
Citation: Peng, J.; Xie, W.; Wu, Y.;

Sun, X.; Zhang, C.; Gu, H.; Zhu, M.;

Zheng, S. Prediction for the Sluice

Deformation Based on

SOA-LSTM-Weighted Markov Model.

Water 2023, 15, 3724. https://

doi.org/10.3390/w15213724

Academic Editor: Kaishan Song

Received: 12 September 2023

Revised: 17 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Prediction for the Sluice Deformation Based on
SOA-LSTM-Weighted Markov Model
Jianhe Peng 1, Wei Xie 2,3,4, Yan Wu 5, Xiaoran Sun 1, Chunlin Zhang 6, Hao Gu 2,3,4, Mingyuan Zhu 2,3,4,5

and Sen Zheng 2,3,4,*

1 Anhui and Huaihe River Institute of Hydraulic Research (Anhui Provincial Water Conservancy
Engineering Quality Testing Center Station), Hefei 230088, China; pjh@ahwrri.org.cn (J.P.);
sxr@ahwrri.org.cn (X.S.)

2 The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China;
hhu0829@126.com (W.X.); zhumingyuan@hhu.edu.cn (M.Z.)

3 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
4 National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,

Hohai University, Nanjing 210098, China
5 Xinjiang Institute of Water Resources and Hydropower Research, Urumqi 830049, China; xjskywy@126.com
6 Anhui Huaihe River Management Bureau, Bengbu 233099, China
* Correspondence: zheng_sen@hhu.edu.cn

Abstract: Increasingly, deformation prediction has become an essential research topic in sluice safety
control, which requires significant attention. However, there is still a lack of practical and efficient
prediction modeling for sluice deformation. In order to address the limitations in mining the deep
features of long-time data series of the traditional statistical model, in this paper, an improved
long short-term memory (LSTM) model and weighted Markov model are introduced to predict
sluice deformation. In the method, the seagull optimization algorithm (SOA) is utilized to optimize
the hyper-parameters of the neural network structure in LSTM primarily to improve the model.
Subsequently, the relevant error sequences of the fitting results of SOA-LSTM model are classified
and the Markovity of the state sequence is examined. Then, the autocorrelation coefficients and
weights of each order are calculated and the weighted and maximum probability values are applied to
predict the future random state of the sluice deformation. Afterwards, the prediction model of sluice
deformation on the SOA-LSTM-weighted Markov model is proposed. Ultimately, the presented
model is used to predict the settlement characteristics of an actual sluice project in China. The
analysis results demonstrate that the proposed model possesses the highest values of R2 and the
smallest values of RMSE and absolute relative errors for the monitoring data of four monitoring
points. Consequently, it concluded that the proposed method shows better prediction ability and
accuracy than the SOA-LSTM model and the stepwise regression model.

Keywords: deformation prediction model; sluice; long short-term memory; seagull optimization
algorithm; weighted Markov model

1. Introduction

There is no doubt that sluices have played a significant role in flood control, irrigation,
shipping, hydroelectric power and water supply for a very long time [1,2]. Therefore,
research on the safety properties of sluices has become a subject of intense interest [3]. Sluice
deformation as the most intuitive index to reflect the sluice structural characteristics has
brought about widespread attention. Many failure incidents of sluices have already taken
place caused by extreme deformations, which have seriously affected the safety of people’s
lives and property. Hence, it is becoming increasingly difficult to ignore the research on
monitoring techniques, prediction and assessment methods of sluice deformation.

In order to monitor the sluice deformation in real-time to access the structural health
conditions of sluices, besides traditional monitoring techniques, GPS/GNSS [4,5], geodetic
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methods [6,7], laser scanning devices [8–10], interferometric synthetic aperture radar (In-
SAR) [11,12], etc. are all viable alternatives. Among them, GPS is the Global Positioning
System, which is designed as an all-weather space-based navigation system for both mili-
tary and civilian navigation needs. GNSS is the Global Navigation Satellite System, which
serves as a popular means of deformation monitoring technique with the advantages of
functioning in all weather conditions, is fully automated, requires no need for visibility
conditions, etc. The geodetic monitoring methods usually utilize different optical and
mechanical instruments, combined with other monitoring methods, such as the visual line
method, lead line method and forward intersection method. Laser scanning devices and
InSAR are both the latest emerging monitoring technology, which have been applied uni-
versally in deformation monitoring due to their high monitoring precision. Yang et al. [13]
applied interferometric synthetic aperture radar (InSAR) in sluice deformation monitoring.
Zhang et al. [14] introduced a digital photography and measurement robot into the mon-
itoring of sluice health. As important means of deformation monitoring techniques, the
above methods possess many merits such as high accuracy and efficiency [15] and have
been widely applied. The monitoring results are able to provide reliable information of
structural characteristics of hydraulic engineering.

