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Abstract: The advection–dispersion equation has been widely used to analyze the intermediate field
mixing of pollutants in natural streams. The dispersion coefficient, manipulating the dispersion term
of the advection–dispersion equation, is a crucial parameter in predicting the transport distance
and contaminated area in the water body. In this study, the transverse dispersion coefficient was
estimated using machine learning regression methods applied to oversampled datasets. Previous re-
search datasets used for this estimation were biased toward width-to-depth ratio (W/H) values ≤ 50,
potentially leading to inaccuracies in estimating the transverse dispersion coefficient for datasets
with W/H > 50. To address this issue, four oversampling techniques were employed to augment the
dataset with W/H > 50, thereby mitigating the dataset’s imbalance. The estimation results obtained
from data resampling with nonlinear regression method demonstrated improved prediction accuracy
compared to the pre-oversampling results. Notably, the combination of adaptive synthetic sampling
(ADASYN) and eXtreme Gradient Boosting regression (XGBoost) exhibited improved accuracy com-
pared to other combinations of oversampling techniques and nonlinear regression methods. Through
the combined ADASYN–XGBoost approach, it is possible to enhance the transverse dispersion co-
efficient estimation performance using only two variables, W/H and bed friction effects (U/U∗),
without adding channel sinuosity; this represents the effects of secondary currents.

Keywords: transverse dispersion coefficient; imbalanced dataset; data oversampling; machine
learning; nonlinear regression

1. Introduction

Water quality management is a significant task for public health and aquatic environ-
ments. The mixing stages of introduced polluted water in natural rivers are classified into
three processes: near-, intermediate-, and far-field mixing. In near-field mixing, longitu-
dinal, transverse, and vertical mixing simultaneously occur by turbulent and molecular
diffusion. After finishing the vertical mixing, intermediate-field mixing begins with lon-
gitudinal and transverse dispersion. Intermediate-field mixing persists over significantly
longer distances than near-field mixing due to the complex flow structures accompanying
the delays in transverse mixing completion, which are caused by the irregular channel
geometries [1]. In those mixing processes, the advection–dispersion equation has been used
for the analysis of polluted water mixing in aquatic environments, such as rivers, lakes,
and water conveyance channels. In particular, in intermediate-field mixing, following the
completion of vertical mixing, the depth-averaged two-dimensional advection–dispersion
equation (2D ADE) has been widely used [2–5]. The 2D ADE is defined as follows:

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DL
∂2C
∂x2 + DT

∂2C
∂y2 (1)
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where C is the depth-averaged concentration; u, v are the depth-averaged longitudinal
and transverse velocities, respectively; DL, DT represent the longitudinal and transverse
dispersion coefficients, respectively. From the 2D ADE, mixing behaviors, such as the arrival
time of polluted water, the concentration change, and the polluted area over longitudinal
and transverse distances, can be predicted by the appropriate determinations of DL and
DT . DT is particularly significant in analyzing lateral mixing of polluted water caused by
accidentally spilled pollutants, suspended solids, and continuous sources from tributaries
and wastewater treatment effluents.

Tracer tests have been conducted to estimate DT for laboratory channels [1,6–8] and
natural rivers [9–12]. However, the tracer test is a labor-intensive and costly experiment,
and tracer materials input is limited for natural streams, especially in large-scale rivers [13].
Thus, practically, empirical formulas have been used to estimate DT using hydraulic (veloc-
ity magnitude, shear velocity, and Froude number) and geometrical (depth, width, radius
of curvature, and sinuosity) parameters. Fischer et al. [14] defined that DT is proportional to
HU∗, where H is the flow depth and U∗ is the shear velocity; they suggested a proportional
constant of 0.15 for straight channels and one of 0.6 for meandering channels. Ruther-
ford [15] presented the range of the proportional constant according to the geometrical
properties of rivers, where 0.15–0.3 could be used in straight channels, and 0.3–0.9 could be
used in meandering channels. For expanding applicability, the empirical formulas were
developed by conducting multiple linear regression using tracer test results [10,16–20]. The
accuracy of estimated DT from the proposed empirical formulas depends on the diversity
of data reflecting various hydraulic conditions that influence transverse mixing, which are
used to develop the formula. In other words, the empirical formula is limited to specific
river conditions used for the regression [10]. Furthermore, the unexplainable nonlinear
relationship between DT and complex flow structures of natural rivers raises uncertainty
in the estimation of DT using empirical formulas.

The data-driven approach can be a solution to unraveling complex relations between
input and output data [21]. The soft computing technique has begun to be used for
the estimation of the longitudinal dispersion coefficient for the far-field mixing due to
sufficient tracer test datasets [22–28]. In recent studies, Sattar and Gharabaghi [24] compiled
150 datasets from natural streams for adopting the machine learning technique, and Ghiasi
et al. [27] used 503 datasets from laboratory channels and natural streams. These researchers
presented results of superior accuracy compared to the proposed empirical formulas
derived by multiple linear regression. For intermediate mixing analysis, DT has also been
estimated using a machine learning model [19,29–33]. In these studies, 165–420 datasets, a
significant portion of which included lab-scale results, were adopted to develop machine
learning models, and the estimated DT showed enhanced performance compared to the
empirical formulae. However, the performance enhancement of machine learning models
for DT would be mitigated in natural rivers because the datasets used in previous studies
are biased to lab-scale results. Therefore, it can be seen that the trained machine learning
model has potential to overfit lab-scale data, resulting in errors when applied in natural
rivers. To resolve the limitations of such imbalanced datasets, field-scale data need to be
used in compensation.

