented through a
nonparametric gradient reverse layer (GRL) to satisfy the need for confrontation: inserting
a GRL between the softmax layer and the learnable temperature module and using the GRL
to reverse the gradient of the learnable temperature parameter to amplify the distillation
loss between the student and teacher model when the student network is trained to
minimize distillation loss. The effect of confrontation can be achieved very directly in this
case. The inverse gradient’s weight rises with training progress, thereby increasing the
learning difficulty.

After adding the dynamic temperature module, the target function of distillation loss
is modified as follows:

min
ωs

max
ωT

L =min
ωs

max
ωT

∑
x∈D

αLsoft
(

f t(x; ωt), f s(x; ωs), ωT
)
+ (1− α)Lhard( f s(x; ωs), y) (7)

The formula above can be solved by alternating algorithms: fixing one set of variables,
solving another set of variables, and alternating between solving subproblems related to
these two variables. The relevant pseudocode is shown in Algorithm 1.

Algorithm 1: Implementation of Dynamic Distillation

Input: Training dataset D; Total training epoch M; Pre-trained Teacher ωt; Learnable Temperature
Module ωT
Output: Distilled Student ωs
Initialize: Epoch m = 1; Randomly initialize: ωT , ωs

while m ≤M do
for batch x in D do

Forward propagation through ωt and ωs to obtain predictions f t(x; ωt), f s(x; ωs)
Obtain temperature T by ωT
Calculate the loss L and update ωs and ωT by backward propagation

end for
m = m + 1;
end while

In the dynamic temperature module, we use a global temperature, adapting the
same temperature to all instances to be predicted. This efficient version does not incur



Water 2023, 15, 2839 9 of 18

additional computational costs for the distillation process because it involves only one
learnable parameter.

2.2. Transfer Learning

In some deep learning scenarios, the cost of directly training the target task is too
high, and the dataset provided by the target task is too small to support deep learning and
achieve good results. For example, there had not yet been a set of crack images with rich
samples for non-destructive crack detection of concrete structures, the research object of
this chapter. Therefore, we expected that the model trained in advance on the task with
sufficient samples could be directly applied to the new target task.

Transfer learning [32,33] is an effective method to solve training tasks without rich
samples in computer vision. The training set and the test set do not need to meet the
assumption of independent and identical distribution, so they can extract the common
or essential features between two different but correlational tasks and use the common
features to realize the mutual transfer of learning ability between these two tasks. The
network in the target task also does not need to start training from scratch but extracts
high-dimensional semantic features to complete the target task based on the common
features mined in the source task. This shortens the training time and achieves considerable
performance even with a small amount of data in the target task because it does not need
a large number of training data to obtain features. In short, transfer learning can obtain
common invariants from the source task and transfer them to the target task.

Transfer learning can be divided into sample transfer, feature transfer, and param-
eter/model transfer according to different learning objects [34]. The crack detection
algorithm established in this paper mainly includes a backbone coding module and a
classification module. The backbone coding module is primarily composed of multiple con-
volutional and pooling layers for feature coding. The classification module mainly consists
of numerous fully connected layers whose primary function is to output the probability
distribution of each category to achieve final results. The shallow convolutional layers
near the input layer in the backbone coding module are suitable for extracting common
features. In contrast, the deeper convolutional and classification layers are ideal for mining
specific personality features. When the pre-trained network of the source task is transferred
to the target task, the weight and bias parameters of the classification module need to be
removed and redesigned to suit the target task. Therefore, the parameter/model transfer
method was used in this chapter. Firstly, an improved image classification model on mini-
ImageNet with excellent performance was trained. Secondly, its structure and parameters
were frozen for invocation as the backbone coding module for feature extraction in the
target task of crack detection. Thirdly, some important hyperparameters were fine-tuned,
and the structure of the fully connected layer was modified to a two-classifier for crack
detection. Thus, the multi-classification problem of mini-ImageNet was changed to the
two-classification problem of crack detection, as shown in Figure 5. In other words, it was
not necessary to start training the improved network used for crack detection from scratch
but only to iterate and update parts of the parameters, which significantly reduced the
training workload and shortened the training time.
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3. Preliminary Experiments on Mini-ImageNet

ImageNet [35] is one of the most influential image recognition datasets in the world
at present, with a total of 1,431,167 images in 1000 categories and their corresponding
labels. Based on its large samples and diversity, ImageNet is the most popular dataset for
pre-training various neural networks. The parameters are reliable and versatile after pre-
training. However, training neural networks on ImageNet must consume a large amount
of computing resources. Sixty thousand pictures (including 100 categories and 600 samples
for each category) were extracted from ImageNet as the pretraining dataset of residual
neural networks to save training time in this chapter.