In view of extreme deformations always leading to failure cases of hydraulic structure
engineering, establishing deformation prediction models based on monitoring data series
is of great importance [16,17]. For example, mathematical statistics, structural analysis
and artificial intelligence algorithms have been utilized in the studies of variation law,
early warning and risk analysis related to the deformation of dams for decades [18–20].
Recently, with the rapid development of artificial intelligence algorithms, artificial neural
networks [21–23], grey system models [24–26], clustering algorithms [27–29] and intelligent
optimization algorithms [30–32] have been widely applied in the deformation prediction of
hydraulic structure engineering. These algorithms are able to overcome the shortcomings
of traditional prediction models in terms of multidimensional input, model adaptive
learning and overfitting. Given that deformation monitoring data series of hydraulic
structure engineering possess apparent variations in regulation in the time dimension, the
recurrent neural network (RNN) has excellent development and application prospects in
learning sequenced data. However, RNNs are prone to the problems of gradient vanishing
and gradient explosion during long sequence training. Therefore, as an RNN, LSTM is
introduced to establish the more sensible deformation prediction model construction due
to its advantage in learning from experience to classify, processing and predicting long
time series [33–35]. Song et al. [36] and Hu et al. [37] optimized the hyperparameters of
the LSTM model to establish deformation prediction models of concrete dam and concrete
faced rockfill dam, respectively. The application results verified the good analysis accuracy
and efficiency of the models, which demonstrates the practical application value of LSTM
in engineering safety monitoring.

In recent decades, some researchers carried out monitoring, laboratory tests and
numerical analyses of sluice deformation. Si et al. analyzed the overall strength and
deformation of complex sluice chamber structures based on the finite element method [38].
Ding et al. [39] established the horizontal deformation prediction model of sluice based on
the back propagation neural network weighted Markov model. The sluice deformation
prediction model serves as a useful tool which can effectively analyze sluice performance
in real-time and prevent potential risks. Unfortunately, the existing studies focus primarily
on the dam deformation prediction. So far, there are only a few studies concerning sluice
deformation prediction model establishment in the literature.

Above all, there is an urgent need to propose an efficient prediction model of sluice
deformation. Considering the obvious merits of the LSTM, this paper aims to present a
novel prediction model for sluice deformation. First, the deformation prediction method of
sluice based on a statistical model is introduced in Section 2. Subsequently, the principle of
the LSTM network optimized by the seagull optimization algorithm (SOA) is studied in
Section 3. Then, the weighted Markov model is applied to adjust the prediction residuals of
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the SOA-LSTM model. Accordingly, the sluice deformation prediction model is proposed
by combining the SOA, LSTM and weighted Markov model in Section 4. Subsequently,
a practical sluice project in China is introduced as a case study to verify the prediction
ability and accuracy of the proposed model in Section 5. The fitted and predicted results are
demonstrated and discussed in Section 6. Finally, the conclusions are drawn in Section 7.

2. Statistical Model of Sluice Deformation

The statistical model is a practical tool for hydraulic structure deformation prediction,
which assumes that the expectation of the disturbance term is zero in the monitoring
data, and approximately obeys the normal distribution. However, the monitoring data in
practical engineering scenarios may not necessarily satisfy this condition. The prediction
accuracy of the statistical model is generally more complex and depends on the selection
of influencing factors. In this paper, the contribution of three components of hydraulic
structure deformation is mainly analyzed, such as water pressure, temperature, and time
effect factors, to the final results. Among all the factors, the time effect component has many
influencing factors, which makes it difficult to formulate an explicit expression. Therefore,
in this paper, the expression of deformation can be adopted as follows.

δ = a0 + δH + δT + δθ (1)

where δH denotes the water pressure component; δT is the temperature component, which
can be expressed as a harmonic function; δθ denotes the time effect component. The
deformation expression can be converted to:

δ = a0 +
3

∑
i=1

ai Hi +
2

∑
i=1

(b1i sin
2πit
365
− b2i cos

2πit
365

) + c1θ + c2 ln θ (2)

where δ is the amount of deformation; Hi is the i-th power of the upstream water depth, m;
t is the number of days from the observation date to the beginning of the monitoring day; θ
is equal to the number of days from the observation date to the beginning of the monitoring
day divided by 100; a0, ai, b1i, b2i, c1 and c1 are the constant terms and the regression
coefficient, respectively, which can be obtained by the stepwise regression analysis method.

3. SOA-LSTM Network Model
3.1. Principles of (Long Short-Term Memory) LSTM Neural Network

LSTM is a special kind of recurrent neural network (RNN), which effectively solves
the problems of gradient explosion, gradient disappearance, and long-term dependence
of traditional recurrent neural networks in the process of adaptation and prediction by
introducing the concepts of cell state and gating. As a result, it has excellent time-series
prediction performance. The structure of the LSTM unit mainly consists of a cell state,
forgetting gate, input gate, and output gate as depicted in Figure 1. The cell state is also
called the memory unit, which provides a channel for information transmission. The cell
state is also known as the memory cell, which provides a channel for the transmission
of information. The cell state update is controlled by the forgetting gate, input gate, and
output gate.

The forgetting gate decides with a certain probability whether to retain the cell state of
the previous moment and selects the weight of the information to be retained. Meanwhile,
it reads the output of the hidden layer of the previous moment ht−1 and the input of
the current moment xt to obtain the output of the forgetting gate ft through a sigmoid
activation function:

ft = σ
[
W f ·(ht−1, xt) + b f

]
(3)

where W f represents the weight matrix of the forgetting gate; b f denotes the bias term; σ is
the sigmoid activation function, σ(x) = 1/(1− e−x) ; the output of the forgetting gate ft
controls the degree of forgetting the information of the cell state in the previous moment,
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which takes the range of [0, 1]. When ft = 1, ft indicates complete retention, when ft = 0,
ft indicates complete forgetting.

