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Abstract: A vertical pipeline pump is a type of single-stage, single-suction centrifugal pump with a
curved elbow input. The inhomogeneous flow of the impeller inlet coexists with the unique elbow
inlet channel, making it simple to generate the inlet vortical secondary flow. This paper aimed to
optimize elbow inlet channel performance using a backpropagation (BP) neural network enhanced
by the Sand Cat Swarm algorithm. The elbow flow channel’s midline and cross section shapes were
fitted with a spline curve, and the parametric model of the curve was then constructed. Nine initial
variables were filtered down to four optimization variables using the partial factor two-level (P2) and
Plackett-Burman (P-B) experimental designs and multivariate analysis of variance. The sample space
was generated by 50 groups of experiment samples, and the Sand Cat Swarm algorithm to optimize
the BP (SCSO-BP) neural network and the approximation model of four variables were built. A genetic
algorithm (GA) was applied to determine the optimal parameters among the approximate models
in the sample space, and the ideal parameter combination of the elbow inlet channel was achieved.
The findings demonstrated a strong agreement between the experimental and numerical simulation
results. With reduced error fluctuation in inaccuracy and a more consistent fluctuation range, the
approximate prediction model based on the optimized Sand Cat Swarm algorithm performed better.
The optimized inlet model minimized the impact loss on the inlet wall, improved the velocity
distribution uniformity of the inlet impeller, increased the pump efficiency by about 5% and the head
by about 7.48% near the design flow, and broadened the efficient region of the pump.

Keywords: pipeline pump; elbow inlet channel; SCSO-BP neural network; experiment design;
parameter optimization

1. Introduction

The optimized design of elbow-shaped flow passages in vertical pipeline pumps has
remained a crucial issue in pipeline engineering [1]. Optimizing the elbow-shaped inlet can
enhance the fluid flow characteristics into the impeller, reduce energy losses and hydraulic
impact losses, and improve the performance and efficiency of pipeline systems.

Past studies have explored various optimization methods to address energy losses and
uneven flow problems associated with elbow-shaped inlets. These methods include designs
based on fluid mechanics simulations, empirical formulas, fluid mechanics principles,
and multi-objective optimization. Research by Shi Wei [2] discovered that designing
the elbow-shaped inlet cross-section according to linear gradient principles significantly
improved the uniformity of outlet flow velocity distribution. Zhang Chi [3], through
numerical simulation studies, found that appropriately increasing the radius of curvature
(R) of the outer circle in the rear bend of the elbow-shaped channel significantly reduced
hydraulic losses. AV Semenova [4] proposed a multi-objective optimization method to
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design the elbow tailpipe, but the excessive parameters led to inconclusive optimization
results. While these studies presented effective design solutions, most focused on fluid
numerical simulations, exhibiting limitations such as high computational complexity, time
consumption, and limitations in optimizing multiple parameters or achieving precise
design outcomes within limited optimization space.

In recent years, employing swarm intelligence algorithms to optimize BP neural net-
works has become a prevailing trend in structural parameter design [5]. Zhang Hao [6]
combined the particle swarm algorithm with BP neural networks to determine the optimal
parameter combination for the highest efficiency of a jet pump. The results suggested that
the combined approximate model of the particle swarm algorithm and neural network
could effectively predict the relationship between pump efficiency and design parameters.
Wang Ying [7] found that the particle swarm optimization algorithm could address mini-
mum point problems in the objective function of BP neural networks. Gonggui Chen [8]
discovered that the Sparrow Search Algorithm (SSA) improved BP neural networks’ han-
dling of high-complexity subsequences in wind speed prediction models.

BP neural networks have demonstrated excellent performance in model prediction
and optimization fields [9]. However, updating BP neural network weights and thresholds
using gradient descent algorithms tends to trap the network in local optima and is unable
to adapt to complex environments and uncertainties. The Sand Cat Swarm Optimization
(SCSO) algorithm, as an emerging heuristic optimization approach, offers a unique search
methodology suitable for complex models involving multiple parameters [10]. This study
proposes a BP neural network based on SCSO to construct a highly precise mathematical
model between the geometry parameters of the elbow-shaped passage and pump effi-
ciency. Finally, the study conducts global optimization within parameter ranges using
genetic algorithms (GAs) [11] to enhance the overall hydraulic performance of vertical
pipeline pumps.

2. Pipeline Pump Model and Numerical Calculation
2.1. Visual Pump Model

As shown in Figure 1, the pipeline pump utilized in the study is a vertical single-stage
single-suction centrifugal pump. The following are the fundamental parameters of the
visual pipeline pump model: The pump body and motor are linked without solid support,
with a designed flow rate of 55 m3/h, a head of 7.8 m, an impeller outer diameter of
94.7 mm, and a blade number of 5. The impeller speed is n = 2900 r/min (Teacher Shen
Zhenhua supplied the pump shown in Figure 1).
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Figure 1. Structural diagram of the pipeline pump.