3.1. Training Tricks

In deep learning, the learning rate is a vital hyperparameter that controls optimization
algorithms’ convergence speed. A high learning rate can lead to rapid convergence and
cause the optimization algorithm to oscillate or converge to a suboptimal solution. A low
learning rate, on the other hand, can ensure that the optimization algorithm converges to a
good solution, but its convergence speed may be slow.

There are two strategies to solve this dilemma. The first strategy is to warm up the
learning rate [36]. The parameters of ResNet18 and ResNet50 are randomly initialized at
the initial stage of training. During this stage, if a relatively high learning rate is selected,
it may cause oscillations in the networks. Warming up the learning rate can make the
learning rate in the first few epochs of training relatively small. The networks can slowly
become stable with a lower learning rate in the warm-up stage. When these two networks
are relatively stable, the pre-set learning rate can be used for training. This strategy makes
the convergence speed of the networks faster and their training effects better. In this paper,
the steps of the warm-up stage were set to 1.

Another helpful trick is the decay strategy of the learning rate. The decay strategy
used in this paper was cosine annealing [37,38]. When using gradient descent algorithms
to optimize objective functions, the closer networks get to the global minimum loss, the
smaller the learning rate should become to avoid networks missing this point. The cosine
annealing decay strategy can reduce the learning rate through the cosine function. With
the increase in input to the cosine function, the cosine value first slowly decreases, then
accelerates to decline, and then slowly decreases again. This gradual decrease in learning
rate helps to avoid overshooting the optimal solution and ensure that the optimization
algorithm converges to a reasonable solution smoothly and stably.
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3.2. Some Findings

To see how well distillation works, we trained two residual neural networks with
different depths on mini-ImageNet, a large dataset with 60,000 samples. The accuracy
of the teacher network ResNet50 was 81.79%, while the accuracy of the student network
ResNet18 without knowledge distillation was 79.41%. However, if the smaller network was
trained by adding the additional task of matching the soft targets produced by the large
network at a higher temperature, empirically taking T = 4 and α = 0.6 as an example, its
accuracy reached 82.33%. It shows that soft targets can transfer a great deal of knowledge
to the distilled model, including how to generalize what is learned from translated training
data, even though the transfer set does not contain any translations. Table 1 shows the
results of ablation experiments at different distillation temperatures.

Table 1. Results of ablation experiments.

Model T Epoch 1 Train Acc 2

(%)
Hard Loss

(%)
Best Acc 2

(%)
Val 3 Loss

(%)

Student ResNet18 - 96 93.44 0.26 79.41 0.86
Teacher ResNet50 - 99 94.40 0.22 81.79 0.76

KD 4 2 97 93.05 0.10 81.61 0.79
KD 3 93 92.53 0.11 81.95 0.78
KD 4 97 92.49 0.11 82.33 0.78
KD 5 94 91.99 0.12 82.04 0.77

KD(DT 5) - 99 92.34 0.11 82.52 0.77

Note(s): 1 Epoch represents the number of training epochs with the highest accuracy. 2 Acc is the abbreviation for
accuracy. 3 Val is the abbreviation for validation. 4 KD is the abbreviation for knowledge distillation, representing
the distilled student network ResNet18. 5 DT is the abbreviation for dynamic temperature.

In addition, we find that knowledge distillation can also improve generalization by
narrowing the gap between training and validation accuracy compared to that of the
original student model and even the teacher model. For instance, the training accuracy and
the validation accuracy of ResNet18 were 93.44% and 79.41%, which differed by 14.03%,
and those of ResNet50 were 94.40% and 81.79%, which differed by 12.61%, while those
of distilled (T = 4, α = 0.6) ResNet18 were 92.49% and 82.33%, which differed by 10.16%.
This is solid and decisive proof that the generalization ability of the improved algorithm is
enhanced through knowledge distillation, which provides excellent support for transferring
this algorithm to train crack datasets in the following experiments.