Water 2023, 15, x FOR PEER REVIEW 4 of 20 
 

 

( )1t f t t ff h x bσ − = ⋅ + ,W  (3) 

where fW   represents the weight matrix of the forgetting gate; fb   denotes the bias 
term; σ  is the sigmoid activation function, ( ) ( )1 1 xx eσ −= − ; the output of the forgetting 
gate tf  controls the degree of forgetting the information of the cell state in the previous 
moment, which takes the range of [ ]0,1 . When 1tf = , tf  indicates complete retention, 
when 0tf = , tf  indicates complete forgetting. 

  
(a) (b) 

Figure 1. (a) Cell structure of RNN; (b) cell structure of LSTM. 

The role of the input gate is to filter the new information being input at the current 
moment for storage in the cell state. The introduction of new information is determined 
by the sigmoid layer in conjunction with the tanh layer, where the sigmoid layer deter-
mines the extent ti  to which new information is selected, and the tanh layer is applied to 
generate candidates ta  for storing the learned new information. 

( )1t i t t ii h x bσ −= ⋅ +  ,W  (4) 

( )1tanht c t t ca h x b−= ⋅ +  W ,  (5) 

where iW , cW  are the weight matrices of the sigmoid layer and the tanh layer, respec-
tively; bi, bc are the bias terms of the sigmoid layer and the tanh layer, respectively; tanh is 

the hyperbolic tangent function, ( ) ( )tanh 1 1x xx e e− −= − + . 
Based on the selection of the cell state at the previous moment by the forgetting gate 

and the input information at the current moment by the input gate, the cell state can be 
updated as follows. 

1t t t t tC f C i a−= +  (6) 

The output gate extracts valid information from the current cell state, which is used 
to generate a new hidden layer. Firstly, the output portion of the current cell state is de-
termined by the sigmoid function. Subsequently, the current cell state is processed by the 
tanh function. Finally, a new hidden layer th  is generated as follows. 

tanht t th Cο=  (7) 

where ( )1t t th x bο οο σ −= ⋅ +  W ,  is the output of the hidden layer; οW  is the weight ma-
trix of the output gate; bο is the bias term. 
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The role of the input gate is to filter the new information being input at the current
moment for storage in the cell state. The introduction of new information is determined by
the sigmoid layer in conjunction with the tanh layer, where the sigmoid layer determines
the extent it to which new information is selected, and the tanh layer is applied to generate
candidates ãt for storing the learned new information.

it = σ[Wi·(ht−1, xt) + bi] (4)

ãt = tanh[Wc·(ht−1, xt) + bc] (5)

where Wi, Wc are the weight matrices of the sigmoid layer and the tanh layer, respectively;
bi, bc are the bias terms of the sigmoid layer and the tanh layer, respectively; tanh is the
hyperbolic tangent function, tanhx = (1− e−x)/(1 + e−x) .

Based on the selection of the cell state at the previous moment by the forgetting gate
and the input information at the current moment by the input gate, the cell state can be
updated as follows.

Ct = ftCt−1 + itat (6)

The output gate extracts valid information from the current cell state, which is used
to generate a new hidden layer. Firstly, the output portion of the current cell state is
determined by the sigmoid function. Subsequently, the current cell state is processed by
the tanh function. Finally, a new hidden layer ht is generated as follows.

ht = ottanhCt (7)

where ot = σ[Wo·(ht−1, xt) + bo] is the output of the hidden layer; Wo is the weight matrix
of the output gate; bo is the bias term.

In summary, the hidden layer output ht and cell state Ct of the LSTM at the current
moment is determined by the hidden layer output ht−1 and cell state Ct−1 of the previous
moment in conjunction with the input xt of the current moment.

When establishing the sluice deformation prediction model based on LSTM, the
number of hidden layers plays an essential role in the training accuracy and efficiency of
the model. Theoretically, although the fitting accuracy of the LSTM model will improve
with the increase in the number of hidden layers, too many hidden layers will lead to a
decrease in the training efficiency and even cause a decrease in the fitting and prediction
accuracy of the model. Consequently, in this paper, the network structure with two hidden
layers of LSTM is adopted.
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According to Equation (2), it can be observed that the number of input nodes provided
to the LSTM network is nine, and the number of output nodes is one. When selecting the
number of nodes in the hidden layer, the initial number of nodes is usually calculated
using the empirical formula, and then the number of nodes is incrementally increased or
decreased in an attempt to find out the number of nodes of the more optimal hidden layer.
Furthermore, the network training utilizes the dropout technique to avoid overfitting, i.e.,
the model training effect is good but the prediction performance is poor, and the batch
processing technique is used to improve the training efficiency of the model [36].