Recent studies have introduced strategies for overcoming the disadvantages that are
encountered due to imbalanced training datasets through data oversampling of minority
class data. The Synthetic Minority Oversampling Technique (SMOTE) is an algorithm
that beings balance between majority and minority data classes by generating new data
samples for the minority data class [34]. The SMOTE is adopted for a data preprocessing
technique and supports the enhancement of the performance of machine learning mod-
els by mitigating overfitting problems [35]. For imbalanced water quality and quantity
data, the SMOTE has been used to improve data balance for the enhancement of predic-
tion performance using machine learning techniques [36–40]. Furthermore, to improve
SMOTE, an adaptive synthetic sampling (ADASYN) was proposed, introducing a den-
sity distribution to determine the number of synthetic samples [41]. Research has been
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conducted on resolving water quality data imbalances and improving predictive perfor-
mance using machine learning models with ADASYN [36]. Additional techniques, such
as combining undersampling methods with oversampling techniques for the removal of
samples from synthetically generated data, have been proposed. Hybrid approaches, like
SMOTE-ENN and SMOTE-Tomek, incorporating Edited Nearest Neighbor (ENN) and
Tomek-link techniques for noise and duplicate data removal from SMOTE-generated data,
have been suggested [42]. Studies have also presented streamflow data prediction and
flood forecasting using such hybrid techniques [43–45]. From the improvements shown in
previous research, the imbalanced datasets of DT can be improved through oversampling
techniques, but such research has not been reported until now.

This study aims to enhance DT estimation performance using two variables: width-to-
depth ratio (W/H) and bed friction (U/U∗). Here, W is the channel width, and U is the
cross-sectional averaged velocity. This aim will be achieved through data oversampling
techniques by compensating for the imbalanced dataset comprising lab-scale data. In
this study, four oversampling techniques, SMOTE, SMOTE-ENN, ADASYN, and SVM-
SMOTE, were employed to reduce the data imbalance. Using the improved datasets, DT
was estimated using multiple linear regression (MLR), and three nonlinear regression
methods were used: k-nearest neighbor’s regression (KNR), support vector regression
(SVR), and eXtreme Gradient Boosting regression (XGBoost). By comparing the accuracy of
DT estimation, a feasible combination of oversampling techniques and regression methods
was proposed; the effectiveness of data oversampling in enhancing accuracy was discussed
in comparison to the effectiveness of adding sinuosity for estimating DT .

2. Materials and Methods
2.1. Dataset Explanations

The statistical properties of the collected dataset were analyzed to establish regression
models for DT . In total, 216 datasets were collected, consisting of 160 from laboratory
channels and 56 from natural streams [1,6,8,9,11,46–71]. Laboratory experiments were
predominantly conducted in straight channels, while 12 datasets [1,6] were obtained from
meandering channels, exhibiting sinuosity ranging from 1.32 to 1.7. The corresponding
Froude numbers for these experiments ranged from 0.032 to 0.972. Field experiments were
conducted across streams in the USA, Canada, Europe, China, and South Korea; these
were characterized by sinuosity ranging from 1.0 to 2.38, and the Froude number was in
the range of 0.06–0.48. Fluorescent dye (specifically, Rhodamine B and Rhodamine WT)
and neutrally buoyant solutions (such as nigrosine solution, gentian violet dye, carbon
tetrachloride–benzine solution, etc.) were utilized for tracer tests in laboratory experiments;
field experiments also employed fluorescent dye (Rhodamine B and Rhodamine WT).
Table 1 presents the statistical properties for the laboratory channels and natural streams
separately, focusing on W/H, U/U∗ and DT/HU∗. Both data groups exhibited similar
ranges and average values of U/U∗. However, the average values of W/H and DT/HU∗

in natural streams were larger than those in the laboratory channels.

Table 1. Statistical properties of collected tracer test results.

Laboratory Channels
(No. of Datasets = 160)

Natural Streams
(No. of Datasets = 56)

W/H U/U* DT/HU* W/H U/U* DT/HU*

Max 65.1 24.6 0.70 169.5 25.7 1.21
Min 0.1 1.6 0.05 14.4 3.7 0.12

Average 17.7 12.5 0.16 67.9 12.8 0.51
Median 14.7 11.9 0.14 57.4 11.0 0.49

Standard Deviation 12.8 4.9 0.07 40.3 6.0 0.24

Figure 1 depicts histograms illustrating the distributions of the datasets. The statistical
analysis revealed comparable distributions of U/U∗ in both the laboratory and the natural



Water 2024, 16, 1359 4 of 21

stream datasets. In contrast, W/H from the lab-scale experiments tended to accumulate
in the range of W/H < 50, resulting in relatively small values of DT/HU∗ compared to
datasets from natural streams. Significantly, the abundance of lab-scale datasets, approxi-
mately three times larger than those from the natural streams, raises concerns about the
narrowing applicability of empirical formulas for DT/HU∗, developed from imbalanced
datasets. To enhance the applicability of empirical formulas, it is imperative to augment
the dataset by acquiring more experimental data of the natural stream scale.
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Figure 1. Distribution properties of the tracer test datasets according to the ranges of W/H.

