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Abstract: The deformation of concrete-face rockfill dams (CFRDs) is a key parameter for the safety
control of reservoir and dam systems. Rapid and accurate estimation of the deformation characteris-
tics of CFRDs is a top priority. To realize this, we proposed a new model for predicting the maximum
face slab deflection (FD) of CFRDs, combining the threshold regression (TR) and the improved
support vector machine (SVM). In this paper, based on the collected 71 real measurement data from
engineering examples, we constructed an adaptive hybrid kernel function with high precision and
generalization ability. We optimized the selection of the main parameters of the SVM by a particle
swarm optimization (PSO) algorithm. Meanwhile, we clustered the deformation parameters accord-
ing to the dam height by the TR. It significantly contributes to the accuracy and generalization of the
model. Finally, a prediction model for the FD characteristics of CFRDs combining TR and improved
SVM was developed. The new prediction model can overcome the nonlinear abrupt feature of the
sample data and achieve high precision with R2 greater than 0.8 in the final testing set. Our model
is more accurate with faster convergence compared to the previous model. This study provides a
more accurate model for predicting maximum face slab deflection and lays the foundation for safety
control and evaluation of dams.

Keywords: prediction model; SVM; threshold regression; maximum face slab deflection; concrete-face
rockfill dam

1. Introduction

The concrete-face rockfill dam (CFRD) is supported by a rockfill body and adopts an
upstream concrete-face slab as an antiseepage structure [1]. It has the advantages of strong
adaptability to foundation conditions, being able to use materials locally, occupying less
arable land, saving investment, having a fast construction speed, and better safety. Due to
the advantages, a large quantity of CFRDs have been constructed all over the world [2].

Excessive deformation of the dam body can easily cause cracking or even damage to
the impermeable structure. The quantitative analysis of the concrete-face deformation is
critical for safety assessment and the prevention of deformation damage. This phenomenon,
in turn, can result in excessive leakage. For example, the CFRD of Gouhou in China and the
Mohale in Lesotho [3] had varying degrees of failure risk due to the deformation and crack
of the dam body [4]. Accurate prediction of the deformation characteristics of concrete
faces is essential for the design and safety evaluation of CFRDs.

Traditional empirical methods take only a few influencing factors into account and
have relatively large prediction errors. Furthermore, only a small number of dams are
applicable to traditional empirical methods. Then, the intelligent algorithms have been
raised in the field. Ren et al. [5] adopted the long, short-term memory model to establish
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a reliable displacement prediction model. Jia and Chi. [6] used the PSO algorithm to pre-
dict displacements of the soil parameters of the Malutang II dam. Ma et al. [7] located
microseismic events by the fully convolutional neural network. Mostafaei et al. [8] de-
veloped a new automatic modal identification algorithm of ensemble learning to identify
the modal parameters. Marandi et al. [9] predicted the settlement of CFRDs based on a
genetic programming algorithm. The problems of the neural network model are obtaining
local optimum solutions and slow convergence of the learning process. As can be seen,
traditional intelligent algorithms usually suffer from the problem of failure to converge
or slow convergence. Wen et al. [1] showed that the settlement characteristics of CFRDs
are affected by several factors, and there is an obvious nonlinear relationship between the
deformation characteristics and the influencing factors, while different influencing factors
are often related to each other. Besides, Wen et al. [10] established an SVM prediction model
to predict the crest settlement of CFRDs.

SVM is a machine learning algorithm developed from statistical theory. It is an avail-
able means to deal with the regression of nonlinear data. It also has wide applications in
computer vision and data mining. SVM is mainly used to search the feature vectors of
samples by kernel function and find the hyperplane that can optimally distinguish data
to maximize the distance from each type of data to the hyperplanes. It can also clearly
distinguish different types of data samples to achieve classification purposes. SVM models
are usually utilized by many scholars to build a deformation prediction model. Further-
more, they combined SVM models with wavelet analysis and a PSO algorithm [11–13].
For example, Salkhordeh et al. [14] used SVM for detecting damage in concrete bridges.
Ren et al. [15] applied SVM to the time-dependent prediction of dams and achieved better
results. Although there are many factors affecting the deformation characteristics of a
dam concrete face, coupled with the complex database features, it is easy to process the
data and get results for SVM. At present, SVM is mainly used for the prediction of aging
deformation. However, there is little research on data mining and building prediction
models for multiple engineering example databases. There is a need for further research on
concrete-face deformation prediction models based on SVM for CFRDs.