3.2. Principles of Seagull Optimization Algorithm (SOA)

SOA is a novel bio-inspired algorithm proposed by Dhiman et al. [40]. Compared to
traditional algorithms like particle swarm optimization (PSO) and the genetic algorithm
(GA), SOA has advantages in terms of simplicity, ease of implementation, and better
search performance [41]. SOA treats the migration and aggressive behaviors of seagulls in
nature as an optimization process. In this algorithm, each seagull represents an individual
searching entity in the search space, and the position of a seagull represents a potential
solution to the optimization problem. The migration and aggressive behaviors of seagulls
are illustrated in Figure 2.
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Figure 2. The migration and aggressive behaviors of seagulls.

The implementation process of the algorithm is expressed as follows.

(1) Migration behavior (global search) During the seagull migration process, a seagull
moves from one position to another. The above migration behavior should satisfy the
following three conditions:

(1) Avoiding collision. To avoid collisions between adjacent seagulls, an additional
variable A is introduced to update the position of the seagull during the
iterative calculation, as shown in Figure 3a.

→
Ns = A·

→
Ps(i) (8)

where
→
Ns is the new position;

→
Ps(i) is the current position of the seagull; i is

the number of the current iteration; A is the additional variable representing
the movement of seagull in the given search space. The calculation method of
A is as follows.

A = fc − i·
(

fc

Maxiteration

)
(9)



Water 2023, 15, 3724 6 of 20

where fc is the control frequency of variable A, its range is [0, fc]. Typically,
fc is set to 2; i is the number of current iterations, i = 0, 1, 2 · · ·Maxiteration;
Maxiteration is the maximum number of iterations.

(2) Moving towards the best neighbor. After avoiding collisions between adja-
cent seagulls, a seagull moves towards the direction of the best neighbor, as
illustrated in Figure 3b.

→
BS = B·

( →
PgS(i)−

→
Ps(i)

)
(10)

where
→
BS represents the direction in which the seagull moves from its original

position
→
Ps(i) to the position of the best neighboring seagull

→
PgS(i); B is a ran-

dom parameter used to balance the global and local search, and its calculation
formula can be denoted as:

B = 2·A2·rd (11)

where rd is a random value between 0 and 1.
(3) Moving towards the best position. Finally, the seagull updates its own position

based on the best position, as depicted in Figure 3c.

→
Ds =

∣∣∣∣→Ns(i) +
→
Bs(i)

∣∣∣∣ (12)

where
→
Ds represents the distance between the current position and the global

best position.
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(2) Aggressive behavior (local search) When a seagull needs to attack its prey during
flight, it forms a spiral formation in the air, as shown in Figure 3d. This behavior can
be described in the xyz three-dimensional plane as follows.

x = r· sin k (13)
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y = r· cos k (14)

z = r·k (15)

r = u·ek·v (16)

where r denotes the spiral radius formed by the seagull swarm; k is a random angle
within the range [0, 2π]; v and u are constants that determine the spiral shape; e
denotes the base of the natural logarithm. Considering both seagull migration and
aggressive behaviors, the calculation formula of seagull location updating can be
obtained based on Equation (12) to Equation (16) as follows.

→
Ps(i) = x·y·z·

→
Ds +

→
Pgs(i) (17)

where
→
Ps(i) is the attack position of the seagull, which is denoted as its final location

is updated.

3.3. SOA Optimized LSTM

Since LSTM has many hyper-parameters that need to be adjusted manually, such as
the number of neurons in the hidden layer, the initial learning rate, the maximum number
of iterations, the minimum number of batches, the time step, etc., these hyper-parameters
have a certain impact on the prediction results, and it takes a lot of time to adjust these
parameters. Determining how to find the hyper-parameters that can make the whole
prediction process faster and more accurate is a problem that needs to be solved.

The seagull optimization algorithm, as a biomimetic global optimization algorithm,
can be used to optimize the hyper-parameters of the neural network.

In the prediction of sluice deformation, the factors that can affect the amount of defor-
mation are mainly obtained as the characteristic variables for the prediction of deformation
and are normalized as the input data. Simultaneously, sluice deformation monitoring data
are normalized to ensure the prediction accuracy. By adjusting and designing the LSTM
network structure and using SOA to optimize and solve the hyper-parameters of the LSTM
model, the optimized parameters are directly used as the parameter values of the LSTM
model to predict the sluice deformation. Finally, the prediction value of sluice deformation
is obtained. The specific modeling and prediction ideas are as follows.

(1) Data processing. First, the data set is normalized, and 80% of the data in the moni-
toring sequence is selected as the training set, and 20% of the data in the monitoring
sequence is selected as the test set.

(2) Single LSTM model structure design. The LSTM model results are designed in
terms of the number of network layers, the number of neurons in the input and
hidden layers, the optimizer, and the loss function of the LSTM, and the multivariate
multidimensional single-step LSTM network model with an initial input of nine
dimensions, a time step of one, and an output of one dimension is constructed.

(3) Construction of SOA LSTM model. The LSTM hyper-parameters to be optimized,
such as the number of neurons in the hidden layer, the initial learning rate, the
maximum number of iterations, the minimum number of batches, the time step,
and the regularization parameter, are used as the solution objectives of the seagull
optimization algorithm, and the root mean square error (RMSE) on the training set
is taken as the fitness function to obtain the SOA-LSTM model. The computational
formula is given by:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (18)

where n is the number of data in the training set; yi is the measured value of data in
training set; ŷi is the fitted value of data in training set.
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(4) Model training and prediction. The training data are applied to train the SOA-LSTM
model, the test data are input into the trained model, and finally obtain the predicted
values.