2.2. Estimation of DT

In this study, DT was estimated using MLR, which is the traditional approach to obtain
DT , and the nonlinear regression algorithms, which are SVR, XGBoost, and KNR; these are
known to be efficient for the regression of nonlinear datasets [72–74]. Through dimensional
analysis and theoretical derivations, dimensionless hydraulic parameters were derived to
formulate empirical expressions for the dimensionless transverse dispersion coefficient
(DT/HU∗), as follows:

DT
HU∗

= f
(

W
H

,
U
U∗

,
W
Rc

,
H
Rc

, Sn

)
(2)

where Rc is the radius of curvature; Sn is the channel sinuosity [10,18,71]. Table 2 presents
the empirical formulas proposed using dimensionless hydraulic parameters suggested in
previous studies. DT is primarily influenced by the vertical profiles of transverse velocity,
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as derived theoretically by Fischer et al. [14]. Therefore, hydraulic parameters such as bed
friction (U/U∗) and geometrical configurations (W/H, H/Rc, W/Rc, and Sn), affecting
vertical variations of transverse velocity, were incorporated into the formulas. The formulas,
proposed by Jeon et al., Baek and Seo, and Yotsukura and Sayre [10,18,70], consider Rc
or Sn to account for the effects of secondary currents. However, obtaining Rc and Sn
is challenging due to the lack of information in the datasets. For instance, Jeon et al.,
and Baek and Seo [10,18] collected Sn data from 16 and 18 field datasets, respectively.
Aghababaei et al. [19] gathered 230 datasets, but only 49, including 29 field cases and 20
flume experiments, were available for Sn. Consequently, establishing explainable relations
between DT and Sn from tracer test results, especially for natural streams with a large
width-to-depth ratio, is challenging [12]. For these reasons, in this study, W/H and U/U∗

were considered as the input variables for estimating DT .

Table 2. Empirical formulas for estimating transverse dispersion coefficient.

References Empirical Formulas Method

Yotsukura and Sayre [70] DT
HU∗ = 0.4

(
U
U∗

)2(W
Rc

)2

MLR

Bansal [50] DT
HU∗ = 0.002

(
W
H

)1.498

Deng et al. [17] DT
HU∗ = 0.145 +

(
1

3530

)(
U
U∗

)(
W
H

)1.38

Jeon et al. [10] DT
HU∗ = 0.03

(
U
U∗

)0.46(W
H

)0.3
S0.73

n

Baek and Seo [18] DT
HU∗ = (77.88P)2

{
1− exp

(
− 1

77.88P

)}
, P = U

U∗
H
Rc

Gond et al. [12]
DT

HU∗ = f (λ) +
(
2.6κ3)( U

U∗

)(
W
H

)
,

f (λ) = 0.13 (λ = 8
(

U
U∗

)
> 0.08), κ: flow nonuniformity parameter

Aghababaei et al. [19]
DT

HU∗ = 0.463 +
(

0.464U/U∗
)
+
[
8.824× 10−9(Sn)

U/U∗
]
+

0.149Sn
( U

U∗ +2.306(Fr)(S2
n)−25.283) − 0.474Sn

[0.054 W
H −20.371]

Genetic-programming-based
symbolic regression (GP-SR)

Huai et al. [30]

DT
HU∗ =

0.693
262+( U

U∗ )
2−31.8( U

U∗ )
+

0.121(W
H )

W
H +0.222( U

U∗ )−1.99
(straight flume)

DT
HU∗ =

0.693( U
U∗ )

0.47

262+( U
U∗ )

2−31.8( U
U∗ )

+
0.121(W

H )
1.07
( U

U∗ )
0.35

Sn
0.395

W
H +0.222( U

U∗ )−1.99

(natural streams)

Genetic programming
(GP)

Figure 2 depicts the research procedure for obtaining DT from 216 datasets, as listed
in Table 1. The datasets were classified across three ranges based on W/H: W/H < 50
(Class 0), 50 ≤ W/H < 100 (Class 1), and 100 ≤ W/H (Class 2), by the river scale,
as proposed by Baek and Seo [71]. The original datasets consisted of 180 datasets in
Class 0 (majority class), and 21 and 14 datasets in Class 1 and 2 (minority class), respec-
tively. To generate new data, the training and validation datasets were split into 80%
(172 datasets) and 20% (44 datasets), respectively, according to suggestions from previous
studies [34,75,76]. Utilizing oversampling techniques, new datasets comprising W/H,
U/U∗, and DT/HU∗ were resampled from the training datasets classified as the minor-
ity class. After data oversampling, the dataset was divided into 70% training and 30%
validation sets. DT was estimated using both the traditional MLR method and nonlinear
regression methods, specifically SVR, XGBoost, and KNR. The Python Scikit-learn library
(https://scikit-learn.org, accessed on 1 May 2024) [77] was utilized for conducting the
aforementioned data regression in this study. From the MLR analysis, an empirical formula
for DT was derived:

ln
(

DT
HU∗

)
= ln(a) + b ln

(
W
H

)
+ c ln

(
U
U∗

)
(3)

https://scikit-learn.org
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where a, b, and c are empirical coefficients. The derived empirical formula and the three
nonlinear regression models were evaluated by comparing them with 30% of test datasets
extracted from the original datasets. The comparison results addressed the feasibility of
using oversampling techniques to estimate DT in comparison to results obtained using the
original datasets.
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2.3. Data Oversampling

From the collected tracer test results, it is evident that there is an imbalance in the data
concerning W/H, and this imbalance may lead to errors in the empirical formula for DT . In
this study, we aim to address this data imbalance by employing oversampling techniques.
The oversampling techniques chosen for this study are summarized in Table 3, which
includes data resampling properties, advancements, and limitations of each oversampling
technique.

Table 3. Comparisons of oversampling techniques.

Technique Data Resampling Pros Cons Reference

SMOTE Generates synthetic samples near
minority instances

Mitigates class
imbalance Sensitive to noisy data Chawla et al.

[34]

SMOTE-ENN Applies Edited Nearest Neighbor
(ENN) for noise reduction

Effective in handling
noisy data

Possible to discard
informative instances
during undersampling

Batista et al.
[42]

ADASYN Utilizes density distribution for
minority class data synthesis

Adapts to data density
variations

Possible to introduce noise
due to adaptability He et al. [41]

SVM-SMOTE
Integrates with support vector
machine (SVM) for minority
data synthesis

Generates samples in
the feature space of
minority class

Computationally
expensive and sensitive to
SVM parameters

Nguyen et al.
[78]

SMOTE [34] generates synthetic data to increase the number of minority group in-
stances, aiming to balance the overall dataset. SMOTE achieves this by resampling data
from the k-nearest neighbors (KNN) within the minority group. The correct formula for
generating synthetic data in SMOTE is as follows:

si = xi + (xni − xi)·λ (4)

where i is the sample number of a minority group, si is the new synthetic data, xi is a sample
from the minority group, xni is a randomly selected data from the k-nearest neighbors
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within the minority group, and λ is a random number in the range of 0 and 1. The new data
are created by interpolating among the minority group data, ensuring that the generated
samples lie within the boundaries of the minority group.