Although the improved SVM prediction model achieves better prediction results than
the basic SVM prediction model, there is still a large error between the measured and
predicted FD. The FD data of CFRDs have obvious nonlinear abrupt and jump character-
istics. These specific data can deteriorate the generalization ability. Because the decision
function depends on the sample points (“support vectors”) closest to the hyperplane, the
accuracy of the calculation is determined by the support vector. Some sample points are
too “outstanding”; they will be eliminated as outliers. The basic theory of SVM is shown in
Figure 1.

To avoid the nonlinear abrupt and jump characteristics, this paper introduces the TR
method to the SVM model. Firstly, we apply the TR theory to classify the CFRD example
data into segments according to the relevant variables. Then, we build a prediction model
based on each segment database. The TR prediction model is a nonlinear time-series model
that effectively describes complex phenomena with abrupt changes, quasiperiodicity, and
segmental dependence [16]. Its basic idea is to use different prediction models for different
situations by the judgment of threshold. Mustafa Kocoglu et al. [17] used quantile and TR
methods to measure the carbon dioxide emission affected by urbanization. Takumi Saegusa
et al. [18] select variables in HIV drug adherence data using the TR Model. However, the
TR prediction model has little application in the prediction deformation and safety control
of hydraulic engineering.

In this paper, to achieve high precision with faster convergence, we innovatively
optimize the main parameters of the SVM regression model using a PSO algorithm to
establish an improved SVM prediction model. First, we collected measured deformation
data of 71 CFRDs from the relevant papers [19] (see Supporting Information Table S1).
We propose an adaptive hybrid kernel function suitable for predicting the deformation
characteristics of CFRDs. Then, clustering of example databases using the TR theory
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improves prediction results and includes nonlinear sample data. Finally, an FD prediction
model combining TR and improved SVM is established. The work of this paper can serve
as an alternative for the precision prediction of the slab deflection of CFRDs and lay the
foundation for dam safety and evaluation. The Variables, Acronyms and Terms related to
the paper are shown in the Table 1.
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Figure 1. The basic theory of SVM.

Table 1. The variables/acronyms/terms.

Variables/Acronyms/Terms Description

CFRD Concrete-face rockfill dam
FD Dam maximum face slab deflection
TR Threshold regression

SVM Support vector machine
PSO Particle swarm optimization
X1 X1 = H/Hr, Hr = 100 m
X2 Void ratio

X3
Valley shape(A/H2); A = upstream slope surface area; H = dam
height

X4 Foundation conditions
X5 Rockfill strength
X6 Operation time
y Label (%H is the ratio of the FD to the dam height)
K Kernel function

RBF Gauss basis function
GS Grid search

Poly Polynomial function
RMSE Root mean squared error

R2 Correlation coefficient

Clustering Clustering is a typical unsupervised learning method, which
learns the intrinsic relation of the data.

Optimization
algorithms

It is mainly used to speed up the training of the model, making
the objective function converge quickly.
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2. Method
2.1. The SVM Algorithm

The SVM algorithm predicted the dam deformation by solving the nonlinear regression
problem using kernel functions to map the sample data to a hyperspace [20]. We set the
FD (y) as the label, and set dam height (X1), void ratio (X2), valley shape (X3), foundation
types (X4), rockfill strength (X5), and operation time (X6) as the inputs, the mathematical
mapping relationship between the output and input variables exists as:

y = f {X1, X2, X3, X4, X5, X6} (1)

With the sample set D = {(x1s, y1), (x2s, y2), . . ., (xms, ym)}, the regression formula is
obtained as:

f (x) = w · x + b (2)

where w = (w1, w2, . . ., wm)T is the weight coefficient, and b is the intercept distance.
We introduce the Lagrange multipliers α, α* to transform the above convex quadratic
optimization problem into a pairwise problem. The final regression function is obtained as:

f (x) = ∑ xi∈SV(αi − αi
∗)K(xi, x) + b (3)

where K(xi,x) is the kernel function. The performance of the model depends on kernel
functions, and different sample information should be selected for corresponding adaptive
kernel functions. Then, in the case of selected kernel functions, it is also crucial to optimize
their corresponding parameters.