(5) Model comparison. The prediction results are utilized to calculate the prediction
accuracy evaluation index to test the model effect.

The optimization process of LSTM based on SOA is exhibited in Figure 4.
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4. SOA-LSTM-Weighted Markov Model for Sluice Deformation Prediction
4.1. Weighted Markov Model-Based Sluice Deformation Prediction

The measured data of sluice deformation has a certain degree of volatility. Due to the
advantage of Markov chain in terms of dealing with data with high random volatility, it has
been applied in predicting the deformation of hydraulic structures. There are three common
Markov models: the Markov model based on absolute distribution, the superposition
Markov model, and the weighted Markov model. In this paper, the weighted Markov
model is introduced, which is not restricted by the time chi-square of the Markov chain,
and takes into account the strength of dependence of different lags, fully exploiting the
information contained in the sample data. Furthermore, the accuracy of the weighted
Markov model is generally higher than the other two models, and the steps of the weighted
Markov model building are as follows:

(1) State classification. The mean square deviation method is proposed to classify the
values of random sequence indicator into five state intervals.

(2) Markovianity test. For discrete sluice deformation sequences, the chi-square statistic
can be constructed to test for Markovianity.

(3) State transition probability matrix. The one-step state transition frequency matrix

f (k)ij with different lags (k is the step size) and the one-step state transition probability

matrix p(k)ij should be calculated, separately.
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(4) Autocorrelation coefficients and transfer weights of each order. After selecting the lag
time, the autocorrelation coefficient rk and transfer weight wk of each order should be
calculated, separately.

(5) Prediction table preparation. The sluice deformation of several years before the
prediction year should be taken as the initial state, and then the sluice deformation
should be combined with the transfer probability matrix of the corresponding lag
time to obtain the probability of each order state in the prediction year. Afterwards,
the predicted state probabilities of each year of the same state are weighted and
summed, which is the average probability of being in each state in the prediction
year. The above calculations can be compiled into a prediction table, and the state
corresponding to the maximum probability value in the prediction table is taken and
predicted by using the weighted Markov model.

4.2. Sluice Deformation Prediction Procedure of SOA-LSTM-Weighted Markov Model

In view of the fact that the LSTM network can deal well with nonlinear problems, the
Markov chain is suitable for predicting random sequences with large volatility. Therefore,
the SOA-LSTM network-weighted Markov model synthesizes the above advantages, which
can be applied to sluice deformation prediction. The prediction procedure of the model is
as follows:

(1) Based on the training set, the SOA-LSTM network model is established.
(2) After comparing the measured data with the fitted value, the error sequence can be

obtained.
(3) The weighted Markov model is constructed according to the steps in Section 3.1.
(4) The sluice deformation prediction model based on the SOA-LSTM-weighted Markov

model can be established.

The computational flow of the SOA-LSTM-weighted Markov model is exhibited in
Figure 5.
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5. Project Overview

The Bengbu sluice project is located in the middle reaches of the Huaihe River. It now
consists of a regulating sluice with 12 holes, a regulating sluice with 28 holes, a hydropower
plant, the ship lock, the floodway, embankment and so on. The regulating sluice with
12 holes is composed of six bottom boards, each bottom board with one monitoring point
at each corner. One settlement monitoring point at each downstream of the left-side and
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right-side piers. Six settlement monitoring points at each symmetrical position of upstream
and downstream on the left and right bank wing walls. A total of 50 monitoring points were
installed in the regulating sluice with 12 holes. Figure 6 illustrates the layout of settlement
monitoring points of the regulating sluice with 12 holes of the Bengbu sluice.
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Figure 6. (a) Engineering scene of the regulating sluice with 12 holes at Bengbu sluice; (b) elevation
map of the regulating sluice with 12 holes at Bengbu sluice; (c) layout of settlement monitoring points
of the regulating sluice with 12 holes at Bengbu sluice.

The pre-flood settlement monitoring of the regulating sluice of Bengbu has been
in progress since 10 March 2021 and the monitoring data are recorded every 30 days.
According to the settlement monitoring results, the largest cumulative average variation
in settlement of the regulating sluice with 12 holes appeared at the lower right-wing wall
at monitoring point Lr-2, with a value of −18.11 mm. The largest cumulative variation
in settlement was appeared of monitoring point 3–4, with the largest difference value of
31.59 mm at the upper sluice pier. The largest cumulative settlement appeared at monitoring
point 5–1, with the cumulative settlement of −35.75 mm. The settlement eigenvalues of the
regulating sluice with 12 holes are counted in Table 1.
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Table 1. The settlement eigenvalues of the regulating sluice with 12 holes.