Furthermore, based on the empirical fixed temperature of 4, we set the variation range
of dynamic temperature to [3, 5] and found that the model’s accuracy using dynamic
temperature parameters reached 82.52%. The final distillation temperature approached
3.95. Compared with the results of distillation systems under fixed temperature parameters,
the distillation effect was significantly improved with a dynamic temperature module.
The network itself can adjust the distillation temperature without repeating exhausting
experiments to find the optimal fixed temperature or simply taking an empirical one. In
the next experiment, we apply dynamic temperature to crack detection.

4. Experiments on Concrete Crack Detection

As mentioned above, the improved algorithm has achieved a more accurate image
classification performance on mini-ImageNet. The next step is to transfer its training results
to practice on crack datasets. The work to be carried out includes establishing crack datasets
of concrete structures and transfer learning.

4.1. Concrete Crack Datasets

The original dataset [39,40] comprises 458 high-resolution images (4032 × 3024 pixels)
of concrete cracks. Due to the limited number of samples, these images were cropped
to generate 20,000 positive samples with cracks and 20,000 negative samples without
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cracks. Each sample is a 224 × 224 RGB image; thus, a dataset [41] of concrete cracks
was established.

These images were randomly put into the training set and the validation set at a
ratio of 8:2. There are two folders under the training set and the validation set: one for
collecting positive samples and the other for collecting negative samples, respectively.
Some samples with and without cracks are shown in Figure 6. It can be seen that the crack
dataset established in this paper contains cracks of various shapes and widths and has
good randomness and richness.
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4.2. Results

Taking the pre-trained network as the starting point and changing its fully con-
nected layer, the multi-classification problem on mini-ImageNet was modified to a two-
classification problem of concrete cracks (with or without cracks). Image enhancement
measures such as random rotation and horizontal and vertical flipping were also taken
to improve model generalization. In addition, the normalization of each channel was
conducive to the training of networks, thus further enhancing the accuracy of the crack
detection model. The network was trained for a total of 10 epochs. The performance of the
improved algorithm on crack detection can be evaluated by the accuracy and loss of the
training set and the validation set during each epoch of training, as shown in Figure 7.

It can be seen from Figure 7 that the improved ResNet-based algorithm using knowl-
edge distillation performed exceptionally well on crack detection at the right beginning,
taking the accuracy and loss of the validation set as the evaluation criteria. The high
accuracy of the first epoch is the result of pre-training on mini-ImageNet and transfer
learning. With the increase in training epochs, the improved algorithm performed better
and better. When training to the eighth epoch, the algorithm achieved the best performance.
Comparing the performance of ResNet18, ResNet50, and distilled ResNet18 on the task
of crack detection, the detection ability of the teacher model is generally better than that
of the student model. Additionally, the feature extraction ability of the distilled student
model is enhanced, so its accuracy is higher than that of the original model, even exceeding
that of the teacher model. Taking the optimal results as an example, the accuracy of the
improved algorithm based on knowledge distillation applied to the crack detection of con-
crete structures was as high as 99.85%. Compared with the original algorithm, the accuracy
was increased by 3.78%. With six images randomly selected from the crack dataset, correct
detection results were obtained, taking the trained model of this epoch as the ultimate one
for detection, as shown in Figure 8.

Meanwhile, we also carried out ablation experiments from different angles. For
example, we compared the crack detection results of student and teacher networks with
and without pretraining, respectively, as well as other improved methods of ResNets other
than knowledge distillation, such as the insertion of convolutional block attention module
(CBAM) and some other DCNNs applied to crack detection, such as AlexNet and VGG-Net.
The results are shown in Table 2.
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Figure 7. Performance of different crack detection algorithms: (a) training accuracy; (b) training loss;
(c) validation accuracy; and (d) validation loss.
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From Table 2, it can be seen that the improved pre-trained network based on dynamic
knowledge distillation presented an improvement of 4.92% in accuracy compared to the
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original student network without pretraining. The accuracy was 1.05% higher than that of
networks with CBAM. Compared with other DCNNs, such as AlexNet and VGG-Net, the
accuracy was improved by 2.83% and 4.92%, respectively. This algorithm is well prepared
for application to crack detection in concrete dams. In the subsequent case study, we take
the HKC Dam as an example to conduct crack detection on the concrete structures of
its spillway.