2.2. Kernel Functions and Parameter Optimization

The poly function and RBF are usually used as the SVM kernel, showing as follows,
respectively [10]:

K(x, x′) = ((x, x′) + c)d (4)

K(x, x′) = exp

(
−||x, x′||2

2σ2

)
(5)

where x and x′ are the input data; d is the poly kernel function exponent; c is the penalty
term; and σ is the RBF kernel function parameter. The focus of improving the model is to
select a befitting kernel function. Because of the high dispersion and high susceptibility
by many factors of the CFRDs, we construct a smoothly combined hybrid kernel function
based on the poly function and RBF kernel function. This hybrid kernel integrated the
advantages of both kernel functions:

Kmix = ηKpoly + (1− η)Krb f (6)

where Kpoly is the polynomial kernel function, Krbf is the Gauss basis function, and η is the
hybrid weight. The magnitude of the action of the two characteristic kernel functions is
adjusted by adjusting the weighting coefficients so that the hybrid kernel function can be
used for different data sample information.

Optimization methods for the model hyperparameter search include nonheuristic
methods based on analysis and intelligent optimization methods based on heuristics.
Particle swarm optimization (PSO) is currently a popular intelligent optimization method
with higher accuracy and speed. Figure 2 shows the flow chart of the PSO algorithm to
achieve parameter optimization. The parameters to be adjusted include the regularization
parameter C, the multiform kernel parameter d, the radial basis kernel parameter σ2, and
the coefficient η. Here, C is used to control the fitting error of the function. The fitting
error becomes smaller as σ2 becomes smaller, and the corresponding training time becomes
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longer. Besides, too small a value of σ2 will lead to the phenomenon of “overfitting”. The
modeling process uses an insensitive loss function with ε = 0.01 and takes the parameter
g = 1/2σ2 instead of the kernel parameter. The variations of σ2, η are used as the mixed
weight coefficient. They can adjust the range and size of the two characteristic kernel
functions according to the distribution of sample data.
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2.3. Modeling Steps for the SVM Prediction Model

According to the above theory, the improved SVM model based on grid search (GS)-
SVM and PSO-SVM for the FD prediction is established. The prediction model between the
FD and the six main variables is established through the following steps:

(1) Data selection. Since the engineering information of some instances is not complete,
it is necessary to select the instances, including the FD and all control variables data
from the collected instance database. The selected samples should accord with the
real situation to reduce the errors. The final 71 data contain 61 instances with detailed
concrete face deformation and six with the controlled variables data.

(2) Sample preprocessing. Firstly, the collected CFRD instance data were randomly
divided into training and test sets. The initial parameters were obtained from the
training set, and then the adjusted parameters were obtained from the test set. From
the selected instance database, 49 sets (80%) were randomly selected as training
samples and the latter 12 sets (20%) as test samples. To avoid the effect of quantita-
tive differences between different variables, the sample input and output quantities
were normalized into [0, 1]. For each dimensional variable, the normalization was
performed as follows:

Xi =
Xi − Xmin

Xmax − Xmin
(7)

where Xi is the sample data, Xmin is the minimum value, and Xmax is the maximum
value. After normalization, the data are within [0, 1], which can reduce the error
caused by the large difference in data orders.

(3) Optimal selection of model parameters. To compare the results of different kernel func-
tions, we adopt two different kernel functions to model for regression prediction for
the maximum FD of CFRDs. To avoid certain blindness, the approximate ranges of the
initialized parameter optimization are given as η = [0, 1], g = [−20, 20], C = [−20, 20],
and d = [1, 4]. To show the reliability of parameter optimization algorithms, both the
GS and the PSO are used for the optimal selection of parameters of different kernel
functions in SVM models.
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(4) Model evaluation index. We measure the performance of the trained model by the
root mean squared error RMSE and the correlation coefficient R2. The RMSE and R2

are given by the following equation:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi−ŷi)2 (8)

R2 = 1−

N
∑

i=1
(yi−ŷi)

2

N
∑

i=1
(yi−y)2

(9)

where n is the number of samples, yi is the measured values, ŷi is the predicted values,
y is the mean values of the measured values, and R2 is the determinable coefficient.