2.2. Grid Division

ICEM CFD on the Workbench platform was used for hexahedral mesh partitioning.
The computational model is composed of the hydraulic domain of a vertical pipeline

pump, mainly consisting of the elbow-shaped inlet passage, impeller, volute, and out-
let passage.
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The study employed ICEM CFD in ANSYS software (2020R2) to partition the compu-
tational model into blocks for meshing. During mesh partitioning, the elbow-shaped inlet
and the volute tongue region tended to misalign, leading to negative grids. Hence, a non-
structured grid was used for hexahedral meshing of the flow field, with local refinements
in relevant regions. The water domain mesh is illustrated in Figure 2, and finite volume
methods were employed to discretize the governing equations. The coupling of velocity
and pressure utilized the SIMPLEC algorithm on collocated grids.
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Five different types of meshes were generated by setting various maximum cell sizes,
and mesh independence validation was conducted [12], as presented in Table 1. The head
and efficiency of the pump were used as validation standards. The computational efficiency
and head stabilized when the total number of grids in the computational domain exceeded
8 million. Considering time costs and computational resources, Scheme 4 was chosen for
subsequent calculations, with a total grid count of 10,062,836.

Table 1. Mesh independence verification.

Scheme Number H/m η/%

1 5,744,853 6.54 66.07
2 6,983,475 6.89 68.87
3 8,032,376 7.10 70.66
4 10,062,836 7.12 70.92
5 14,235,754 7.11 70.34

2.3. Turbulence Model and Boundary Condition Settings

Steady numerical simulations were conducted using ANSYS CFX 2020R2 software to
obtain the pump’s external performance and internal flow characteristics. Water at 25 °C
was considered the medium for internal flow. The continuity equation and the Reynolds-
Averaged Navier-Stokes (RANS) equation were used as the governing equations, as shown
in Equations (1) and (2), respectively. The Shear Stress Transport (SST) k-ω model was
employed to better describe turbulent behavior across different scales; hence, the SST model
was used to solve the N-S equations. The SST k-ω turbulence equations include kinetic
energy and characteristic scale equations as depicted in Equations (3) and (4), respectively.
Inlet boundary conditions were set as flow inlet, and the outlet boundary was set as
pressure outlet with a pressure of P = 1.01 × 105 Pa. The solid wall was set as a “no-slip
boundary” condition, while the interface between the rotating and stationary domains was
set as “Frozen rotor” and “None,” respectively. The solver settings were configured with
high-order solution accuracy, a maximum of 2000 iterations, and a convergence criterion
of 10−5.

The governing equations were as follows:

∂(ui)

∂xi
= 0 (1)

ρ
∂(ui)

∂t
+ ρuj

∂(ui)

∂xj
= ρFi −

∂p
∂xi

+ µ
∂2ui

∂xi∂xj
(2)
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ui: instantaneous value of velocity in the i direction; xi: coordinates; ρ: fluid density;
p: fluid pressure; Fi: mass force; and µ: dynamic viscosity.

The equation for kinetic energy k is as follows:

∂(ρk)
∂t

+
∂
(
ρujk

)
∂xj

=
∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
− ρε − β ∗ ρkω (3)

ρ: fluid density; t: time; xj: spatial coordinates; µi: velocity component; µ: dynamic
viscosity; µt: turbulent viscosity; σk: the effectiveness function of k; ε: the dissipation rate of
k; and β: the coupling coefficient between k and ω.

The characteristic length scale equation is as follows:

∂(ρω)

∂t
+

∂
(
ρujω

)
∂xj

=
∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
− α

ω

k
∂k
∂xj

∂ω

∂xj
− β ∗ ρkω2 (4)

α: the model parameter; σω: the effectiveness function of ω; and β: the coupling
coefficient of ω dissipation rate.

3. Optimization Process

The flowchart of the elbow channel optimization design based on the Sand Cat Swarm
Optimization BP neural network is shown in Figure 3. With the efficiency of the vertical
pipeline pump under design conditions as the optimization goal, the main design pa-
rameters of the elbow inlet channel were determined by the xy coordinate values at the
section’s midpoint using B-spline curve fitting of the channel profile combined with CREO
parametric 3D modeling. Finally, the experimental design identified four significant elbow
inlet channel factors. By using a uniform experimental design [13], the elbow inlet channel
design scheme was created within the design range, and numerical simulation was used to
determine the pump efficiency. The approximate mathematical model of efficiency and four
significant sample factors were established by optimizing the BP neural network with the
Sand Cat Swarm algorithm. The approximate mathematical model was globally optimized
by a genetic algorithm. Finally, the design parameters and optimization objectives of the
optimal elbow inlet channel were obtained.
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3.1. Elbow Inlet Channel Parameterization Method

The outer contour of the elbow inlet channel is parameterized using weight screening
processing of the profile parameters, which is more conducive to reducing the complexity
of the agent model, such as an artificial neural network or kriging [14], and improving
accuracy and calculation time.
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The geometric characteristics impacting the hydraulic performance of the elbow inlet
channel are mainly determined by the geometric shape of the profile and flow cross
section; thus, the parametric design factor variables are primarily chosen from these
two components. When two section forms and channel profiles are defined, CREO may
generate three-dimensional geometry with a uniform transition. The flow channel profile
is composed of spline curve parameterization, and the geometric parameters of the A-A
and B-B sections, which are easily modifiable, are chosen to study the flow cross section.