Table 2. Crack detection results for different networks.

Model ResNet18 * ResNet50 * KD CBAM AlexNet VGG-Net

Best Acc 94.93 96.07 95.56 98.62 99.85 98.80 97.02 94.93
(+1.14) (+0.63) (+3.69) (+4.92) (+3.87) (+2.09) (+0.00)

(−0.51) (+2.55) (+3.78) (+2.73) (+0.95) (−1.14)

Note(s): * The student and teacher models have two columns of data, which are the crack detection results of
pre-trained models and those without pretraining. The values in parentheses in the second row are the degrees of
improvement compared to the accuracy of the student model without pre-training, and the values in parentheses
in the third row are the degrees of improvement compared to that of the pre-trained student model.

5. Case Study

Long-term and periodic changes in water pressure and temperature, structural settle-
ment, geological disasters, and other factors can easily lead to the evolution of small cracks
in concrete dams into more severe damage. Timely crack detection is necessary to ensure
the safety and stability of concrete dams. Furthermore, accurately identifying whether there
are cracks in a specific area of a dam is an essential requirement for crack detection. Since
the evolution of cracks in concrete dams is quite a slow process, lasting for several years to
several decades, few crack images are available in the short term. It is necessary to conduct
research on crack detection in the case of a small number of samples. Taking the HKC
Dam as an example, the improved ResNet-based algorithm using knowledge distillation
mentioned above in this paper and already trained on crack datasets was applied to identify
the cracks in the concrete dam.

5.1. Case Description—HKC Dam

HKC Dam is located at the exit of the Qin River’s last section, the Yellow River’s
primary tributary. The basin area controlled by the reservoir is 9223 km2, accounting for
68.2% of the basin area of the Qin River. The design flood control standard has a 500-
year return period, and the check standard has a 2000-year return period. With a total
storage capacity of 317 million cubic meters, the dam is a hydraulic project focusing on
flood control, water supply, and the comprehensive utilization of irrigation and power
generation. The main structures include a concrete face rockfill dam, spillway, and power
generation system, as shown in Figure 9. We used UAVs to acquire images of the dam, and
it was found that the spillway of the dam had many cracks due to long-term operation, as
shown in Figure 10.
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5.2. Application to HKC Dam

When applying the improved ResNet-based algorithm to crack detection at HKC
Dam, the first step was to divide crack images into several blocks, the size of which is
determined by that of the crack images in the above chapter (224 × 224 pixels). Thereafter,
we classified each block using the previously trained model, resulting in an accuracy rate
of 98.39%. A threshold segmentation method, a kind of digital image processing technique,
was also used to detect cracks for comparison. The results of these two methods are shown
in Table 3.

Table 3. Crack detection results for HKC Dam.

Original Images Original Feature Maps Segmented
Images

Detection
Results
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Taking the four samples shown in Table 3 as an example, it was determined that they 
were all samples with cracks using the threshold segmentation method, but there was one 
without cracks. The improved ResNet-based algorithm using knowledge distillation still 
had good performance in the case of crack detection in concrete dams. It should be noted 
that the above algorithm cannot directly extract cracks from the image at the pixel level. 
This crack detection algorithm based on deep learning still needs to be combined with 
image segmentation technology to complete the pixel-level extraction of cracks. However, 
compared with the traditional digital image processing techniques, the improved algo-
rithm proposed in this paper does not require any pre-processing of the original images, 
such as manually filtering background and noise in images. As long as all the samples are 
classified according to their categories, the algorithm can perform well in crack detection, 
which proves that it has a certain progressiveness. 

6. Discussion 
In this paper, we present an improved ResNet-based algorithm for crack detection in 

concrete dams using dynamic knowledge distillation. The improved algorithm eliminates 
the incompatibility of high accuracy and model compression of DCNNs applied to crack 
detection tasks, such as AlexNet, VGG-Net, ResNet50, and other improved versions using 
CBAM, enabling student models to have superior crack recognition capabilities compared 
to their teacher and facilitating their deployment on devices with limited resources. 