Project Site Maximum Average
Variation (mm)

Minimum Settlement
(mm)

Maximum Settlement
(mm) Maximum Settlement

Variation (mm)
Point Settlement Point Settlement

Upper left-wing wall −14.99 Ul-6 −12.71 Ul-2 −16.33 3.62
Lower left-wing wall −14.95 Ll-6 −9.80 Ll-4 −17.82 8.02

Upper right-wing Wall −16.80 Ur-1 −14.14 Ur-2 −18.37 4.23
Lower right-wing wall −18.11 Lr-2 −8.03 Lr-5 −28.71 20.68

Upper sluice pier −13.52 1-3 −0.21 3-4 −31.80 31.59
Lower sluice pier −14.30 2-2 −4.19 5–1 −35.75 31.56

Abutment pier −8.45 Right pier −7.59 Left pier −9.32 1.73

Note: In the table, “−” means the sinking settlement.

In this study, we selected the settlement data (the vertically downward is positive,
the vertically upward is negative) of four monitoring points (2-2, Lr-2, Ul-2, and 5–1) for
analysis. The monitoring points 2-2, Lr-2, Ul-2, and 5–1 are marked with red dots in Figure 6.
After preprocessing the settlement data, the measured data of each monitoring point can
be obtained in Figure 7. It is noted that the vertical settlements of all monitoring points
have similar variation rules with time; they increase slowly, and tend to converge without
obvious periodic variations.
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Figure 7. Settlement measured data series of four selected monitoring points.

In this paper, the recent settlement monitoring data of monitoring point 5–1 of the
sluice was taken as an example to illustrate the implementation process of the proposed
method. Eighty (80)% of the monitoring data were utilized to establish the stepwise
regression model, the SOA-LSTM model, and the SOA-LSTM-weighted Markov model.
Based on the modeling results, the relative errors of the test set were compared to verify
the reliability of the proposed model. The specific settlement monitoring data of point 5–1
are illustrated in Table 2.

Table 2. Settlement monitoring data of monitoring point 5–1.

Time (d) Monitoring Data (mm) Time (d) Monitoring Data (mm) Time (d) Monitoring Data (mm)

0 1.43 210 29.14 420 34.71
30 11.72 240 30.83 450 33.20
60 17.74 270 29.32 480 33.43
90 23.85 300 29.72 510 36.25
120 26.79 330 32.21 540 35.75
150 28.95 360 34.41
180 28.56 390 33.06



Water 2023, 15, 3724 12 of 20

6. Results and Discussions
6.1. Fitted and Predicted Results of the Stepwise Regression Model

The measured values, calculated values and relative errors obtained by the stepwise
regression model are listed in Table 3. The fitted and predicted results of the stepwise
regression model are exhibited in Figure 8. The predicted values are exhibited with a blue
background in Figure 8.

Table 3. The fitted and predicted values of the stepwise regression model.

Time (d) Monitoring
Data

Predicted Value
(mm)

Relative
Error (%) Time Monitoring

Data
Predicted Value

(mm)
Relative
Error (%)

0 1.43 1.431 0 300 29.72 29.17 −1.85
30 11.72 10.87 −7.23 330 32.21 29.66 −7.91
60 17.74 17.99 1.46 360 34.41 30.10 −12.53
90 23.85 21.93 −8.01 390 33.06 30.51 −7.69

120 26.79 24.48 −8.61 420 34.71 30.89 −11.00
150 28.95 25.63 −11.48 450 33.20 31.24 −5.89
180 28.56 26.56 −7.02 480 33.43 31.57 −5.56
210 29.14 27.35 −6.16 510 36.25 31.88 −12.04
240 30.83 28.03 −9.09 540 35.75 32.18 −10.01
270 29.32 28.63 −2.33
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The calculation formula of the relative error of each calculated datapoint can be
written as:

RE =
( .
yi − yi

)
/yi × 100% (19)

where RE denotes the relative error;
.
yi is the fitted or predicted value; yi is the measured

value of sluice settlement.

6.2. Fitted and Predicted Results of the SOA-LSTM Network Model

In total, 80% of the sluice settlement monitoring data were used as training set to
establish the SOA-LSTM model. The output and input of the LSTM model are the sluice
settlement monitoring data and the influence factors of the sluice settlement. Therefore, the
number of nodes in the input layer and output layer are nine and one, respectively. The
influence of nodes number on the model performance is similar to the mechanism of the
influence of the number of hidden layers on the model performance.

In this work, we adopt the SOA to optimize the hyper-parameters the LSTM model.
In SOA, the population size was selected as 20, the number of iterations was taken as 30.
Figure 9 illustrates the objective function value of the seagull at each iteration step, and the
best objective function value can be determined as 5.326 at the 13th iterations by SOA.
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The set of upper bound and lower bound of the search area for are exhibited in
Table 4. After calculation, the results of the optimized hyperparameters of LSTM model are
presented in Table 4.

Table 4. Upper bound and lower bound of the parameters set in SOA, and the optimized results of
the LSTM model.