The shape of the elbow flow line is determined by fitting 6th power B-spline curves
through the midpoint of the section. As shown in Figure 4, the direction of the flow line
is controlled by changing the midpoint of the section on the middle flow line (taking into
account the internal flow field and the actual installation needs, the x coordinate of point D
is fixed, the y coordinate of point D is changed, and the y coordinate of the remaining four
points is fixed and the x coordinate value is changed). The section shape is determined by
the section length and transition angle. There are nine initial parameters in total. CREO
9.0 parameterizes the nine parameters in order to regulate the profile of the elbow inlet
channel, in which the inlet and outflow are fixed.
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The original data for the elbow variables referred to relevant materials such as De-
sign and Computational Method of Pump Elbow Inlet Flow and Modern Pumps Theory and
Design [15–18]. The upper and lower limits of the design parameters are shown in Table 2.

Table 2. Upper and lower limits of the design parameters.

Variable Upper Limit Lower Limit

DS-B 56 58
DS-C 49 51
DS-D 180 195
DS-E 80 83
DS-G 138 144
RA 10 25
RB 35 40
LA 90 110
LB 100 120

3.2. Screening of Significant Variables

The objective of factororial design is to use a limited number of trials to examine the
impact of several factors simultaneously. The P2 experimental design [19] method is used
for preliminary factor screening when there are too many potential factors as a result of
the excessive parameters used in this study. This allows for an effective screening process
to identify the primary affecting factors within a limited number of experiments. Part of



Water 2024, 16, 74 6 of 22

the two-level experiment was designed with Minitab software (Minitab2021), the design
accuracy was set to level IV, and a total of 32 groups of experiments were randomized.
According to the design values of part of the two-level experiments, three-dimensional
parametric modeling was carried out for 32 groups of experiments. In order to reduce
the influence of mesh differences in subsequent analysis, the same mesh size parameters
were set. Since the experiment is implemented using the CFD method, there is no human
error or accidental error, and the simulation efficiency is used as the evaluation index of the
P2 test.

To comprehensively consider the significant characteristics of various factors, Minitab
generated a half-normal plot for each factor’s effects (as shown in Figure 5). From the graph,
the x-axis represents the absolute values of effects, while the y-axis indicates the probability
percentage. The significance level α is set at 0.05, and significant effects are identified in the
plot using corresponding letter codes. Analyzing the physical interpretation of the semi-
normal distribution diagram, factor H deviates farthest from the main trend, indicating
its maximal impact among the factors. Effects located further away from the zero point
on the x-axis exhibit larger magnitude values, suggesting greater statistical significance.
Similarly, it can be concluded that the effect order of factors is: H > E > J > B > C, and the
corresponding factors are: LA > DS-G > LB > DS-C > DS-D.
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Since the aforementioned experiments only focused on the relationship between
individual factors and efficiency, the half-normal plot reflects the relationship between the
mean values of factors and response values. However, this does not entirely describe the
response values. Therefore, in this paper, to eliminate the impact of interactions between
dual or multiple factors, two methods, namely P-B experimental design and MATLAB
multi-factor analysis of variance, were employed to comprehensively screen out significant
factors. These were used to analyze the degree of influence of nine parameters on pump
efficiency, considering a significance level α of 0.05.

Table 3 compares the probability values (p-values) from the P-B experimental de-
sign and multi-factor analysis of variance. Smaller p-values indicate a greater and more
significant impact on efficiency.

According to the size of the p-value in the head P-B test, the first 6 digits are taken
from small to large: DS_C < DS_D < LA < DS_G < RA < LB; Similarly, the first 6 positions
from small to large in the multivariate analysis of variance are taken as follows: LA < DS-C
< DS-G < DS-E < RA < DS-D. The results of the two methods are generally consistent and
can be verified by each other.
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Table 3. Comparison of p-values of efficiency-influencing factors.

Factor P-B Test Multivariate Analysis of Variance

DS-B 0.578 0.631
DS-C 0.0314 0.0275
DS-D 0.0434 0.344
DS-E 0.694 0.0563
DS-G 0.0624 0.0415
RA 0.144 0.087
RB 0.513 0.553
LA 0.0455 0.0233
LB 0.421 0.472

According to the significance analysis of the design of the two-level factorial experi-
ment in Table 3 and Part P2, the overlapping factors in 6 of them were selected, so that DS_C,
DS_D, DS_G, and LA were determined as the optimized significant factors. According to
the actual situation of the original pump model, the value range of each significant factor
was determined, respectively: DS-C (80,88), DS-D (110,140), DS-G (160,175), and LA (20,40).

3.3. Approximate Model Establishment (BP Neural Network Improved Based on the Sand Cat
Swarm Algorithm)
3.3.1. Sand Cat Swarm Algorithm

Sand Cat Swarm Optimization (SCSO) is a new meta-heuristic algorithm proposed by
Amir Seyyedabbasi and Farzad Kiani in 2022. The algorithm is an intelligent optimization
algorithm that imitates the survival behavior of sand cats in nature. The sand cat, which
widely lives near the Sahara Desert in Africa, can capture 10% more food at night than the
ordinary cat. This is attributed to their exceptional ability to detect low-frequency noises
and their special population renewal mode, which guarantees both faster convergence
and superior optimization [20]. SCSO simulates two main behaviors of the sand cat in the
population renewal mode: searching for prey and attacking prey.

