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Abstract: Debris flow early warning is an effective method to prevent major disasters, so a multi-
index fusion debris flow early warning model based on spatial interpolation and a support vector
machine is designed. Aiming at the discrete rainfall data in the study area, the collaborative Kriging
spatial interpolation method based on Kriging spatial interpolation is adopted to process the rainfall
data into multi-index fused surface data. The rainfall data after spatial interpolation are used as the
input sample data of the support vector machine early warning model, and the optimal parameters
of the support vector machine are calculated by the sea squirt algorithm, and then the debris flow
early warning results are output. After experimental analysis, the model can obtain rainfall surface
data. After calculation by the model, the accuracy of the early warning probability of debris flow is
improved, and the early warning result is consistent with the actual result of debris flow.

Keywords: spatial interpolation; support vector machine; principal component analysis; multi-index
fusion; debris flows; early warning model

1. Introduction

Debris flow is a representative mountain disaster, which is a solid-liquid two-phase
fluid carrying a large amount of sediment and boulders. Its transport capacity, impact
force, and burial force are astonishing, and its harm is extremely high. Activities become
more frequent during the rainy season [1]. Debris flow disaster is a special natural disaster
phenomenon in mountainous areas, characterized by a series of capabilities such as sudden
outbreaks and transportation impacts, and the ability to accumulate huge destructive forces
in a short period of time. It damages human production activities and the transportation
environment, and also affects the environment on which humans rely for survival (climate
and hydrology, etc.), seriously threatening people’s lives and property and hindering the
development and progress of the social economy [2,3]. Countries with frequent debris
flows include China, Japan, the United States, the former Soviet Union, Switzerland, Italy,
etc. Except for Antarctica, every other continent has debris flows. As is well known, China
is located in the eastern part of Asia, with extremely vast mountainous areas, accounting for
about two-thirds of the total land area. Moreover, the terrain is complex and variable, with
numerous high mountains and crisscrossing valleys, mostly located in earthquake-prone
areas, and some areas suffer from severe soil erosion. Due to various reasons, China has
become one of the few areas in the world with high incidence and severe disasters caused by
mudslides [4]. The areas with severe disasters are mainly concentrated in the southwestern
region of China. From the perspective of terrain and altitude, the southwestern region is
located at the junction of the first and second stairs, with a relatively large drop and high
slope. From the geological background, the southwestern region is located at the junction
of tectonic plates, with frequent seismic activity, extremely developed fractures, complex
tectonic movements, and continuous high mountains and valleys, coupled with a humid
climate and sufficient rainfall, providing unique geological conditions for the formation of
debris flows [5–8].
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The discipline of debris flow is related to many different disciplines, such as hydrology,
geology, agriculture, environmental science, and mechanics. Among them, hydrology and
the environmental conditions in which debris flows occur (topography, geomorphology,
vegetation, land use, etc.) are more prominent. In the process of analyzing these conditional
factors, the development of remote sensing technology and geographic information system
technology cannot be separated. It is necessary to study and design models that can warn
of debris flows in order to develop ways to prevent debris flows before they occur [9].

For the prediction and prevention of debris flow, researchers from many countries all
over the world have conducted research and analysis. Bernard and other scholars use rain
gauge measurement and radar data to predict the occurrence of debris flows caused by
runoff based on the early warning system models. In most cases, rainfall shows high spatial
variability with distance and height. Then, the rainfall data are compared with the rainfall
estimated by the weather radar about 70 km away from the site to verify the possible
interchangeability of the two measurement systems in predicting the occurrence of debris
flow through appropriate trigger emission modeling. The prediction result of this model is
more accurate [10]. In the bedrock landscape with limited sediment supply, researchers
such as Palucis analyzed the debris flow caused by a gravel-filled riverbed rupture after
wildfire treatment. Through actual observation and model calculation, they obtained
the sediment situation in the study area after the fire and learned that the granularity
of riverbed sediments in this area was reduced after the fire was burned, which made
it difficult for debris flow to occur. Therefore, it can be determined that the probability
of debris flow can be reduced by appropriately changing the sediment situation in the
river [11]. Tsunetaka and other scholars have investigated the steep mountain torrent (Yiye-
Zewa torrent) in Japan through four-year monitoring based on the field. The sediment
accumulation in this basin has seasonal changes in debris flow sediment transport from
summer to autumn and freeze-thaw cycle sediment transport in winter. Scholars such
as Tsunetaka found that under the condition of rainfall exceeding the threshold of 5 mm
and 10 min, movable sediment accumulated locally. The subsequent surge of debris flow
caused the accumulated sediment to be swept up, which led to their development and
expansion. Therefore, compared with the rainfall pattern that triggers the debris flow, the
rainfall pattern that triggers the debris flow is mainly the rainfall that lasts longer than the
rainfall threshold. Through this study, it is determined that the rainfall data are the key
factor affecting the debris flow [12]. Karel and other scholars discussed the possibility of
using the local meshless method to simulate debris flow and rapid slope movement. For
the establishment of the debris flow model, Karel and other scholars adopted the weighted
square local method, which is suitable for solving these kinds of differential equations.
In order to verify the feasibility of this method, Karel and other scholars focused on the
movement model of dry granular soil and compared the results of this solution with several
known cases, and obtained more reference results [13].