The SMOTE-ENN algorithm [40] represents a hybrid approach, integrating SMOTE
with ENN, an undersampling technique introduced by Wilson [79]. This method starts by
generating synthetic data through SMOTE and subsequently employs ENN to eliminate
instances identified as noisy and irrelevant. In ENN, synthetic data are classified as noisy
if their class differs from the majority class among their k-nearest neighbors, with k set to
3. The incorporation of the ENN algorithm enhances the quality of the synthesized data
group by effectively mitigating the introduction of misleading information or noise during
the data synthesis process, as facilitated by SMOTE.

ADASYN [41] employs Equation (5) to generate new samples, and the number of
resampled data (Ni) is determined from the density distribution (r̂i). Ni is calculated as:

Ni = r̂i·
(
nmj − nmn

)
λ (5)

r̂i = ri/ ∑nmn
i=1 ri = ri/ ∑nmn

i=1 (∆i/k) (6)

where nmj and nmn represent the number of majority and minority group data, respectively,
ri = ∆i/k, k is the number of the nearest neighbors, and ∆i is the number of majority group
data in the k-nearest neighbors of xi. From the calculations of Ni and r̂i, ADASYN algorithm
synthesizes data, accounting for the difficulties in learning levels by assigning weights to
minority group data.

SVM-SMOTE [78] is a variation of SMOTE, integrated with the support vector ma-
chine (SVM). The primary objective is to generate synthetic samples specifically in the
feature space of the minority class. This approach aims to enhance the representation of
the minority class through a combination of SVM principles and SMOTE. SVM-SMOTE
generates new synthetic data as:

si = svi + (svi − xi)·λ (7)

where svi is the support vector by training SVM on xi. SVM-SMOTE prioritizes the aug-
mentation of minority class instances near the decision boundaries, which are critical areas
for boundary establishment. Furthermore, the generation of new instances strategically
expands the minority class domain, particularly in regions with sparse majority class
representation.

The four oversampling techniques were employed using the imbalanced-learn li-
brary from Python (https://www.jmlr.org/papers/v18/16-365.html, accessed on 1 May
2024) [80]. Accuracy, precision, recall, and F1 score were used to evaluate the classification
performance of the oversampling techniques. These indices are calculated to validate the
resampled data, as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + TN + FP + FN
(10)

F1 = 2× Precision× Recall
Precision× Recall

(11)

where TP (true positive) represents the number of samples accurately predicted as positive,
TN (true negative) indicates the number of samples accurately predicted as negative, FP
(false positive) is the count of samples falsely predicted as positive, and FN (false negative)

https://www.jmlr.org/papers/v18/16-365.html
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denotes the number of samples falsely predicted as negative. In addition, the statistical
similarity of the oversampled data to the original data was assessed using the Kolmogorov–
Smirnov test (KS test) [81], which compared the cumulative distribution functions of the
two datasets.

2.4. Machine Learning Regression Methods
2.4.1. Support Vector Machine Regression (SVR) Model

SVR is an extension of the support vector machine (SVM) algorithm, which is primarily
used for data classification. SVM aims to determine a hyperplane that maximizes the margin
around the given dataset, ensuring that each data point lies within the margin boundary [82].
SVR addresses regression problems by mapping nonlinear data to a higher-dimensional
space using kernel functions, transforming low-dimensional nonlinear regression problems
into high-dimensional linear regression problems [72]. Consequently, SVR solves the
regression problem by maximizing the margin from the given dataset (xi, yi) through the
following optimization problem:

minimize 1
2‖w‖

2 + C ∑l
i=1
(
ξi + ξ∗i

)

subject to


yi −

(
wTxi + b

)
≤ ε + ξ∗i(

wTxi + b
)
− yi ≤ ε + ξi

ξi, ξ∗i ≥ 0, i = 1, ..l

(12)

where w is the weighting vector, C is a positive constant, ξi and ξ∗i are slack variables used
to estimate the deviation between actual data and a predicted data, b is a bias term, and ε is
the margin. The kernel function employed for this study is the radial basis function (RBF),
as follows:

k
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
(13)

where xi and xj are data points and γ is a parameter for the RBF kernel function.

2.4.2. eXtream Gradient Boosting Regression (XGBoost) Model

XGBoost is a machine learning regression model that applies the gradient boosting
algorithm, known for its advantages in parallel processing and optimization in solving
both classification and regression problems [83]. XGBoost is an ensemble technique that
combines multiple decision trees to create an ensemble model for nonlinear regression. A
decision tree is a method that classifies data by stacking multiple binary nodes with various
conditions to predict the final value. For instance, in a scenario with three decision tree
models, M1, M2, M3, boosting adjusts the weights of poorly predicted samples xi in M1 to
train M2, and similarly adjusts weights for poorly predicted samples xi in M2 to train M3,
and so on. The final prediction is obtained by combining predictions from each model with
their respective weights, Wn, as shown in Equation (14).

yi = ∑K
i=1 Wi Mi(xi) + ε j

(
xj
)

(14)

where K is the number of decision trees. This boosting technique, implemented in XG-
Boost, differs from traditional gradient boosting as it incorporates weight assignments
for regularization, which helps reduce overfitting. Furthermore, XGBoost allows users to
define optimization goals and evaluation criteria, and it includes built-in routines to handle
missing values, enabling various learning experiments [83].