(1) Search for prey (exploration)

The sand cat’s hearing capacity for low-frequency detection is beneficial to the sand
cat swarm algorithm. The sand cat can detect low-frequency sound waves below 2 kHz. In
order to progressively approach the prey without losing ground or skipping any steps, the
sand cat’s ability value rG will linearly decline from 2 to 0 as the iteration process goes on.

Therefore, it is assumed that the sand cat’s sensitivity range is from 2 kHz to 0 for
the purpose of searching for prey. SM simulates the sand cat’s hearing characteristics, of
which the value is assumed to be 2. Certainly, it can be appropriately adjusted for different
problems to determine the agent behavior’s speed, which demonstrates the adaptability
and versatility of the proposed equation. The mathematical model mentioned above is
described as follows:

rG = sM − (
2 × sM × ic

imax
) (5)

ic: current iterations of the population; imax: maximum number of iterations of the
population.

The main parameter R that controls the conversion between the exploration phase
and the development phase can be defined as follows:

R = 2 × rG × rand(0, 1)− rG (6)

Every sand cat has a randomly initialized search space that lies between the defined
boundaries. To enable the search agent to discover new spaces within the search space,
each current search agent’s location throughout the search process is based on a random
location. Each sand cat has a distinct sensitivity range in order to prevent falling into local
optimality, which can be defined as follows:
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r = rG × rand(0, 1) (7)

rG: general sensitivity range that decreases linearly from 2 to 0; r: sensitivity range for
each cat. In addition, r is used in the exploration or exploitation processes, while rG is used
to guide the parameter R to enable the transference between these processes.

With the SCSO algorithm, the sand cat can update its position based on the best
possible solution, current position, and sensitivity range. It looks for additional prime prey
positions and may locate a new local optimal position in the expanded search area. The
position that it finds is between its current position and the prey position. Meanwhile, the
algorithm’s low running costs and complexity are guaranteed by the randomization. The
following is the mathematical model of the mentioned search process:

P(t + 1) = r · (Pbc(t)− rand(0, 1) · Pc(t)) (8)

Pbc: optimal solution; Pc: current position; and r: sensitivity range.

(2) Attack prey (exploitation)

Suppose that the sand cat’s sensitivity range is a circle. The direction of movement can
be determined by a random angle on the circle; certainly, the remaining parameters stated
in the formula are also valid for determining the direction of movement. Its value will be
between −1 and 1, as the random angle selected is between 0 and 360. This allows every
group member to move around the search space in a different circular direction. SCSO uses
the Roulette Wheel Selection Algorithm to select a random angle for the sand cat so that it
can approach the hunting position. In order to prevent falling into local optimality, SCSO
uses a random angle. The random angle in the formula will improve the sand cat’s hunting
and guidance, and the random position Pmd can guarantee that the sand cat can get close to
the prey. The SCSO algorithm’s attacking process is mathematically represented, and its
update mode is shown in Equations (9) and (10):

Pmd = |rand(0, 1) · Pb(t)− Pc(t)|, (9)

P(t + 1) = Pb(t)−r · Pmd · cos(θ) (10)

Pb: best position (the best solution); Pc: current location; and Pmd: random location.

(3) Search and attack

The search and attack are switched using adaptive rG and R, so the SCSO can freely
switch between the two modes. Since R depends on rG, its range of fluctuation is also
reduced. The value of R ranges from [−2rG, 2rG], and rG decreases linearly from 2 to 0.
Therefore, the sand cat is set to attack when the parameter |R| ≤ 1, and its update mode is
as follows:

P(t + 1) = Pb(t)−r · Pmd · cos(θ) (11)

When the boot parameter |R| > 1, its update mode is as follows:

P(t + 1) = r · (Pbc(t)− rand(0, 1) · Pc(t)) (12)

3.3.2. BP Neural Network

The BP neural network is an artificial intelligence model based on artificial neurons to
simulate a human brain neural network, which belongs to a kind of feedforward neural
network consisting of an input layer, a hidden layer, and an output layer. It is characterized
by the ability to train and optimize the network through a backpropagation algorithm to
solve problems such as classification and regression. The schematic diagram of the neural
network is shown in Figure 6.
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Figure 6. Schematic diagram of the BP neural network (a) neuron information transmission and (b)
error backpropagation.

Each circle represents a neuron. In the input layer, neurons are composed of input
variables. In the hidden and output layers, neurons consist of input variables and activation
functions. Specifically, the input variables are obtained by summing the linear transforma-
tion of all output variables from the preceding layer. These variables are then transformed
through an activation function and serve as output variables inputted into the subsequent
layer for computation.