In recent years, with the rapid development of computer science and artificial in-
telligence, machine learning algorithms have shown strong predictive and classification
capabilities in multiple fields. Among them, the Support Vector Machine (SVM), as an
efficient classification algorithm, has been widely used in various pattern recognition and
prediction problems. At the same time, spatial interpolation techniques, especially Kriging
spatial interpolation and its collaborative variants, provide powerful tools for process-
ing data with spatial correlation. The development of these technologies provides new
possibilities for debris flow warning.

At present, although there are various debris flow warning systems and methods,
how to improve the accuracy and timeliness of warning is still a research focus. The
multi-index fusion debris flow warning model based on spatial interpolation and the
support vector machine proposed in this article aims to integrate rainfall data and other
key indicators, process discrete data through spatial interpolation technology, and then use
the support vector machine for efficient classification and prediction. This model combines
the advantages of spatial analysis and machine learning, and is expected to bring higher
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accuracy and efficiency to debris flow warning. This article aims to provide new ideas
and methods for the design and optimization of debris flow warning systems through this
research in order to more effectively protect the safety of people’s lives and property, and
promote the sustainable development of society.

2. Study on Multi-Index Fusion Debris Flow Early Warning Model
2.1. Overview of the Study Area

Runoff-type debris flow refers to a debris flow caused by a large amount of rainfall,
formed and moving together through loose deposits and water flow in valleys. This type
of debris flow usually occurs during the rainy season or after continuous heavy rainfall.
Due to a large amount of rainwater flowing into the valley in a short period of time, it
washes and carries loose materials in the valley, forming debris flows. The characteristic
of runoff-type debris flow is that its occurrence is closely related to rainfall events, and its
movement is mainly controlled by water flow. The debris flow caused by landslides is also
a type of debris flow disaster that cannot be ignored. This type of debris flow is usually
caused by mountain landslides, where loose materials generated during the landslide
process combine with the water flow to form debris flows. However, the main focus of this
article is on rainfall runoff-type debris flows, and no in-depth exploration will be conducted
on the debris flows caused by landslides.

The research area in this paper is located in a province in the north of China. The
landform is mainly low mountains and hills. There is a remnant vein of a famous mountain
extending in this area, and the southern part is mostly interlaced with low mountains and
hills, extending to the sea. The area is adjacent to the ocean, with abundant water vapor.
The rivers in the territory are small in scale and mostly flow into the sea alone. The river
valley gradient is large, and the river runoff changes obviously in seasons, so it belongs to
a mountain stream river. Backed by the Eurasian continent and facing the Pacific Ocean,
the different underlying surfaces have shaped the remarkable monsoon climate in this area.
It is hot and rainy in summer and dry and snowy in winter. During the same period of
rain and heat, the annual average temperature is about 9~10.5 ◦C, the annual extreme high
temperature is about 35 ◦C ± 2, and the extreme low temperature is about −25 ◦C ± 2. The
annual average rainfall is about 600 mm~900 mm, which is mainly concentrated in summer,
accounting for more than 60% of the annual rainfall. The large temperature difference
and rainfall also aggravate the weathering of the exposed rock strata in this area. In this
area, the brown soil subtype of zonal soil brown soil is the main one, followed by a small
amount of meadow soil. The mountainous terrain is broken, the valleys are vertical and
horizontal, the slope is steep, the gradient is large, and the water erosion is obvious. The
vegetation coverage rate on the shady slope with a large slope is high. When the rainfall
exceeds the maximum capacity of vegetation storage, the whole soil is prone to slide down,
resulting in landslides and small mudslides. The vegetation coverage on sunny slopes
is relatively poor, and soil erosion is serious. This area is located at the junction of the
first, second, third, and fourth structural units. The crust thickness varies greatly in the
region, ranging from 31.0 to approximately 38.2 km, and the strata are relatively complete,
including Archaean, Lower Proterozoic, Sinian, Paleozoic, Mesozoic, and Cenozoic strata
from bottom to top. The evolution stage of the crust in this area has experienced eight cyclic
structures. During the tectonic cycle of nearly three billion years, geosyncline, platform,
and marginal continental strata were formed in this area. The contact relationship between
strata has become extremely complicated due to orogeny. The orogeny produces marginal
continental strata with a large tectonic amplitude and block movement rate, and forms
various lithofacies at the continental critical point. The fold structure and fault structure
are in different degrees during each cycle.