2.4.3. k–Nearest Neighbors Regression (KNR) Model

KNR algorithm is a method used in machine learning regression models to predict
results for new inputs by utilizing information from the k-nearest data points [84]. KNR
offers a flexible approach by considering the local structure of the data. The algorithm
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does not assume any specific functional form for the relationship between the predictors
and the response variable, making it suitable for capturing complex nonlinear patterns
in the data. When estimating the desired value, the algorithm calculates the distance
from each of the k-nearest data points in the given dataset. For this purpose, Euclidean
distance is employed to measure distances between the training data points. The Euclidean
distance (d) between two points, X(x1, x1, · · · , xn) and Y(y1, y1, · · · , yn), is defined by
the following equation:

d =

√
(x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)

2 (15)

In a regression model that outputs numerical values, the output is the mean value of
the k-nearest neighbors, where weights inversely proportional to the distances of the
neighboring points are applied and averaged. Given the k-nearest neighbor, when the input
x is provided, the output, y, is computed using both the mean value, Equation (16), and the
weighted mean value, Equation (17).

y =
1
k ∑k

i=1 yi (16)

y =
∑k

i=1 wiyi(
∑k

i=1 wi

)
wi

=
1

d(X, Xi)
(17)

In this study, to determine the nearest neighbor count K for the data samples, the value of
K that minimizes the root mean square error (RMSE) was selected from the range of 1 to 20.

3. Results
3.1. Oversampling Results and Performance Evaluations

The transverse dispersion coefficients and accompanying hydraulic data were resam-
pled using four oversampling techniques, SMOTE, SMOTE-ENN, ADASYN, and SVM-
SMOTE. The data of W/H, U/U∗, and DT/HU∗ included in minority classes (classes 1 and
2 depicted in Figure 2) were resampled and plotted with original datasets in Figure 3. The
number of resampled data increased from 216 to 438 using SMOTE and SVM-SMOTE and
rose to 436 and 434 using SMOTE-ENN and ADASYN, respectively. Since oversampling
is based on the classification according to the range of W/H, the classes of the resampled
data are clearly distinguished in Figure 3a. However, the classes among the resampled data
based on U/U∗ are not as clearly distinguished (Figure 3b), and therefore are represented
based on the classification according to W/H. SMOTE-ENN, being rooted in SMOTE, ex-
hibited a similar distribution in the resampled data and generated data points between the
original data using the KNN technique. In contrast, ADASYN adapts its sampling density
according to the local distribution of minority class samples, resulting in increased sam-
pling around the borderline instances, as depicted in the relatively higher density near the
boundary of the Classes 1 and 2. SVM-SMOTE, leveraging the SVM algorithm, generates
synthetic samples focusing on regions that are difficult to classify, thereby reinforcing the
characteristics of the minority class by creating data points centered on specific instances.

The resampled datasets were evaluated based on two criteria: whether the newly
generated dataset was accurately classified according to the original dataset’s class distri-
bution, and whether it exhibited statistically similar characteristics to the original dataset.
For the assessments, the calculation results using the classification performance indicators
(Equations (8)–(11)) and p-values from the KS test were included in Table 4 for comparing
the performance of the resampled datasets. Both the classification performance indicators
and the KS test results indicate that all tested oversampling techniques provide acceptable
results. Specifically, the results obtained by SMOTE outperformed the other oversampling
techniques, followed by SMOTE-ENN, SVM-SMOTE, and ADASYN. However, in line with
the purpose of this study, it is required to test whether the resampled data are applicable to
estimate DT/HU∗ beyond the statistical reproducibility of the datasets.
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Table 4. Performance evaluations of the oversampled samples.

Oversampling
Classification Performance Indicators Kolmogorov–Smirnov Test: p-Value

Accuracy
(Equation (8))

Precision
(Equation (9))

Recall
(Equation (10))

F1
(Equation (11)) AUC * W/H U/U* DT/HU* Average

SMOTE 0.826 0.937 0.884 0.910 0.983 0.992 0.988 0.979 0.986
SMOTE-ENN 0.820 0.939 0.874 0.905 0.983 0.988 0.960 0.994 0.981

ADASYN 0.749 0.931 0.806 0.864 0.971 0.889 0.595 0.783 0.756
SVM-SMOTE 0.763 0.937 0.815 0.872 0.969 0.846 0.833 0.954 0.878

Note: * AUC = Area under the receiver operating characteristic (ROC) curve: this metric evaluates the performance
of an oversampling model.

3.2. DT Predictions Using MLR

From both the original and resampled datasets, empirical formulas were derived
using the conventional method, multiple linear regression (MLR). The training dataset for
obtaining empirical coefficients of Equation (3) using MLR was 70% of each oversampled
dataset. The derived empirical coefficients are listed in Table 5. The results obtained using
the original dataset indicate a larger value of b compared to c, suggesting that the effects
of W/H are more dominant than those of U/U∗ in determining the transverse dispersion
coefficient. Except for the results in SMOTE, larger weighting in W/H appeared even
though there are differences in degree. The results by SMOTE suggested more weighting
in U/U∗.

Table 5. Empirical coefficients obtained from the multiple linear regression.

Data
Coefficients

a b c

Original 0.0443 0.4430 0.1228
SMOTE 0.0323 0.3648 0.4055

SMOTE-ENN 0.0408 0.3652 0.3118
ADASYN 0.0352 0.4437 0.2348

SVM-SMOTE 0.0558 0.4021 0.1273

Note: a, b, and c are empirical coefficients for an empirical formula, DT/HU∗ = a
(

W
H

)b( U
U∗
)c

.