(1) In the process of signal forward transmission, assuming that the value of neti is input
on the ith node of the hidden layer, its expression can be shown like this:

neti =
M

∑
j=1

wijxj + θi (13)

The output of the ith neuron node of the hidden layer θi, whose expression is shown in:

oi = f (neti) = f (
M

∑
j=1

wijxj + θi) (14)
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Choosing the logsig function as the activation function for the hidden layer of the
neural network, its expression is as follows:

y =
1

1 + e−x (15)

Using the purelin function as the linear activation function for the output layer of the
neural network, its expression is as follows:

y = x (16)

The expression for the input value of the kth neuron node in the output layer netk is
shown in:

netk =
q

∑ wkiyi + ak =
q

∑
i=1

wki f (
M

∑
j=1

wijxj + θi) + ak (17)

The expression for the output of the kth neuron node in the output layer ok is shown in:

ok = g(netk) = g

(
q

∑
i=1

wij f

(
M

∑
j=1

wijxj + θi

)
+ ak

)
(18)

(2) Error Backpropagation Process

The process of error backpropagation involves obtaining the error value by subtracting
the values of all neurons in the output layer of the training model from the actual values.
This error value is then used to continuously adjust the weights and thresholds through
backward propagation. Corrections are made to the direction and magnitude of the partial
derivatives of the neuron weights and thresholds across layers based on the calculated error
until the error reaches our predefined conditions, signaling the end of the training process.

The total error function MSE is expressed in Equation (19):

MSE =
1
n

L

∑
k=1

(Tk − Ok)
2 (19)

The adjusted weights and thresholds corresponding to the input and output layers are
shown in Equations (20)–(23):

∆wki = η
p

∑
p=1

L

∑
k=1

(Tp
k − Op

k) · g′(netk) · yi (20)

∆θi = η
p

∑
p=1

L

∑
k=1

(Tp
k − Op

k) · g′(netk) · wki · f ′(neti) (21)

∆ak = η
p

∑
p=1

L

∑
k=1

(Tp
k − Op

k) · g′(netk) (22)

∆wki = η
p

∑
p=1

L

∑
k=1

(Tp
k − Op

k) · g′(netk) · wki · f ′(neti) (23)

wij: the weight between the jth neuron node in the input layer and the ith neuron node
in the hidden layer; x

y : the input and output of the nodes, respectively; wkj
: the weight

between the ith neuron node in the hidden layer and the kth neuron node in the output
layer; xj: the input of the jth neuron node in the input layer; i: the threshold of the ith
neuron node in the hidden layer; f (x)i: the activation function of the hidden layer; αk: the
threshold of the kth neuron node in the output layer; g(x): the linear activation function of
the output layer; and ok: the output of the kth neuron node in the output layer
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3.3.3. Construction of the SCSO-BP Neural Network

To ensure the accuracy of the approximate model, this paper selects 50 sets of uniformly
designed numerical simulation data to construct the sample space. A total of 70% of the
samples (35 sets) are used to train the SCSOBP neural network using a uniform experimental
design. Additionally, 30% of the samples (15 sets) are utilized to verify the accuracy of
the neural network. The relevant settings of the BP neural network are as follows: The
training function adopts the Levenberg-Marquardt (L-M) optimization algorithm Trainbr,
and the node transfer functions use Logsig and Pureline for the logistic sigmoid and linear
functions, respectively. The training loop iteration count is set to 1000, with a learning rate
of 0.01, and the training objective minimum error is 0.00001. Normalization is performed
using Mapminmax, and the performance function adopts the mean square error (MSE).
Furthermore, the SCSO-BP neural network is designed with 4 nodes in the input layer,
9 nodes in the hidden layer, and 1 node in the output layer, where the output represents
the efficiency at operating points. The preliminary establishment of a 4-9-1 neural network
model is shown in Figure 6b.

Traditional BP neural networks often utilize gradient descent to search for weights
and thresholds. They are sensitive to initial values, exhibit slow convergence, are prone
to gradient vanishing, causing training difficulties, and can get trapped in local optima
for non-convex optimization problems. The Sand Cat Swarm Optimization (SCSO) algo-
rithm attempts to address the limitations of traditional gradient descent, enhancing the
performance and robustness of optimization algorithms.

The essence of utilizing Sand Cat Swarm Optimization (SCSO) to optimize a back-
propagation (BP) neural network is to mimic the behavior of sand cats in their food search
process. Within the sand cat swarm, individuals seek optimal solutions based on their
positions. Sand cats update their positions according to their locations and the surrounding
environment, akin to adjusting the weights and thresholds within the neural network. This
adjustment aims to reduce the predictive errors of conventional BP neural networks. Lever-
aging the search strategies and adaptability inherent in the SCSO algorithm (as represented
by Equations (5)–(11)), it attempts various combinations of weights and thresholds to seek
the most optimal parameters.

The specific methodology of optimizing weights and thresholds using the SCSO
involves: initializing weights and thresholds, defining an error function, applying the
SCSO algorithm for optimization, iteratively optimizing, and extracting optimal parameters.
Figure 7 illustrates a portion of the SCSO algorithm’s code (position update of individuals).