The study area is located in the mid-latitude westerly belt of the northern hemisphere,
and the altitude of the whole area gradually decreases from northeast to southwest, and the
east is steep and the west is slow. Because it adjoins the world’s largest Eurasian continent
to the north and faces the world’s largest Pacific Ocean across the sea to the southeast,
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the two pressure fields have obvious seasonal changes, which makes the region show
an obvious monsoon. Between the polar high and subtropical high, westerly circulation
prevails in this area, with frequent trough ridge activities and active air convection. At
different seasons, the intensity and position of westerly circulation change accordingly.
Since the rainy season in June, the southwest wind has dominated and the rainfall is
more concentrated, accompanied by the invasion of tropical cyclones and the patronage
of cold air from north to south. There will be heavy rain and heavy rains in this area in
the summer. In autumn, the western Pacific subtropical high shrinks southward, and the
Mongolian–Siberian high begins to grow. There is cold air going south many times in
the north, causing corresponding cooling and windy weather in the area. The East Asian
trough of the upper-air circulation moves westward, and after the area is exposed to the
trough, the intensity of the cold air going south gradually increases, which will bring some
rainfall, but it is not significant.

2.2. Debris Flow Early Warning Model Construction
2.2.1. Data Acquisition

(1) Rainfall data collection
The research data on the rainfall patterns in the study area are all from the China

Meteorological Station, with a total of 27 meteorological stations in the study area. The
daily rainfall data for the whole year have passed a strict quality inspection, and six stations
with missed measurements and observation years of less than 51 years have been excluded.
Finally, 21 representative stations were selected to obtain the rainfall data of the undertaking
area from these stations. Debris flow is a secondary disaster caused by rainfall, so rainfall
data collection affects the final model construction effect. The terrain of the study area is
shown in Figure 1.
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(2) Geological data collection
In the study area, several measuring points are arranged to collect geological informa-

tion and geotechnical data, and at the same time, more rigorous geological survey data are
obtained from relevant local departments as the basis of model construction.

2.2.2. Multi-Index Rainfall Data Processing Based on Spatial Interpolation

In the acquisition of geological and geotechnical data, spatial interpolation methods
play an important role. Usually, various methods such as ground investigation, drilling,
geophysical exploration, and geochemical exploration are used to obtain data on ground
investigation points, drilling hole locations, geophysical exploration points, geochemical
exploration points, and groundwater observation wells. These data acquisition points at
different locations together constitute the geological and geotechnical dataset of the study
area. Through spatial interpolation methods, these discrete data points can be summarized
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into a continuous data surface in order to gain a more comprehensive understanding of the
geological conditions and geotechnical properties of the study area.

Spatial interpolation is a process of estimating the values of surrounding multi-index
points with known point values. It follows Tobler’s geographical law and is also related
to the first law of geography. There are various standards of spatial interpolation classifi-
cation and many types of spatial interpolation methods. Kriging is a widely used spatial
interpolation, which is developed in geostatistics. The Kriging spatial interpolation method
belongs to the spatial interpolation of random geostatistical analysis. Kriging interpolation
is also a process in which the surface generated by accurate interpolation passes through
all known observation points, which generally has a good interpolation effect.