The root mean squared error RMSE is used to calculate the training and prediction fit
errors of the samples. The determinable coefficient R2 is used to characterize the evaluation
parameter of the correlation between the above-predicted and measured values. Its value
is between 0 and 1. When R2 is closer to 1, the stronger the correlation is and the better the
prediction is; otherwise, the worse it is. The training process is in Figure 3.
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2.4. Prediction Model Combining TR and Improved SVM

We assume that the sample data are {yi, xi, qi}n, where qi is the threshold variable. The
threshold variable is used to classify the sample and can also be used as an explanatory
variable to explain a part of the dependent variable. They are assumed known and there
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are differences in the samples at different intervals. The relationship between the variables
can be expressed as follows:

yi = β′1xi I(qi ≤ γ1) + β′2xi I(γ1 < qi ≤ γ2) + ei (10)

where γ is the threshold value, yi is the typical deformation parameter of a CFRD, xi is the
control variables, I(·) is the indicative function, and ei is the random disturbance terms.

Before applying the threshold model, the most important task is to check whether
there is a threshold effect. The specific practice can be found in the paper [21]. Enders [22]
summarized a method for observing and testing threshold effects, namely the “sum of
squares total-threshold graph method” (SSR-γ graph method), which is used to check the
reasonableness of determining threshold variables and threshold values.

For the establishment of empirical relationships for an FD characteristic and six control
variables, the workflow of TR is shown in Figure 4. Based on the analysis process, the
maximum face slab deflections were studied and modeled. According to the calculation
and analysis methods concerning threshold variables and threshold values, the calculation
of the continuous variable influencing factors is carried out separately. As can be seen
from Table 2, among the three control variables, the F-value of dam height is the largest,
and the significance level exceeds 0.05. It implies that dam height is rightly the threshold
variable. Then, the optimal segmentation point corresponding to the maximum F value is
determined to be the corresponding threshold value.

Water 2023, 14, x FOR PEER REVIEW 8 of 15 
 

 

We assume that the sample data are {yi, xi, qi}n, where qi is the threshold variable. The 

threshold variable is used to classify the sample and can also be used as an explanatory 

variable to explain a part of the dependent variable. They are assumed known and there 

are differences in the samples at different intervals. The relationship between the variables 

can be expressed as follows: 

1 1 2 1 2( ) ( )i i i i i iy x I q x I q e     =  +   +  (10) 

where 𝛾 is the threshold value, yi is the typical deformation parameter of a CFRD, xi is 

the control variables, I(·) is the indicative function, and ei is the random disturbance terms. 

Before applying the threshold model, the most important task is to check whether 

there is a threshold effect. The specific practice can be found in the paper [21]. Enders [22] 

summarized a method for observing and testing threshold effects, namely the “sum of 

squares total-threshold graph method” (SSR-γ graph method), which is used to check the 

reasonableness of determining threshold variables and threshold values. 

For the establishment of empirical relationships for an FD characteristic and six con-

trol variables, the workflow of TR is shown in Figure 4. Based on the analysis process, the 

maximum face slab deflections were studied and modeled. According to the calculation 

and analysis methods concerning threshold variables and threshold values, the calcula-

tion of the continuous variable influencing factors is carried out separately. As can be seen 

from Table 2, among the three control variables, the F-value of dam height is the largest, 

and the significance level exceeds 0.05. It implies that dam height is rightly the threshold 

variable. Then, the optimal segmentation point corresponding to the maximum F value is 

determined to be the corresponding threshold value. 

 

Figure 4. The TR Flowchart. 

Table 2. Threshold Analysis Results of FD Behavior of CFRDs. 

Characteristic Control Variables Height VR 
River Valley 

Shape Factor 

FD 
optimal partition point 0.62 1.04 1.49 0.21 3.3 

F value 35.58 29.94 27.7 17.49 24.42 

The process of building the FD prediction model combining TR and improved SVM 

(TR-improved SVM) for CFRDs is shown in Figure 5. Firstly, a TR mean was used to clas-

sify the clusters of the training and test sets of the FD database of CFRDs. The training set 

was clustered using the dam height as the threshold variable. Then, a locally improved 

Figure 4. The TR Flowchart.

Table 2. Threshold Analysis Results of FD Behavior of CFRDs.