Time (d) Hidden Layers Nodes in First Layer Nodes in Second Layer Learning Rate

Upper bound 10 200 200 0.1
Lower bound 1 10 10 0.001

Optimized parameters 2 120 60 0.005

Figure 10 depicts the relationship curve between the number of nodes in the hidden
layer and the average relative error of the training samples. The initial number of nodes in
the hidden layer is 10, and the trial calculation is carried out by incrementing 10 nodes one
by one, and the average relative error of the training samples is minimized as the criterion.
As can be seen in Figure 10, after the trial calculation, in the two hidden layers of the LSTM
adopted in this paper, the minimum value of the relative error can be taken when the node
number of the first hidden layer is 120. The minimum value of the relative error can be
taken when the number node of the second hidden layer is 60. The batch size and the
maximum number of iterations can be set to 50 and 400, respectively. The target error of
the model training can be set to 0.001.
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Figure 11 exhibits the process line of the fitted and predicted values of the sluice
settlement of the monitoring point 5–1 based on the SOA-LSTM network model.
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As can be seen from Figure 11, except for a few curve peaks with relatively large data
jumps, the fitted value of the LSTM network model has the same trend as the measured
value. The average absolute value of the relative error is 5.72%, which verifies the better
fitted effect of the model.

6.3. Fitted and Predicted Results of the SOA-LSTM-Weighted Markov Model

To further improve the prediction accuracy of the SOA-LSTM-weighted Markov model
proposed in this work, the errors of the SOA-LSTM model were corrected by the weighted
Markov model. The following computational steps and results are described as follows.

(1) State classification. The relative error series has a mean of 75% and a root mean square
error of 7.64%, which is classified into five states corresponding to the intervals of
(−22.44%, −9.16%), (−9.16%, −4.58%), (−4.58%, 3.07%), (3.07%, 7.65%) and (7.65%,
24.20%), respectively.

(2) Markovianity test. The one-step transfer frequency matrix fij, one-step transfer proba-
bility matrix p(1), and marginal probability and chi-square statistics were calculated,
and the calculation results are described in Table 5. The value of the calculated statis-
tic χ2 = 2

m
∑

i=1

m
∑

i=1
fij

∣∣∣ln Pij
P.j

∣∣∣ is 109.9, and given the significance level, α = 0.01. Then

χ2
α =

[
(m− 1)2

]
= χ2

0.01(16) = 32.0. Because χ2 > χ2
0.01(16), the random sequence

is highly significant in terms of Markovianity, and can be predicted by the weighted
Markov model.

Table 5. Calculation results of chi-square statistics.

Status Marginal
Probability fi1

∣∣∣ln Pi1
P,1

∣∣∣ fi2

∣∣∣ln Pi2
P,2

∣∣∣ fi3

∣∣∣ln Pi3
P,3

∣∣∣ fi4

∣∣∣ln Pi4
P,4

∣∣∣ fi5

∣∣∣ln Pi5
P,5

∣∣∣ Total

1 0.127 10.768 5.410 1.94 0.961 0.000 19.079
2 0.158 0.575 0.062 2.010 0.867 0.851 4.365
3 0.436 2.083 0.972 7.210 0.439 1.836 12.54
4 0.157 0.000 0.087 1.521 0.247 1.957 3.842
5 0.122 0.723 0.000 2.513 4.984 6.745 14.965

Total 1 14.149 6.531 15.194 7.498 11.389 54.761

(3) The state transition probability matrix determination. The relative errors of the fitted
values of the SOA-LSTM model were taken as a random sequence, and the one-step
state transfer probability matrixes with the step size of 2, 3, 4, and 5, respectively.
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(4) Calculation of the autocorrelation coefficients and transfer weights of each order. The
autocorrelation coefficients (rk) and transmission weights (wk) of each order are shown
in Table 6.

Table 6. Autocorrelation coefficients and transfer weights of each order.

Project
Order

1 2 3 4 5

rk 0.568 0.354 0.248 0.126 0.139
wk 0.416 0.245 0.168 0.081 0.105

(5) Prediction table preparation. According to the relative errors of the SOA-LSTM model,
the corresponding state transfer probability is weighted and calculated to predict the
relative error state of test set. Table 7 illustrates a subset of the weighted prediction
results of the relative error state of the test set. The state S with the maximum
probability value in the prediction table was determined, E was taken as the median
value of the corresponding state interval. xSL was selected as the predicted value
of the SOA-LSTM network model. xSlM was selected as the predicted value of the
SOA-LSTM-weighted Markov model. Therefore, the corrected predicted value can be
expressed as:

xBM = xBP/(1 + E) (20)

Table 7. Some state-weighted predictions of relative error for settlement of the monitoring point.

Initial Time (d) Status Lag Time Weights
Status

1 2 3 4 5

60 3 1 0.4106 0.0771 0.1328 0.5587 0.1528 0.0759
120 3 2 0.2514 0.0979 0.1757 0.4892 0.1363 0.0978
180 3 3 0.1659 0.1000 0.2000 0.4785 0.1000 0.1207
240 4 4 0.0824 0.1581 0.0000 0.6296 0.1043 0.1062
300 5 5 0.1021 0.0657 0.0657 0.4000 0.2678 0.1985