The rainfall data obtained from the weather stations in the study area are large in
quantity, with the properties of multi-index and strong discreteness, so it is necessary to
use the spatial interpolation method to summarize these multi-index discrete rainfall data
into data surfaces. The collaborative Kriging spatial interpolation method is a discrete data
processing method based on the geostatistics principle, which evolved from the Kriging
interpolation method. The Kriging method is based on the spatial distribution structure,
using the variogram theory and the spatial variable properties of the original data, to make
the optimal unbiased estimation of multi-index regionalization variables [14], and on this
basis, to obtain the data surface of the rainfall in the research area. Formula (1) is the
basic expression:

Z(X0) =
n

∑
i=1

λiZ(Xi) (1)

In the formula, set Z(X) is a second-order random function, and the value of
E[Z(X)] = t is an unknown constant. Z(X0) is the estimated value of the unknown
point X0, Z(Xi) is the measured value of the multi-index weather station Xi, and λi is the
weight coefficient of the station to the unknown point.

Kriging interpolates according to the actual spatial variability of the rainfall in the
study area, which requires a special geostatistical tool: the semi-variance function, that
is, the variation function, which determines the spatial structure characteristics of vari-
ables and then affects the weight coefficient λi. The formula of the variation function is
Formula (2):

r(h) = 1/2N(h) ∗
N(h)

∑
i=0

[Z(X0)− Z(Xi + h)]2 (2)

In the formula, r(h) is the value of the variation function, h is a space separation dis-
tance vector, N(h) is the number of sample point pairs separated by h, and
Z(Xi) − Z(Xi + h) express the difference in the attribute values between the Xi point
and Xi + h point. When actually processing rainfall data, the exponential model in the
Kriging semi-variance fitting model is selected for a detailed calculation:

r(h)′ = c0 + c
[
r(h)− e−h/r

]
(3)

r(0) = 0 (4)

In the process of estimating the estimation point, it is assumed that the basic conditions
of statistical analysis are the following: second-order stationarity and this hypothesis are
satisfied, and this method still needs some conditions [15].

(1) Unbiased estimation conditions:
Suppose Z′(X) is the unbiased estimator of Z(X), then according to the calculation

formula of the unbiased estimator, we can know that:

E
[
Z′(X0)− Z(X0)

]
= 0 (5)
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Because E[Z(X)] = t, and at the same time, there are:

E
[

Z′(X)r(h)′
]
= E

[
n
∑

i=1
λiZ(Xi)

]
=

n
∑

i=1
E[Z(Xi)]

= m
n
∑

i=1
λi

(6)

So
n
∑

i=1
λi = 1 is the unbiased estimation of conditions.

(2) Calculation of weight coefficient
First, we need to derive the ordinary Kriging equations from the formula for estimating

the variance:

E[Z′(X0)− Z(X0)]
2 =

n
∑

i=1

n
∑

i=1
βiβ jC

(
Xi, Xj

)
= C(X0, X0)− 2

n
∑

i=1
λiC

(
X0, Xj

)
+

n
∑

i=1

n
∑

i=1
λiλjC

(
Xi, Xj

) (7)

Among them, C
(
Xi, Xj

)
is the covariance function of points i and j, let β0 = 1, βi =

−λi(i = 1, 2, · · · , n), j = 1, 2, · · · , n, the estimation variance is minimized through the
Lagrange constructor, and the ordinary Kriging equations are obtained through sorting out:

n
∑

i=1
λiC

(
Xi, Xj

)
− µ = C(X0, Xi)

n
∑

i=1
λiE[Z′(X0)− Z(X0)]

2 = 1
(8)

(3) Kriging’s estimation variance is the smallest
At the same time, the minimum form of the estimated variance is also obtained, which

is shown as follows:

σ2
h = C(X0, X0)−

n

∑
i=1

λiC(X0, Xi) + 1 (9)

In the Kriging interpolation process, there is another important parameter—the search
radius, which determines the number of interpolation sample points. The radius is con-
trolled mainly by setting the maximum number of searches and the minimum number of
samples [16]. In this paper, the maximum number of searches is set to 15, and the minimum
number of samples is set to 2.