Characteristic Control Variables Height VR River Valley
Shape Factor

FD
optimal partition point 0.62 1.04 1.49 0.21 3.3

F value 35.58 29.94 27.7 17.49 24.42

The process of building the FD prediction model combining TR and improved SVM
(TR-improved SVM) for CFRDs is shown in Figure 5. Firstly, a TR mean was used to classify
the clusters of the training and test sets of the FD database of CFRDs. The training set was
clustered using the dam height as the threshold variable. Then, a locally improved SVM
model was built for the subsets generated from the training set clustering. The test set was
classified into its segments as well as the training set. The strategy was used to build a
locally improved SVM prediction model combining TR based on the global hybrid kernel
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function. Compared with the previous SVM models. This paper proposes a segmented
modeling strategy for the SVM model.
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3. Results
3.1. The SVM Prediction Model Results Analysis

Through the above analysis process, the prediction results for the FD of CFRDs from
the SVM model based on the poly and RBF kernel functions are shown in Table 3. Also, the
optimal parameters and results of the four models are provided in Table 3. The comparison
between the predicted and measured values of the FD of CFRDs under different kernel
function SVM prediction models established by different optimization algorithms is shown
in Figure 6. A comparison of these four model prediction results is drawn in Figure 7.

Table 3. The optimal parameters and results of the different prediction models.

Deformation Category
Training Sets Test Sets

C d or g
RMSE R2 RMSE R2

FD
Poly kernel GS 0.1630 0.7623 0.2201 0.7275 24.25 d = 2

PSO 0.1184 0.7894 0.1362 0.7786 4.59 d = 3

RBF kernel
GS 0.1742 0.7554 0.2439 0.7130 0.62 g = 0.012

PSO 0.1188 0.7892 0.1426 0.7746 2.82 g = 6.498
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The above results show that the errors between the predicted and measured values
through different models are kept within 20%. The coefficient R2 of the model evaluation
index is greater than 0.7. R2 is mainly used to test the fitting of the forecasting model to the
measured data. In non-time series data fitting, it is generally considered that a better fit is
obtained with R2 greater than 0.5 [23,24]. This indicates that the improved SVM models
based on these two algorithms in constructing regression prediction models can obtain
good results and prediction accuracy. However, the RMSE of almost all SVM models with
the PSO optimization algorithm is significantly smaller than that of the GS optimization
algorithm, and the R2 value of the former is somewhat larger. This indicates that the
parameters optimized by PSO are more globally optimal than those optimized by GS and
the GS method has been used to provide better model parameters for the SVM model,
although there is still room for performance improvement. For example, the grid search
parameter step setting will miss the global optimal solution, resulting in the final optimal
parameters obtained being only locally optimal. The fitting results of optimization using
PSO are significantly better than GS.

In model cross-validation, the RMSE values obtained in the test set of almost all models
are larger than those obtained in the training set, and the values of R2 in the training set are
also larger than those in the test set. This is because there is a certain amount of overfitting
in the process of parameter optimization to ensure that the optimal evaluation metrics are
obtained in cross-validation, resulting in better performance of R2 in the training set than
in the test set.

The RBF kernel function prediction model with different optimization algorithms has
a large prediction error in the test set. The corresponding fitting value of the test set is only
0.7130. This is an obvious “over-learning” phenomenon compared with the high fitting
training value. The reason is that the training samples are relatively small, and the test
set contains noise data. The original training set is no longer adapted to the new sample
distribution characteristics. In contrast, the prediction model with the poly kernel function
shows better learning ability, and the error of the training and prediction model decreases
compared with that of the poly kernel function. However, the GBF kernel, because of its
unique nature, has better accuracy when g = 1/2σ2 is taken as a larger value than when g is
a smaller value.

3.2. The Analysis of Improved SVM Prediction Model Results

The PSO algorithm is feasible for the parameter selection for the improved SVM model
based on the hybrid kernel function. The prediction results and parameter selection are
obtained, as shown in Table 4. The comparison between the measured and predicted results
is shown in Figure 8.
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Table 4. Prediction Accuracy and Optimal Parameter Selection of Models with Different η. Here, C
and d are the Poly kernel parameters. C and g are the RBF kernel parameters, C is the regularization
parameter, d is the multiform kernel parameter, and σ2 is the radial basis kernel parameter (g = 1/2σ2).