DT/HU∗ was estimated using derived empirical formulas and compared with mea-
surements. This comparison was conducted using a validation dataset comprising 30%
of the original dataset. Figure 4 shows the comparison results of DT/HU∗, plotted along-
side computation results using empirical formulas presented in Table 2. The accuracy of
the estimated results was evaluated using the mean absolute percentage error (MAPE),
as follows:

MAPE = ∑n
i=1
|Oi − Pi|

Oi
(18)

where Oi is the measurements, Pi is the estimated value, and n is the number of validation
datasets. The calculation results of MAPE are presented in Table 6. MAPE was computed
for both the entire validation set and for separated sets based on the range of W/H. For
the entire validation set, MAPE calculation results from the oversampled dataset-derived
empirical formulas demonstrated lower accuracy compared to the results using the original
dataset. This lower accuracy in the oversampling results is attributed to the majority class
dataset (W/H ≤ 50), which resulted in large errors. Conversely, for the minority class
dataset (W/H > 50), which incorporates the resampled data, MAPE calculations resulted
in higher accuracy compared to the results obtained using the original dataset across all
oversampling techniques. These results indicate that data oversampling improves the
estimation accuracy, especially for the minority class (W/H > 50). However, the empirical
formulas were strongly influenced by the resampled data, particularly as the number of
resampled data points in the majority class (W/H ≤ 50) was approximately doubled,
resulting in decreased performance in the estimation of DT/HU∗ for the majority class.
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Table 6. Comparisons of prediction errors resulted from empirical formulas.

This Study Previous Studies

Original
Data SMOTE SMOTE-

ENN ADASYN SVM-
SMOTE

Bansal
[50]

Deng et al.
[17]

Jeon et al.
[10]

Aghababaei
et al. [19]

Huai et al.
[30]

MAPE (%) 53.4 67.3 65.7 57.2 63.0 108.8 155.4 51.2 27.0 15.0
MAPE (%)

(W/H ≤ 50) 56.4 73.8 71.6 61.2 67.9 80.8 131.7 55.5 27.7 15.0

MAPE (%)
(W/H > 50) 37.1 31.2 33.0 35.0 36.4 262.5 285.5 23.9 22.2 14.9

The MAPE calculation results from the formulas listed in Table 2 reveal that the results
by Huai et al. [30] exhibited the highest accuracy, and among the formulas derived through
MLR, the results by Jeon et al. [10] showed the highest accuracy. Despite using data from
natural streams, Jeon et al. [10] achieved higher accuracy than the results presented in
this study by utilizing three variables (W/H, U/U∗, and Sn) for the entire W/H ranges.
Consequently, even with data imbalance alleviated through oversampling, there may be
limitations in improving accuracy when using MLR to obtain estimates of DT/HU∗. These
results suggest that, in developing empirical formulas using MLR, the application of more
variables may be more advantageous than increasing the number of data points. However,
since empirical formulas derived from MLR are based on the linearity between independent
and dependent variables, there are limitations to improving accuracy. Therefore, empirical
formulas developed through GP suggested by Agababaei et al., and Huai et al. [19,30]
outperformed compared to those obtained by Jeon et al. [10] using MLR. However, de-
termining whether the results of Agababaei et al., and Huai et al. [19,30] were due to
improved accuracy through nonlinear regression analysis or an increase in the number of
data is challenging, as they utilized more data and three or more variables (W/H, U/U∗,
Sn, and Fr) for empirical formula derivation compared to the study by Jeon et al. [10].
This suggests that there is a need for applying nonlinear regression analysis for transverse
dispersion coefficient estimation and implies the necessity of verifying whether applying
nonlinear regression analysis can overcome the limitations of using a limited number of
regression variables.

3.3. DT Predictions Using Nonlinear Regression Methods

DT/HU∗ was estimated using nonlinear regression methods, including SVR, XGBoost,
and KNR, applied to both the original and resampled datasets. During the data learning
phase, 70% of each dataset was utilized to train the nonlinear regression models. Subse-
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quently, the trained regression models were applied to estimate DT/HU∗ for the validation
dataset, which corresponded to the dataset depicted in Figure 4. The estimation results
is presented in Figure 5, where the results by Aghababei et al., and Huai et al. [19,30] are
also plotted for comparison. The results obtained using nonlinear regression models, as
depicted in Figure 5, exhibit significant improvement compared to those in Figure 5, with
a larger proportion of estimations closely aligned along the diagonal line. Computation
results of MAPE, provided in Table 7, underscore this enhancement. Notably, the original
data yielded a MAPE of 43.6%, representing an improvement over MLR (MAPE = 53.4%).
Particularly noticeable improvements were observed in the results derived from the re-
sampled datasets, with averaged MAPE ranging from 20.9% to 25.5% across different
oversampling techniques. These values significantly outperformed those shown in Table 4
(MAPE = 57.2% to 67.3%).
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Table 7. Comparisons of prediction errors resulted from nonlinear regression methods.

Data Data Range
MAPE (%)