Based on the Kriging interpolation, the number of regionalized variables is developed
from one to many, forming multiple indicators, and the collaborative Kriging method
is formed through evolution. The regionalized variable of rainfall information in the
study area is introduced into the collaborative Kriging as the second type of information.
Equation (10) is the formula of the collaborative Kriging method:

Z(X) =
k

∑
i=1

k

∑
i=1

λi + λZ(Xi) + λ
[
t
(

σ2
h

)
− mt + mz

]
(10)

Here, Z(X) is the interpolation estimation value of the point X; Z(Xi) is the observa-
tions at stations i; t(x) is the elevation value of the point x; k is the number of meteorological
stations; λi, λ are the weights of collaborative Kriging; mt is the average value of elevation;
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and mz is the average value of the meteorological attribute values. The weight of the
collaborative Kriging can be calculated through the equation set:

k
∑

i=1
λiγzz

(
Xi − Xj

)
+ λirzz

(
Xj − X

)
+ µ(X) = γzz(Xi − X)

k
∑

i=1
λiγtz(Z(X)− Xi) + λγtt(0) + µ(u) = γzt

k
∑

i=1
λi + λ = 1

(11)

In the formula, µ(X), µ(u) is a Lagrange operator, and γzz(Xi − X) is the variation
function value at X and Xi after the fusion of type I information and type II information.
Equation (12) is the expression:

γzt(h) = 1/2N(h)
N(h)

∑
i=1

[z(x)− z(x + h)][t(x)− t(x + h)] (12)

Based on the above derivation process, the third type and the fourth type of infor-
mation can be added. Based on the ordinary Kriging method, this paper selects three
environmental factors related to the rainfall in the study area as the second type of im-
pact factors, the third type of impact factors, and the fourth type of impact factors, and
conducts optimization research on the spatial interpolation of rainfall after integrating
multiple indicators.

2.2.3. Establishment of Debris Flow Early Warning Model

There is a close relationship between precipitation and debris flow, and heavy rainfall
is one of the important triggering factors for the occurrence of debris flow. Precipita-
tion induces the formation of debris flow and affects its activity level. At the same time,
precipitation intensity is closely related to the development of debris flow, and vegeta-
tion conditions and precipitation jointly affect the probability of debris flow occurrence.
Therefore, monitoring and analysis of precipitation are crucial in the early warning and
prevention of debris flows. The model calculation is based on the support vector machine.
Suppose that the multi-index rainfall data interpolated by space are the training sample in
the support vector machine: {Z(X)i, Yi} with ϕ[Z(X)] represents a sample mapped to a
high-dimensional space to Φ representing the corresponding nonlinear mapping, and the
function expression constructed is:

Yi = ω ∗ ϕ[Z(X)i] + b (13)

Among them, ω is called the adjustable weight vector, b is the offset value, and ω,
ϕ[Z(X)] are the n dimension vector, and to find the optimal classification hyperplane, that
is, to find the optimal ω and b due to the existence of the fitting error [17], introduce ξ
and ξ∗ as a relaxation variable, and use the ε-SVR model to establish the following model
optimization function with constraints:

L(ω, b, ξ, ξ∗, a, a∗, r, r∗) = 1/2ωTω + C
m
∑

i=1

(
ξi + ξ∗i

)
−

m
∑

i=1
a∗i
(
Yi − ωT)∗

ϕ
(
Z(X)i − b − ε − ξ∗i

)
−

m
∑

i=1
ai
(
ωT ∗ ϕZ(X)i + b − yi − ε − ξi

)
−

m
∑

i=1
ri −

m
∑

i=1
r∗i

(14)

Use 1/2ωTω, as its purpose is to improve the generalization ability of the function,

make the function more flat, and increasing the C
m
∑

i=1

(
ξi + ξ∗i

)
reduces the changes caused
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by some discrete points in the model, where C is called a penalty parameter, which is used
to adjust the fitting error beyond the limit ε degree of punishment C, and the larger the
discrete point is, the greater the influence of the discrete point on the objective function.
Equation (19) is a convex quadratic optimization problem solved by the Lagrange multiplier
method, and the Lagrange function is established. ai, a∗i , ri, and r∗i are Lagrange multipliers.