Deformation η
Training Sets Test Sets

C d g
RMSE R2 RMSE R2

FD

0.1 0.1280 0.7836 0.16 0.7641 16 3 0.05
0.2 0.1144 0.7918 0.143 0.7744 2.83 2 0.10
0.3 0.0969 0.8025 0.1211 0.7878 37.65 2 5.78
0.4 0.0878 0.8080 0.1098 0.7946 54.69 1 2.32
0.5 0.0703 0.8187 0.0879 0.8079 8.17 4 4.63
0.6 0.0642 0.8224 0.0803 0.8126 57.11 3 8.47
0.7 0.0611 0.8243 0.0764 0.8150 69.72 3 11.21
0.8 0.1054 0.7973 0.1318 0.7813 17.88 3 6.35
0.9 0.1709 0.7574 0.2136 0.7314 14.76 2 5.72
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3.3. The Analysis of the Prediction Model Combining TR and Improved SVM Results

The prediction results of the training set and test set of the TR-improved SVM predic-
tion model for each dam height interval are shown in Figure 9. From the above results,
the TR-improved SVM prediction model effectively improves the prediction accuracy of
both the single kernel function SVM and the hybrid kernel function SVM models, with
R2 greater than 0.8. The predicted results are better than the traditional fitting method
(R2 = 0:248) [25]. Meanwhile, the TR-improved SVM model is slightly superior to the
similar P-SVM model(R2 = 0:0.783) [26]. The segmented clustering algorithm allows the
data that conform to a certain distribution pattern to be clustered together. It can eliminate
the influence of “noisy data” to a certain extent. The TR-improved SVM first divides the
CFRD example data into four sample sets according to the height of the dam. Then, it
builds the corresponding prediction models separately. In this way, the output of the model
will be closer to the actual one.
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4. Discussion

Nowadays, many prediction methods of CFRDs have been established by other schol-
ars. The comparisons of the predicted and measured value of the maximum face slab
deflection using the different methods [1] are collected in Figure 10. The red dotted line
represents that the predicted results are completely accurate, and sample points falling
within the blue dotted line represent the prediction error of less than 20%. As can be seen
from Figure 10, the errors of traditional methods of Hunter et al. [27] and Pinto et al. [28]
are basic more than 20%. The method proposed by Wen et al. gets a better prediction
accuracy. The PSO-SVM prediction model proposed in this paper is relatively accurate,
with a relative error almost smaller than 10%. Therefore, the improved SVM prediction
model in this paper is better than the existing models of Wen et al. [1,4], Hunter et al. [27],
and Pinto et al. [28]. However, there are still shortcomings in the generalization ability for
any single learner. Ensemble learning can form a strong learner through training multiple
single learners. The bias of a single SVM model can be reduced by ensemble learning.
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5. Conclusions

This paper overcomes the shortcomings of traditional empirical prediction methods
and establishes a prediction model combined with TR and SVM. This model predicted the
FD of concrete-face rockfill dams based on 71 examples of data. The main conclusions of
this paper are as follows:

(1) SVM has a good performance for FD prediction of CFRDs considering input variables
such as dam height, rockfill strength, foundation conditions, porosity, valley shape
factor, and operation time. The PSO algorithm is a feasible method for parameter
search optimization of SVM models. The hybrid kernel function PSO-SVM prediction
model has good prediction accuracy.

(2) The SVM algorithm based on the hybrid kernel function enables the prediction model
to get better data suitability and nonlinear handling capability. It improves the
regression accuracy and generalization ability. The idea of a hybrid kernel can also be
applied to other prediction models to achieve a global−local balance.

(3) The improved SVM prediction model with different clustering intervals is established
through multiple TR analyses. This model can weaken the nonlinear abrupt deforma-
tion characteristics of the CFRD example data and make up for the shortcomings of
the improved SVM prediction model. It also effectively improved the prediction accu-
racy and generalization ability and can be used to predict the CFRDs’ deformation
characteristics accurately.

(4) The model’s predictions provide more meaningful background information for dam
design. In addition, other researchers can use this model in the prediction of other
deformation characteristics of dams.

(5) A finite element model is indeed a good process to acquire more data about the
deformation of CFRD. We will further investigate the combination of ML and the
finite element model to provide more simulated data about the deformation of CFRD.

(6) According to the idea of combining the advantages of various algorithms in this paper,
further efforts are needed to establish a new prediction model with more accuracy and
stronger generalization ability. The model with ensemble learning or neural networks
deserves to be noticed.
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