This section represents the primary optimization loop. It utilizes a while loop iterating
imax times. In each iteration, the positions of each search agent are updated. The optimizer
employs logic to ensure that the agent’s positions remain within the defined search space
(defined by lb and ub) and computes the agent’s fitness based on the optimization objective
function (defined by fobj). The optimization process involves adjusting the agent’s positions
and updating them based on the unique search and prey-attacking behaviors of the SCSO
algorithm. As the iterations progress, the convergence curve records the best fitness value
for each iteration. Finally, this optimization function returns three values: the best score,
the best fit, and the convergence curve.
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4. Results and Discussion
4.1. Test Verification

To validate the accuracy of the numerical simulation, an external characteristic ex-
periment was conducted on the original model. The experiment was conducted at the
closed test bench of the National Water Pump Product Quality Supervision and Inspection
Center (Zhejiang), as depicted in Figure 8a. The impeller and pump casing were processed
by Grandf Suzhou Co., Ltd., and the motor was provided by Professor Shen Zhenhua.
The prototype pump test bench setup is shown in Figure 8b. The measurement error for
head and efficiency was controlled within 0.5%, while the uncertainty in flow rate was
maintained within 3%.

The performance of a pump is fundamentally indicated by its characteristic curves.
The external characteristic experiment, which represents the pump’s entire flow rate per-
formance, was derived from the external performance test system at the National Pump
Testing Center. The experimental pump efficiency was calculated by converting the unit
efficiency through the motor power factor. The formulas for calculating the head (H), shaft
power, and efficiency using CFD numerical simulation are as follows:

H = (P2 − P1) (24)

N = ωM (25)

η = ρgHQ/N (26)

P2: the total pressure at the pump outlet; P1: the total pressure at the pump inlet; ω:
the angular velocity of the impeller; and M: the torque of the impeller.
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Figure 8. Closed test bench construction of the original pump visual model. (a) A closed test platform
for comprehensive testing of pump performance; (b) a prototype pump visual model.

The comparative chart of experimental tests and numerical simulation for the pump’s
performance curve is depicted in Figure 9. Near the designed flow rate, the error between
the efficiency test value and the calculated value is less than 6.5%. When the flow rate is
55 m3/h, the error between the efficiency calculation value and the test value is the largest,
and the error is 6.43%. The error between the test and the calculated head value is less
than 5%. When the flow rate is 40 m3/h, the error between the calculated head value and
the test value is the largest, and the calculated head value and the test value are 10.23 and
9.79, respectively, with an error of 4.49%. It cannot be seen from the figure that the external
characteristic test results and numerical simulation results have a good fit, indicating that
the reliability of numerical calculation results near the optimal operating point is high. In
this paper, the structural parameters of the design point are optimized and analyzed.
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Figure 9. Comparison of numerical simulation and test results.

4.2. The Predictive Results and Comparative Analysis

The SCSO-BP neural network established an approximate predictive model between
the four optimized variables and efficiency. Whether in the training or test set (Figure 10a,b),
comparing the CFX calculated values with the predicted efficiency values before and after
optimization using the BP neural network, the network’s predictive accuracy improved after
using the SCSO algorithm, maintaining an error range within 5%. By comparing the sample
errors in the test set, it is noticeable that, in contrast to the traditional unoptimized BP
neural network, the error range became smaller with improved stability in error fluctuation
in the BP neural network based on the CSCO enhancement. Therefore, it can be considered
that the efficiency predictive model trained using the CSCO-BP neural network is accurate.

Using a genetic algorithm to optimize the optimized BP prediction model, the parame-
ter data set after convergence is shown in Table 4:

Table 4. Design parameter comparison.

Parameters DS_C DS_D DS_G LA Efficiency/% Head/m

Original scheme 82.64 129.12 174.99 22.0 0.721 8.023

Optimization scheme 85.77 129.14 164.44 33.1 0.758 8.624

4.3. Comparison of Flow Patterns in the Inlet

Based on the comparison of the model lines before and after optimization in Figure 11,
the main change is observed in the transition angle between the middle streamline and the
vertical section. Combining this with Table 4 for analysis: Although the distance of LA has
increased, it still complies with the principle of linear gradient design for the inlet section
and the relevant design standards [21]. The distance from the impeller’s centerline to the
bottom plate of the inlet flow passage remains almost unchanged. This indicates that the
optimized model has a minimal impact on the axial distribution uniformity of the outgoing
flow, thus not causing significant hydraulic losses [22].
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Figure 10. SCSO-BP approximation model and error comparison. (a) SCSO-BP efficiency prediction
vs. CFD efficiency prediction; (b) comparison of efficiency predictions for the test set before and after
improvement; (c) error comparison between the test sets for SCSO-BP and BP.



Water 2024, 16, 74 16 of 22

Water 2024, 16, 74 16 of 22 
 

 

4.3. Comparison of Flow Patterns in the Inlet 
Based on the comparison of the model lines before and after optimization in Figure 

11, the main change is observed in the transition angle between the middle streamline and 
the vertical section. Combining this with Table 4 for analysis: Although the distance of LA 
has increased, it still complies with the principle of linear gradient design for the inlet 
section and the relevant design standards [21]. The distance from the impeller’s centerline 
to the bottom plate of the inlet flow passage remains almost unchanged. This indicates 
that the optimized model has a minimal impact on the axial distribution uniformity of the 
outgoing flow, thus not causing significant hydraulic losses [22].  