The partial derivative poses zero for ω and b, respectively, and the reverse (14), the
corresponding KKT condition can be found, and the quadratic programming optimization
algorithm can be used as the training algorithm to calculate the parameters in turn ai and a∗i ,
and the corresponding optimal multiplier anew

i . At the same time, the prediction function
is constructed:

f (X) =
m

∑
i=1

(a∗i − ai)ϕZ(X)TϕZ(X)L(ω, b, ξ, ξ∗, a, a∗, r, r∗) + b (15)

The expression of the nonlinear mapping ϕ is difficult to determine, so the kernel
function Kernel is introduced to equivalent the sum of the inner product squares of the
original features to the sum of the inner product squares of the mapped features [18], thus
indirectly solving the nonlinear mapping of the kernel functions ϕ satisfying the functional
Mercer theorem, which can all be regarded as effective kernel functions, among which the
radial basis function kernel function has a wide convergence domain, which is the most
commonly used kernel function in solving practical problems.

(1) Computation of Quadratic Programming Problem Based on Serial Minimization
Sequential minimal optimization (SMO) is the most effective algorithm for solving

quadratic programming problems. As a decomposition algorithm, the SMO algorithm has
only two data samples in its algorithm space, and only two Lagrange multipliers need to be
optimized for each corresponding operation. Because each Lagrange multiplier is subject
to linear constraints, the problem we need to solve is how to realize the optimization of the
connected variables and which Lagrange multipliers to choose for optimization [19]. The
SMO algorithm is as follows:

1⃝ Use the SMO algorithm to construct the corresponding quadratic optimization
problem;

2⃝ Give all Lagrange multipliers initial values;
3⃝ Judge whether all the Lagrange multipliers meet the KKT conditions, and if they

all meet the KKT conditions, then the obtained Lagrange multipliers and b values are the
solutions of the quadratic optimization problem, and the algorithm ends, otherwise, the
algorithm goes to step 4⃝; Select and judge whether the first Lagrange multiplier meets the
KKT condition, and if so, re-select or otherwise select the first multiplier;

4⃝ Select the second Lagrange multiplier, and then solve the optimization problem
composed of the two multipliers to obtain the final result of the multiplier;

5⃝ Update the Lagrange multiplier and B value, and go to step 3⃝.
Where the KKT condition can be equivalently expressed as Formula (16):

ai = 0 ⇔ yi f (X) ≥ 1
0 < ai < C ⇔ yi f (xi) = 1
ai = C ⇔ yi f (xi) ≤ 1

(16)

(2) Parameter optimization based on the sea squirt algorithm.
The mudflow warning based on SVM is an optimization problem to determine the

optimal penalty parameter C and RBF parameter g. In this paper, the optimal penalty
parameters are determined by the sea squirt algorithm C and RBF parameters g. The early
warning model of debris flow based on the support vector machine (SVM) optimized by
the sea squirt algorithm is constructed.

The sea squirt is a small colloid chordate animal in the open sea. Its body is transparent
like a barrel, and it moves by absorbing water and spitting water. When it moves in groups,
it will form a chain structure. The researchers mathematized this behavior and formed
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a new swarm intelligence optimization algorithm [20]: the sea squirt algorithm. All the
individuals in the sea squirts are distributed among the m dimension space, using position
matrix D to express:

D =


s1

1 s1
2 · · · s1

m
s2

1 s2
2 · · · s2

m
...

sN
1 sN

2 · · · sN
m

 (17)

In the formula, N is the population number of Styela clava, the first half is the leader
and the second half is the follower, and si

j is the position of an individual i. The position of
the first Styela clava individual (i.e., leader) is updated to:

si
j =

{
DFj + c1

[(
ubj − lbj

)
c2 + lbj

]
, aic3 ≥ 0.5

DFj + c1
[(

ubj − lbj
)
c2 + lbj

]
, aic3 < 0.5

(18)

In the formula, Fj is for food in the j position of the dimension; ubj is the j upper
bound of the dimension search space; lbj is the j lower bound of the dimension search
space; c2 and c3 are a random number between [0, 1], c2 determines that moving step when
the lead iteratively updates, and c3 determines its moving direction; and c1 is to balance
the parameters of global search and local development, and the constraint formula is:

c1 = 2e−(4si
j L

′/L)2

(19)

In the formula, L′ is the current iteration number and L is the maximum number
of iterations.