Meanwhile, our method has abolished the practice of using fixed distillation temper-
atures in previous knowledge distillation systems and proposes to dynamically adjust the 
temperature during the training process by adding an antagonistic dynamic temperature 
module, making it possible for the network to select a suitable temperature for distillation 
automatically in each training epoch. This measure also greatly benefits the improvement 
of model accuracy. 

Besides, we used transfer learning to solve the problem of insufficient samples in the 
crack detection task. Preliminary experiments were carried out on mini-ImageNet, and 
the pre-trained model was transferred to the target task. Through experiments, we have 
come to the following conclusions: 
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Taking the four samples shown in Table 3 as an example, it was determined that they
were all samples with cracks using the threshold segmentation method, but there was one
without cracks. The improved ResNet-based algorithm using knowledge distillation still
had good performance in the case of crack detection in concrete dams. It should be noted
that the above algorithm cannot directly extract cracks from the image at the pixel level.
This crack detection algorithm based on deep learning still needs to be combined with
image segmentation technology to complete the pixel-level extraction of cracks. However,
compared with the traditional digital image processing techniques, the improved algorithm
proposed in this paper does not require any pre-processing of the original images, such as
manually filtering background and noise in images. As long as all the samples are classified
according to their categories, the algorithm can perform well in crack detection, which
proves that it has a certain progressiveness.

6. Discussion

In this paper, we present an improved ResNet-based algorithm for crack detection in
concrete dams using dynamic knowledge distillation. The improved algorithm eliminates
the incompatibility of high accuracy and model compression of DCNNs applied to crack
detection tasks, such as AlexNet, VGG-Net, ResNet50, and other improved versions using
CBAM, enabling student models to have superior crack recognition capabilities compared
to their teacher and facilitating their deployment on devices with limited resources.

Meanwhile, our method has abolished the practice of using fixed distillation tempera-
tures in previous knowledge distillation systems and proposes to dynamically adjust the
temperature during the training process by adding an antagonistic dynamic temperature
module, making it possible for the network to select a suitable temperature for distillation
automatically in each training epoch. This measure also greatly benefits the improvement
of model accuracy.

Besides, we used transfer learning to solve the problem of insufficient samples in the
crack detection task. Preliminary experiments were carried out on mini-ImageNet, and the
pre-trained model was transferred to the target task. Through experiments, we have come
to the following conclusions:

1. Preliminary experiments on mini-ImageNet prove soft targets can transfer a great deal
of knowledge to the distilled model. If the smaller network is trained by adding the
additional task of matching the soft targets produced by the large network at a higher
temperature (T = 4), its accuracy will increase from 79.41% to 82.33%. We also find
that knowledge distillation can improve generalization by narrowing the gap between
training and validation accuracy compared to the original student model (from 14.03%
to 10.16%) and even the teacher model (from 12.61% to 10.16%). In addition, the
distillation effect is further improved with a dynamic temperature module (from
82.33% to 82.52%), compared with the results of distillation systems under fixed
temperature parameters. The final distillation temperature approaches 3.95, which is
different from the empiric value of 4, which confirms our previous conjecture.

2. Experiments on concrete crack detection prove the improved pre-trained network
based on dynamic knowledge distillation has an improvement of 4.92% compared to
the original student network without pretraining, with an accuracy of 99.85%. The
accuracy is 1.05% higher than that of networks with CBAM. Compared with other
DCNNs, such as AlexNet and VGG, the accuracy is improved by 2.83% and 4.92%,
respectively. Experimental results demonstrate that the proposed dynamic distillation
and transfer learning are highly beneficial for crack detection tasks and can satisfy the
dual requirements of high accuracy and model compression. It is particularly true for
tasks with insufficient samples, such as the application of HKC Dam.

3. When common feature encoders obtained from concrete cracks with rich features
were applied to crack detection in HKC Dam through transfer learning, its accuracy
reached 98.39%, making it easy to draw sweeping conclusions: dynamic distillation
and transfer learning can help networks improve the ability to extract common
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features such as texture and contour of cracks and alleviate the overfitting problem of
datasets involving unrich samples.
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