 
Figure 11. Comparison of the inlet channel profile before and after optimization. 

By observing the shape of the middle section of the elbow-shaped inlet before and 
after optimization, it is noticeable that the middle streamline of the optimized middle sec-
tion appears smoother and more continuous compared to the original model. From the 
perspective of the upper and lower contour lines, the vertical angle at the inlet section of 
the upper and lower contour lines is smaller in the optimized version, mainly seen in the 
variation at point G. There is not a significant change in the angle of the profile lines near 
the outlet horizontal section before and after optimization. 

In the optimized elbow-shaped inlet flow passage, the transition of streamlines be-
tween the elbow and the upstream and downstream flow components appears smoother. 
Particularly near the outlet section of the elbow, there is a more gradual curvature in the 
bend. 

Due to the original model’s non-uniform curvature at the inlet section and the first 
bend, it led to certain levels of impact losses near the inlet, creating low-velocity regions 
as depicted in Figure 12. There was a significantly higher velocity gradient generated near 
the second bend in the original model compared to the optimized gradient. This impacted 
the flow state within the elbow-shaped inlet, causing uneven distribution within the pipe-
line. In the optimized model, there was a reduction in the velocity gradient at the bend, 
resulting in a more uniform velocity distribution across the mid-section. This improve-
ment in flow conditions entering the impeller led to an overall enhancement in efficiency. 

Figure 11. Comparison of the inlet channel profile before and after optimization.

By observing the shape of the middle section of the elbow-shaped inlet before and
after optimization, it is noticeable that the middle streamline of the optimized middle
section appears smoother and more continuous compared to the original model. From the
perspective of the upper and lower contour lines, the vertical angle at the inlet section of
the upper and lower contour lines is smaller in the optimized version, mainly seen in the
variation at point G. There is not a significant change in the angle of the profile lines near
the outlet horizontal section before and after optimization.

In the optimized elbow-shaped inlet flow passage, the transition of streamlines between
the elbow and the upstream and downstream flow components appears smoother. Particu-
larly near the outlet section of the elbow, there is a more gradual curvature in the bend.

Due to the original model’s non-uniform curvature at the inlet section and the first
bend, it led to certain levels of impact losses near the inlet, creating low-velocity regions as
depicted in Figure 12. There was a significantly higher velocity gradient generated near the
second bend in the original model compared to the optimized gradient. This impacted the
flow state within the elbow-shaped inlet, causing uneven distribution within the pipeline.
In the optimized model, there was a reduction in the velocity gradient at the bend, resulting
in a more uniform velocity distribution across the mid-section. This improvement in flow
conditions entering the impeller led to an overall enhancement in efficiency.

Due to a tapered section at the end of the original model’s elbow, observations of the
optimized and pre-optimized elbow throat vector diagrams within the elbow inlet flow
passage (as shown in Figure 13) reveal the presence of some secondary flow phenomena in
the pre-optimized model, leading to poorer fluid velocity uniformity entering the impeller.
The inlet flow passage of the original model generates a significant velocity gradient near
the throat (as depicted in Figure 14). Following optimization, the velocity distribution
near the throat becomes more uniform, with a noticeable reduction in velocity gradients.
Additionally, in the optimized model, there is a decrease in secondary backflow phenomena
at the edges of the impeller inlet, resulting in a more uniform flow distribution compared
to the original model.

From Figure 15, it can be observed that there are significant differences in the static
pressure distribution within the suction chamber before and after optimization, mainly
evident at the inlet, the outlet, and points 1, 2, and 4. The gradient of static pressure
decreases after optimization, reducing the area of high-pressure regions at points 1, 2, and 4.
The static pressure distribution becomes less uniform at points 1 and 3, although the static
pressure gradient decreases. Additionally, the static pressure gradient at point 5 of the
optimized elbow inlet becomes more gradual.



Water 2024, 16, 74 17 of 22Water 2024, 16, 74 17 of 22 
 

 

(a) 

 
(b) 

Figure 12. Relative velocity comparison of the middle section under design conditions: (a) original 
model and (b) optimization model. 

Due to a tapered section at the end of the original model’s elbow, observations of the 
optimized and pre-optimized elbow throat vector diagrams within the elbow inlet flow 
passage (as shown in Figure 13) reveal the presence of some secondary flow phenomena 
in the pre-optimized model, leading to poorer fluid velocity uniformity entering the im-
peller. The inlet flow passage of the original model generates a significant velocity gradi-
ent near the throat (as depicted in Figure 14). Following optimization, the velocity distri-
bution near the throat becomes more uniform, with a noticeable reduction in velocity gra-
dients. Additionally, in the optimized model, there is a decrease in secondary backflow 
phenomena at the edges of the impeller inlet, resulting in a more uniform flow distribu-
tion compared to the original model. 

Figure 12. Relative velocity comparison of the middle section under design conditions: (a) original
model and (b) optimization model.

Water 2024, 16, 74 18 of 22 
 

 

  
(a) (b) 

Figure 13. Optimized elbow throat vector image before and after: (a) pre-optimization model and 
(b) optimized model. 