The next iterative updating position of the individual position of the follower of Styela
clava is determined by its own previous position and the individual position of the previous
Styela clava:

si
j = 1/2

(
si

jc1 + si−1
j

)
(20)

In each iteration, it is assumed that the food position is the individual position of the
Styela clava with the best fitness. After many iterations, the whole chain of Styela clava
moves to the food position. The sea squirt algorithm is introduced into the support vector
machine, and finally the optimal solution of the support vector machine is obtained.

(3) Construction steps of the debris flow early warning model
The construction steps of the multi-index fusion debris flow early warning model

based on spatial interpolation and the support vector machine are as follows:
1⃝ Process the rainfall data of a plurality of meteorological stations with discrete

characteristics into a multi-index fused data surface by using a collaborative Kriging space
interpolation method;

2⃝ Use the sea squirt algorithm to find the optimal parameters of SVM, and construct
the optimized support vector machine model of stone flow early warning;

3⃝ The established SVM model is applied to the test samples to realize the early
warning of debris flow and output the early warning results of the debris flow.

The steps of the debris flow early warning model are shown in Figure 2.
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3. Result Analysis

The basic geological conditions and rainfall data are obtained from the study area, and
after processing by the method of this paper, a multi-indicator fusion of the debris flow
warning model is obtained. Because the debris flow disaster site cannot be actually created
in the process of experimental analysis, it is necessary to use the model test software to
verify the effect of this model in the early warning of debris flow.

3.1. Rainfall Data Spatial Interpolation Processing Effect

Spatial interpolation simulation is the fitting of a semi-variance function model. The
semi-variance function is called the semi-variance function, which is crucial in geostatistics
research. Its function fitting also affects the accuracy of the interpolation results and includes
three important parameters: lump gold value—variation caused by random factors; base
value—variation within the system; range—the range that reflects the autocorrelation of
variables; and the spatial correlation degree of the system variables is expressed by the
ratio of the lump gold value to the abutment value. Based on the rainfall data from June to
September, Table 1 shows the spatial interpolation semi-variance fitting parameter results.

Table 1. Semi-variance fitting parameters of spatial interpolation.

Month/Month Nugget Value Abutment Value Range Bullion Value/Base Value

6 796.36 198.38 732,871 4.737
7 713.63 345.22 915,887 2.213
8 661.25 193.88 915,887 3.668
9 468.94 95.38 915,887 4.968
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Based on several important parameters in Table 1, the ordinary Kriging spatial inter-
polation method and the optimized collaborative Kriging method are used to interpolate
the rainfall data in the study area, respectively, and 20 is set as the maximum number of
searches, 2 is the number of few samples, and the exponential function selects the semi-
variogram function. Comparing the two methods, the average absolute error (MA), root
mean square error (RMS), and standard root mean square error (RMSS) are obtained by
cross-checking the meteorological stations participating in interpolation. The test results
are shown in Table 2.

Table 2. Results of cross-examination.

Content June July August September Average

Ordinary Kriging mean absolute error (MA) 0.027 0.128 0.049 0.021 0.029
Coraging mean absolute error (MA) 0.005 0.049 0.046 0.008 0.024

Ordinary Kriging root-mean-square error (RMS) 2.876 2.826 2.872 2.419 2.416
Cokriging root-mean-square error (RMS) 2.848 2.823 2.844 2.416 2.832

Ordinary Kriging standard root mean square error (RMSS) 0.996 1.124 1.115 1.126 1.115
Cooperative Kriging standard root mean square error (RMSS) 0.989 1.123 0.986 1.025 0.988

As can be seen from Table 2, two errors, MA and RMS, characterize the relationship
between the actual value and the result value obtained by interpolation, and the RMSS error
is used to characterize the effectiveness of the interpolation method. In the comparison of
the three errors, on the whole average, the accuracy of the collaborative Kriging method is
slightly better than that of the ordinary Kriging method, but the degree of superiority is
not very prominent, and the difference between the two interpolation methods in RMS and
RMSS is smaller than that of MA. From the time point of view, there is a big difference in
MA between June and September, followed by July, and the difference between the two
MAs in August is very small.