Pj (Weighted sum) 0.0922 0.1315 0.5249 0.0901 0.1447

Taking the calculated results of the stepwise regression model, the SOA-LSTM model
as the basis for comparison, the fitted results, predicted results and the relative errors
of three models are illustrated in Figures 12 and 13. Among them, Figure 12 shows the
comparison of the predicted effects of three models. Figure 13 exhibits some of the absolute
values of the relative errors of the settlement predicted value of three models.
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In Figure 12, it can be seen that the measured values of sluice settlement at monitoring
point 5–1 are nonlinear with time, and the settlement predicted by the SOA-LSTM model
and the SOA-LSTM-weighted Markov model have the same trend with the measured data.
However, the settlement predicted by the stepwise regression model shows a linear change
different from the measured values. The predicted value of the stepwise regression model
cannot reflect the nonlinear change characteristics of the measured data, and its prediction
result is not as good as that of the SOA-LSTM model and the SOA-LSTM-weighted Markov
model in dealing with nonlinear data. As can be seen from Figure 13, the relative errors of
SOA-LSTM-weighted Markov model are generally the smallest, while the relative errors
of stepwise regression model are the largest overall. The average absolute values of the
relative errors of the stepwise regression model, the SOA-LSTM model, and the SOA-LSTM-
weighted Markov model are 7.55%, 3.12%, and 1.57%, respectively. It illustrates that the
accuracy of the proposed model is better than the other two models.

With the aim of verifying the superiority of the SOA-LSTM-weighted Markov model
in fitting and predicting sluice deformation, the measured data of monitoring points
2-2, 5–1, Lr-2 and Ul-2 were utilized to establish the prediction models based on the
stepwise regression model, SOA-LSTM model, and SOA-LSTM-weighted Markov model,
respectively. The calculated results are compared in Figure 14. Figure 15 shows the
coefficient of determination (R2) of the training set and the root mean square error (RMSE)
of the test set of each model. The calculation formula of R2 can be given by:

R2 =
∑N

i=1
(
δ̂i − δ

)
∑N

i=1
(
δi − δ

) (21)

where δi represents the measured data of training set; δ denotes the average value of the
measured data of training set; δ̂i is the fitted value of the training set; N means the amount
of data in the training set.

It can be observed in Figure 14 that although the models can fit the measured data
reasonably, the proposed model possesses not only the best fitting effects, but also the best
forecast effects. In Figure 15, the R2 and RMSE of the stepwise regression model vary from
0.8001 to 0.9114 and from 1.6705 to 3.8577, respectively. The R2 and RMSE of the stepwise
regression model vary from 0.7801 to 0.8514 and from 2.0705 to 4.9561, respectively. The R2

and RMSE of the stepwise regression model vary from 0.9301 to 0.9951 and from 0.725 to
1.517, respectively. Among all four monitoring points, the proposed SOA-LSTM-weighted
Markov model has the smallest RMSE, which indicates that the proposed model is feasible
and has better prediction accuracy overall.
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Figure 15. R2 and RMSE of different prediction models.

7. Conclusions

In this paper, the relative error random sequence is obtained by adopting the fitting
results of the training set of the SOA-LSTM model and the mean square deviation method
is used to classify the states and test the Markovianity of the random sequence. In this case,
the SOA-LSTM-weighted Markov model is established. Subsequently, the calculated results
of the stepwise regression model, the SOA-LSTM model and the SOA-LSTM-weighted
Markov model were compared to verify the fitted and predicted effects of the proposed
model. On the basis of the prediction results and the relative errors, the main conclusions
can be drawn as follows:

(1) The stepwise regression model is more suitable for dealing with linear problems; it
has some limitations in fitting and predicting nonlinear and fluctuating monitoring
sequences. By contrast, the proposed model shows obvious superiority in dealing
with monitoring data with fluctuation.

(2) The SOA improves the training efficiency of the neural network hyper-parameters of
the LSTM model. The SOA-LSTM model can more accurately reflect the nonlinear
change rule of the sluice settlement, and the weighted Markov model takes into
account the strength of the dependency relationship between different lags, which
can fully utilize the information of the training set, significantly reduce the model
prediction error, and improve the model prediction accuracy. As listed in Table 1, the
maximum settlement variation ranges from 1.73 mm to 31.59 mm, which indicates the
apparent fluctuation of sluice settlement monitoring data. On the basis of the fitted
results, predicted results and absolute relative errors, the proposed model demon-
strates the largest values of R2 and the smallest values of RMSE for the monitoring
data of four monitoring points. Therefore, the SOA-LSTM-weighted Markov model
is especially suitable for fitting and predicting the larger fluctuation of the sluice
settlement, it is also especially suitable for dealing with the more volatile settlement
monitoring data.
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(3) Due to the better regularity of the actual data series selected in this paper, the predic-
tion accuracy of the SOA-LSTM model and the SOA-LSTM-weighted Markov model
is higher. When more monitoring data are obtained, the prediction model should be
trained and adjusted in time, and then the subsequent dynamic prediction of the sluice
settlement can be carried out, which will be able to better describe the settlement
law of the sluice. To our knowledge, the proposed model expresses the stable and
accurate results in predicting long sequenced monitoring data. In view of the practical
application performance in the case study, the proposed model is supposed to applied
extensively in deformation prediction of more sluice projects to improve safety moni-
toring efficiency, which provides a new aid for structural engineers involved in the
real-time health assessment and safety monitoring in sluices. The study in this paper
focuses mainly on the data-driven sluice deformation prediction model. A further
study should pay more attention to investigating the physics-data double-driven intel-
ligent prediction model, and the proposed method will have prospective applications
in sluice structural behavior safety monitoring.
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