 
(a) 

 
(b) 

Figure 14. Comparison of the velocity gradient near the throat section before and after optimization: 
(a) pre-optimization model and (b) post-optimization model. 

From Figure 15, it can be observed that there are significant differences in the static 
pressure distribution within the suction chamber before and after optimization, mainly 
evident at the inlet, the outlet, and points 1, 2, and 4. The gradient of static pressure de-
creases after optimization, reducing the area of high-pressure regions at points 1, 2, and 

Figure 13. Optimized elbow throat vector image before and after: (a) pre-optimization model and (b)
optimized model.



Water 2024, 16, 74 18 of 22

Water 2024, 16, 74 18 of 22 
 

 

  
(a) (b) 

Figure 13. Optimized elbow throat vector image before and after: (a) pre-optimization model and 
(b) optimized model. 

 
(a) 

 
(b) 

Figure 14. Comparison of the velocity gradient near the throat section before and after optimization: 
(a) pre-optimization model and (b) post-optimization model. 

From Figure 15, it can be observed that there are significant differences in the static 
pressure distribution within the suction chamber before and after optimization, mainly 
evident at the inlet, the outlet, and points 1, 2, and 4. The gradient of static pressure de-
creases after optimization, reducing the area of high-pressure regions at points 1, 2, and 

Figure 14. Comparison of the velocity gradient near the throat section before and after optimization:
(a) pre-optimization model and (b) post-optimization model.

Taking the inlet section, throat section, and outlet section of the elbow inlet flow
passage to analyze the flow status before and after optimization, the flow status at the inlet
remains largely unchanged. However, at the inlet section, the original model experiences
higher impact losses along the flow passage wall, resulting in a significant velocity gradient
at the throat. The original model’s surface transition is not smooth, creating more low-
velocity areas on the outer side of the second bend. Along the passage from the throat
section towards the elbow outlet section, more low-velocity areas accumulate on the middle
and outer sides of the second bend, as shown in Figure 16a. This uneven flow does not
uniformly enter the impeller, resulting in a tonsil-shaped velocity distribution at the outlet
section, as shown in Figure 16b. This affects the flow state at the impeller inlet, ultimately
impacting the overall pump efficiency. In contrast, the transition of the optimized model’s
lines is smoother, reducing the impact losses between the fluid and the bend surface. The
accumulation of low-speed regions decreases, lowering the velocity gradient at the throat
section. This reduction mitigates the tonsil-shaped velocity distribution. The velocity
distribution at the outlet section becomes more uniform, leading to an overall efficiency
improvement of the pump under design conditions.
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4.4. Performance Curve Comparison

Based on prior experimental validation and analysis, the stable and relatively low
errors prove the reliability of the numerical simulation setup. Therefore, the comparative
analysis of the performance curves was conducted using the numerical simulation data of
the pipeline pump’s elbow-shaped inlet before and after optimization.
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Figure 16. Comparison of velocity distribution at each section of the elbow inlet: (a) pre-optimization
model and (b) post-optimization model.

The comparison between the optimized and original models’ design parameters after
convergence optimization is presented in Table 4. It shows that the throat section length
(LA) had the most significant change, increasing by 50%. The other design parameters
showed minor variations. This reaffirms that the throat section length can impact the impact
losses at the elbow bend, resulting in a smoother and more uniform inlet flow velocity. The
efficiency after optimization reached 75.8%, an improvement of 5.13% compared to the
original model, while the head was 8.424, about 7.48% higher than the original model. The
pump model’s external characteristic curves before and after optimization of the elbow-
shaped inlet flow channel are depicted in Figure 17. Near the design flow point, both
efficiency and head significantly improved. However, around low and high flow rates, as
the internal flow states were already good before and after optimization, the efficiency only
slightly increased. At low flow rates, there were higher impact losses at the elbow inlet,
resulting in a lower head after optimization compared to the original model. Overall, the
optimized pump showed enhanced overall efficiency and head, expanding its range of
efficient operation.
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5. Conclusions

1. A SCSO-BP neural network has a better fit for network training, showing higher pre-
dictive accuracy in the improved BP neural network structure. The error fluctuations
within the sample space were more stable, with a narrower range of fluctuations.
The method presented in this paper can serve as a reference for multi-parameter
optimization.

2. The improved elbow inlet channel may operate in a wider range of high efficiency,
and it has the greatest effect on the pump performance close to the design point.

3. At points close to the design flow rate, the optimized model’s efficiency and head are
greatly improved; under the design conditions, the efficiency increased by 5.13% and
the head increased by 7.48%.

4. The model’s profile on the bend pipe’s curvature transition is smoother, the low-
speed area outside the appearance is smaller, the flow velocity distribution into the
impeller is more uniform, and the secondary flow at the exit section’s edge is smaller
after optimization, all of which improve the impeller’s fluid state. The elbow inlet
channel fitting using spline curves is suggested as a source of inspiration for computer-
aided parametric modeling. An efficient reference for multi-factor optimization and
efficient design is provided by the suggested approach of collaborative optimization
of the inlet flow channel, which is based on the SCSO-BP neural network and DOE
experimental design.
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