The spatial distribution map of the interpolation results of the average rainfall in the
study area from June to September generated by this method is shown in Figure 3.
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As a whole, Figure 4 shows that the more samples of rainfall data and geological data 
obtained from the study area, the closer the value of this early warning model is to the 
actual data of debris flow, but the early warning trend of the model without spatial inter-
polation is not obvious, which is also related to the number of samples, which once again 
shows that this model is more suitable for debris flow data processing with small sample 

Figure 3. Spatial interpolation results of precipitation in the study area. (a) June spatial interpolation;
(b) July spatial interpolation; (c) August spatial interpolation; (d) September spatial interpolation.

From Figure 3, we can clearly see the spatial distribution of rainfall in the study area,
and we can obtain the rainfall distribution accurately and the rainfall situation. And from
Figure 3b, we can intuitively see that the rainfall in July is obviously higher than that in
June, August, and September, and the spatial interpolation result is consistent with the
actual data in the study area, which shows that the spatial interpolation result is effective
and accurate.

3.2. Debris Flow Early Warning Model Analysis of Early Warning Results

Using this model, the early warning performance of debris flow in the study area is
tested, considering the number of rainfall and geological data samples, and the test results
are shown in Figure 4.
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As a whole, Figure 4 shows that the more samples of rainfall data and geological
data obtained from the study area, the closer the value of this early warning model is to
the actual data of debris flow, but the early warning trend of the model without spatial
interpolation is not obvious, which is also related to the number of samples, which once
again shows that this model is more suitable for debris flow data processing with small
sample characteristics. At the same time, the early warning result of this model is close
to the actual value, which shows that it is possible to apply this model to the probability
prediction of debris flow, and this model can accurately obtain the change in the debris
flow in the study area and obtain more effective early warning results.

In order to further verify the early warning effect of this model, several debris flow
gullies in the study area are numbered 1–10, and the actual times of the debris flow in
each debris flow gully in this area in recent ten years are counted. At the same time, this
model and the early warning model using only a support vector machine without spatial
interpolation are used to provide an early warning of the debris flow in the study area, the
number of debris flows warned is counted, and whether there is a difference between the
warning times and the actual times of debris flow is compared. The test results are shown
in Table 3.

Table 3. Comparison of warning times.

Debris Flow Trench
Number

Actual Number of
Debris Flows/Times

This Paper Models the Number of
Early Warning Times/Times

Warning Times/Times of
Unspatially Interpolated Model

1 3 3 5
2 1 2 3
3 2 2 3
4 5 5 5
5 3 2 3
6 2 2 4
7 1 1 2
8 4 3 5
9 2 2 3
10 3 3 5

From the test results in Table 3, it can be seen that the early warning results of this
model are close to the actual results of the debris flows, and the number of actual occur-
rences of debris flows in each debris flow is basically consistent with the early warning
results, which shows that the early warning results of this model have high accuracy,
are accurate enough to warn the occurrence of debris flows in the study area, have been
referenced, and can be popularized and used in many areas in the future.

4. Conclusions

In this paper, a multi-indicator fusion mudslide early warning model based on spatial
interpolation and the support vector machine is studied. The rainfall data of the study
area are processed by using synergistic Kriging spatial interpolation, the geological data
of the study area are processed by means of principal component analysis, the mudslide
early warning model is constructed after the fusion of multi-indicators by the support
vector machine, and the possibility of outbreaks of mudslides is forewarned by using
the model. Simulation experiments were carried out with the historical data of the study
area, and the results of the early warning model used in the study and the model without
spatial interpolation were compared, respectively. Mudslide prediction is a complex system
with serious nonlinearity under the combined effect of rainfall conditions, geological
conditions, and other conditions, so the application of principal component analysis and
spatial interpolation in the multi-indicator fusion of the support vector machine model,
compared with the previous use of neural networks, machine learning, and fuzzy analysis
theory, can not only effectively deal with the correlation and sensitivity of factors, but
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also reflect the correlation and sensitivity of the factors in a more objective way. It can not
only effectively deal with the correlation and sensitivity between the factors, but also more
objectively reflect the relationship between the disaster-causing factors and the mudslide
disaster, and minimise the influence of human factors on the prediction effect of the model.

However, the model still has some limitations, such as region-specific adaptation, the
generalisation ability of the model, and how to handle more influencing factors. Future
research could further optimise the model, for example, by integrating more types of data,
improving spatial interpolation methods, or using new techniques such as deep learning.
Nevertheless, the model still provides a powerful tool for the early warning of mudslide
disasters, and offers new ideas and methods for research and practice in related fields.
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