Average Rank
SVR XGBoost KNR

Original Data
Total 44.1 44.3 42.2 43.6

5W/H ≤ 50 44.4 49.2 44.2 46.0
50 < W/H 42.5 17.3 31.3 30.4

SMOTE
Total 24.3 18.0 31.6 24.6

3W/H ≤ 50 27.9 19.3 32.7 26.7
50 < W/H 4.5 10.9 25.0 13.5

SMOTE-ENN
Total 24.8 18.2 33.4 25.5

4W/H ≤ 50 28.5 19.1 34.4 27.3
50 < W/H 4.3 13.4 28.0 15.2

ADASYN
Total 21.5 10.9 30.2 20.9

1W/H ≤ 50 24.4 11.0 31.6 22.4
50 <W/H 5.6 10.2 22.4 12.7

SVM-SMOTE
Total 22.5 16.5 32.9 23.9

2W/H ≤ 50 25.9 18.1 34.1 26.1
50 < W/H 3.5 7.7 25.9 12.4

The results obtained using the resampled data demonstrate comparable accuracy to
those obtained by Aghababaei et al., and Huai et al. [19,30]. An encouraging aspect is that
the results presented in this study improved accuracy using only two variables (W/H and
U/U∗), while Aghababaei et al., and Huai et al. [19,30] utilized four and three variables,
respectively. For the resampled dataset range (W/H > 50), the combination of SVM-
SMOTE and SVR yielded the most accurate results. However, it is worth noting that the
results of SVM-SMOTE were deemed to be overfitted for the data belonging to W/H > 50,
leading to a decrease in accuracy in the range of W/H ≤ 50. Thus, the best combination of
an oversampling technique and a nonlinear regression model was found to be ADASYN
and XGboost. Specifically, the datasets resampled by ADASYN provided the best results
in every case using the three nonlinear regression methods. These results suggest that
the combination of ADASYN and the nonlinear regression methods offers comparatively
improved results, especially in the non-oversampled data range (W/H ≤ 50).

4. Discussion
4.1. DT Estimation Performance Using MLR through Data Augmentation

The efficacy of empirical formulas in estimating DT relies on both accuracy and
expansibility. The acquisition of data plays a crucial role in enhancing the performance
of DT estimation through empirical formulas derived by MLR. However, the limited
availability of datasets for W/H > 50 poses constraints on improving the performance
of empirical formulas. Among the 216 datasets collected in this study, 181 correspond
to W/H ≤ 50, while 35 correspond to W/H > 50. Therefore, there is a risk of deriving
overfitted equations for W/H > 50 datasets when estimating DT using datasets biased
towards W/H ≤ 50. To improve the accuracy of the estimation, it is necessary to either
increase the number of variables or acquire new datasets including W/H > 50. However,
there are limitations due to the increase in the complexity of the estimation and the need to
obtain results from field tracer tests.

To address the limitation of insufficient measured data, this study employed oversam-
pling techniques to generate new datasets within the W/H > 50 range, ensuring that the
generated data reflects the statistical properties of the original data, as validated by the KS
test (Table 4). The empirical formulas derived with W/H and U/U∗ from the oversam-
pled data demonstrated improved accuracy within the W/H > 50 range compared to the
pre-oversampling results (Table 5). Nevertheless, when considering the accuracy for the
W/H ≤ 50 range, the formula utilizing the original dataset exhibited higher accuracy than
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those using oversampled data. These findings underscore the idea that data point increase
is insufficient for enhancing the performance of an empirical formula derived through MLR.
Therefore, as proposed by Baek and Seo [71], it is imperative to apply distinct empirical
formulas based on W/H. Alternatively, increasing the complexity of empirical formulas by
incorporating additional variables or employing nonlinear regression methods would offer
a viable solution.

The range of reproducible DT/HU∗ through empirical formulas including two vari-
ables (W/H and U/U∗) demonstrates the extendibility of the developed formula. Figure 6
shows the range of DT/HU∗ derived from empirical formulas developed using original
and oversampled data by ADASYN. To depict the possible range of DT/HU∗ concerning
the variation in W/H, the upper and lower boundaries were determined by applying
the maximum and minimum values of U/U∗ from the original dataset (Figure 6a). Simi-
larly, the calculable range concerning the variation in U/U∗ was determined by applying
the maximum and minimum values of W/H (Figure 6b). These results indicate that the
range of DT/HU∗ widens when utilizing empirical formulas derived from an oversam-
pled dataset. This suggests that empirical formulas derived from resampled datasets may
possess higher applicability than those utilizing only original data. However, compared
to the reproducible range proposed by Jeon et al. [10] using three variables (W/H, U/U∗,
and Sn), these findings reveal a considerably limited reproducible range. Additionally,
as indicated in Table 6, despite using only 32 field datasets, the results by Jeon et al. [10]
exhibited the highest accuracy among those derived using MLR. Hence, these results
indicate that adding variables that account for secondary currents’ effects on transverse
dispersion is more effective in improving DT estimation performance than increasing the
number of datasets. Consequently, data oversampling may offer limited enhancements to
DT estimation performance when employing MLR.
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4.2. Comparisons of DT Estimation Results Using MLR and Nonlinear Regression Methods

In this study, original tracer test datasets (216 datasets) and resampled datasets
(434–438 datasets) were used for estimating DT (see Figure 2). Of these datasets, 70% were
classified as training datasets to derive empirical formulas for DT estimation using MLR
and three nonlinear regression models: SVR, XGBoost, and KNR. The accuracy of the DT
estimations obtained through each method was compared using MAPE based on a range of
W/H values, using a validation dataset comprising 30% of the data (Tables 6 and 7). Results
derived from MLR using two variables (W/H and U/U∗) from the original dataset (Table 5)
showed errors of 53.5% for W/H ≤ 50 and 37.1% for W/H > 50 (Table 6). These results
exhibited similar performance to those derived using formulas developed by Jeon et al. [10]
based on three parameters, W/H, U/U∗, and Sn, with errors of 55.5% for W/H ≤ 50 and
23.9% for W/H > 50. Jeon et al. [10] developed DT estimation formulas using 32 tracer
test datasets from natural streams, demonstrating that increasing the number of datasets,
instead of incorporating Sn into the estimation formulas, could enhance the performance of
MLR-based estimations. However, increasing the number of datasets through oversampling
had limitations in improving MLR-based estimations, and resulted in larger errors than
results derived solely from original data. These limitations using MLR were reduced by
employing machine-learning-based nonlinear regression methods, as demonstrated in the
studies by Aghababaei et al., and and Huai et al. [19,30], through the utilization of additional
variables (Table 6).

Adding variables for DT estimation may increase the complexity of the estimation
formulas and may have limited applicability. Therefore, instead of adding variables, we
investigated the performance-improvement effect through DT estimation using nonlinear
regression methods (SVR, XGBoost, and KNR) (Table 7). The results showed that estima-
tions using W/H and U/U∗ from the original dataset had average errors of 46.0% and
30.4% for W/H ≤ 50 and W/H > 50, respectively, indicating improved performance com-
pared to MLR-based estimations. The performance-improvement effect through nonlinear
regression methods was further enhanced when using resampled datasets, particularly
when estimating DT using XGBoost from datasets resampled using ADASYN; this showed
errors of 11.0% and 10.7% for W/H ≤ 50 and W/H > 50, respectively, outperforming
MLR-based DT estimations. These results demonstrated improved performance compared
to the utilization of estimation formulas by Huai et al. [30] based on three variables, W/H,
U/U∗, and Sn, which showed errors of 15.0% and 14.9% for W/H ≤ 50 and W/H > 50,
respectively. In conclusion, considering these results, machine-learning-based nonlinear
regression methods were found to be more effective than MLR for DT estimation; addition-
ally, using data oversampling to alleviate dataset imbalance yielded superior performance
in DT estimation compared to the effects of increasing variables.

4.3. The Feasibility of Two Variables for DT Estimation

The results presented in Table 7 demonstrate that the combination of data oversam-
pling and a nonlinear regression method improves the accuracy of DT estimation using
only W/H and U/U∗. The previous discussion in Section 4.1 discussed the potential of
incorporating Sn to extend the predictability range of DT . While incorporating Sn could
potentially improve the accuracy of estimations, its availability to consider the effects
of secondary currents on transverse dispersion is considerably restricted for the present
datasets. Although W/H and U/U∗ were commonly available in all datasets collected in
this study, the utilization of hydraulic parameters such as Rc or Sn to reflect flow structures
such as secondary currents are highly limited. Furthermore, Gond et al. [12] presented
that even in rivers with Sn close to 1, DT can be significantly increased due to longitudinal
flow nonuniformity; however, the lack of sufficient data hinders the utilization of this
information in DT estimation. Hence, until sufficient research data are secured to enhance
the regression accuracy of DT , the application of methodologies to improve DT estimation
accuracy using common variables such as W/H and U/U∗, obtainable across previously
published papers, is required.
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As demonstrated in Table 7, the combination of the ADASYN–XGBoost method
improved DT estimation accuracy using only W/H and U/U∗. To assess the improvement
effect of including Sn in MLR results, an empirical formula including Sn, similar to that
proposed by Jeon et al. [10], was derived from the datasets collected in this study, yielding
Equation (19):

DT
HU∗

= 0.051
(

U
U∗

)0.17(W
H

)0.32
S1.1

n (19)

Additionally, utilizing the XGBoost regression combined with the oversampling tech-
nique of ADASYN, data resampling was performed on 195 datasets where Sn could be
applied out of the 216 original datasets. Sn for the straight channel was set to 1 (152 datasets).
Through the resampling, the total dataset increased to 406, with the average Sn value in-
creasing from 1.09 to 1.22 and the median increasing from 1.0 to 1.12. DT was estimated
through XGBoost, using the resampled data including Sn. Figure 7 compares the DT es-
timation results obtained through MLR and XGBoost, excluding field-scale data without
Sn information among validation datasets shown in Figure 5. Table 8 presents the MAPE
calculation results for DT estimation and the accuracy improvement effect of each DT
estimation result compared to the results from MLR with two variables (W/H and U/U∗).
Both MLR and XGBoost yielded higher accuracy when incorporating three variables (W/H,
U/U∗, and Sn) compared to utilizing only two variables (W/H and U/U∗) for both the
original and oversampled datasets, respectively. Moreover, the XGBoost regression results
using oversampled data consisting of only two variables demonstrated higher accuracy
than the XGBoost regression results from the original dataset including Sn. Thus, it can be
concluded that data oversampling resolves the issue of reduced DT estimation performance
due to variable scarcity, and significant improvements in accuracy comparable to those
from increasing variables can be achieved using only W/H and U/U∗.
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Table 8. Comparisons of prediction errors according to the number of variables.

Original Data—MLR Original Data—XGBoost ADASYN—XGBoost

W/H, U/U* W/H, U/U*, Sn W/H, U/U*, Sn W/H, U/U* W/H, U/U*, Sn

MAPE (%) 54.2 38.0 15.7 12.4 9.5
Performance

Improvement (%) - 29.8 71.1 77.1 82.4
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5. Conclusions

In this study, we addressed the issue of reduced DT estimation performance due to
the data imbalance, in which the datasets are accumulated in W/H ≤ 50 from the data
resampling employing four oversampling techniques, SMOTE, SMOTE-ENN, ADASYN,
and SVM-SMOTE. From the resampled datasets, DT was estimated using both MLR and
three machine learning regression algorithms, SVR, XGBoost, and KNR. The estimated DT
was compared to the empirical formulas proposed by previous research to evaluate perfor-
mance of DT estimation by reducing the data imbalance. The results revealed that there
was no significant improvement in accuracy with MLR using the oversampled datasets.
However, when employing nonlinear regression methods, the effectiveness of accuracy
improvement due to data oversampling increased substantially. Notably, when estimating
DT using only two variables, W/H and U/U∗, through the ADASYN–XGBoost method, a
higher improvement in performance was observed compared to XGBoost regression results
from the original dataset, including Sn. These findings suggest that data oversampling is
more effective than increasing the number of variables for employing nonlinear regression.
While data oversampling cannot replace field data acquisition, it provides benefits such as
improving the accuracy of imbalanced data and enhancing DT estimation accuracy using
minimal variables and restricted tracer test data.
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