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Abstract: Of all the environmental elements that influence the biological communities of rivers, water
flow characteristics are undoubtedly the most important. Unfortunately, natural hydrological charac-
teristics are increasingly threatened by human activities, especially in alpine or high mountain areas
where there are numerous hydropower plants. In this study, we analysed the impact of hydrological
alterations on the macroinvertebrate community of a lowland river in NW Italy. Specifically, we
analysed the macroinvertebrate communities of an unaffected site by comparing them with those
of a site subject to hydrological alteration. We adopted an approach that is not only taxonomic but
also functional, allowing us to study a component of biodiversity that is generally less known. Our
results show that the flow-altered site hosted a benthic community with lower species and functional
diversity than the control site. Interestingly, we also detected a number of significant differences
between the summer and autumn samples. In particular, examination of community-weighted
mean (CWM) trait values reveals significant variation in body size, voltinism, substrate, locomotion,
feeding habits and other traits between sites and seasons. The integration of taxonomic and functional
approaches provides a comprehensive understanding of how human-induced hydrological variations
can affect aquatic biodiversity and ecological functions.
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1. Introduction

Rivers are complex ecosystems in which the main environmental factor regulating
and shaping all biotopic and biocenotic characteristics is the quantity and characteristics of
water flows. The variability of flow velocity, flow type and amount, water column depth
and other hydraulic elements make lotic environments unique for their enormous ecological
diversity, with the presence of numerous microhabitats that allow the establishment of
complex biocenoses characterised by high ecological diversity [1,2].

Unfortunately, streams and rivers have probably been the most altered natural environ-
ments in recent decades [3]. Lotic systems have supported the growth of human civilisation
around the world since the first cities appeared some 7000 years ago [4], but as a result most
of these systems have been negatively affected. The collapse of freshwater biodiversity has
multiple causes acting at different scales. At the global scale, climate change plays a key role
by disrupting hydrological regimes and increasing water temperatures. At the local scale,
increasing anthropogenic impacts are changing the nature of lotic ecosystems [5] in many
ways, i.e., from a morphological [6], hydrological [7], biological [8], physicochemical [9]
and thermal [10] perspective.

Particularly in recent years, there has been a growing interest in assessing the effects
of hydrological variability on stream biota. Indeed, hydrological alterations associated
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with the presence of water withdrawals, dams, tailraces or artificial tributaries can be
important concerns for lotic ecosystems, but this issue has been addressed unevenly,
neglecting several important aspects. In the past, many studies have focused on the effects
of large dams [11], while the environmental consequences of small dams have often been
overlooked. Furthermore, studies on the effects of flow reduction are abundant [12], but
information on sudden flow fluctuations is scarce [13,14].

Recently, many studies have focused on the ecological impacts of hydropower genera-
tion in mountainous regions [15], with particular emphasis on hydropeaking, i.e., sudden
changes in flow regime associated with large discharge fluctuations when water is released
from hydropower plants into the lotic system [16,17]. In particular, several studies have
been carried out to investigate the effects of hydropeaking on benthic invertebrates [18–24].
Macroinvertebrates are optimal ecological indicators because they are large and easy to
collect [25], they have different resistance to flow [26], they show different sensitivity to
pollution [27] and morphological changes in the river [28], they have relatively long life cy-
cles [29] and they play different ecological roles [30]. Ecological functions can be described
by a variety of general biological traits that reflect species adaptation to environmental
conditions [31]. Feeding strategies are typical traits that reflect species adaptation and
could form part of a unified measure across communities of different taxonomic com-
position [32]. The functional feeding classification of aquatic organisms improves the
knowledge of trophic dynamics in streams by simplifying the benthic community into
trophic guilds—functional feeding groups (FFGs) [33]. Functional feeding groups can
thus be useful in studies focusing on hydrological changes, as they respond differently
to changes in flow [34–36]. Flow characteristics, together with other environmental char-
acteristics such as water quality, granulometry and bed retention, determine the rate of
degradation of coarse particulate organic matter (CPOM) in the river [37,38], a fundamental
energetic input for lotic biocoenoses [39]. Morphohydrological alterations shape the distri-
bution of CPOM and consequently affect the functional composition of communities [40].
Unfortunately, as hydrological alterations are mainly localised in alpine areas, where the
highest densities of hydropower plants are concentrated, studies on the structural and
functional response of macrobenthic communities to this issue have mainly focused on
mid- to high-elevation lotic systems [41,42].

The aim of this study was to evaluate changes in the taxonomic and functional com-
position of macroinvertebrate communities in an Apennine site affected by artificial flow.
In particular, we hypothesised that the impacted site would have lower taxonomic and
functional diversity than an uninmpacted control site. In addition, we expected that
flow alteration would act as an environmental filter, selecting functional traits of benthic
macroinvertebrates, which in turn would lead to differences in biological traits, not only by
comparing the disturbed site with the natural one but also by assessing whether the effects
varied in different seasons.

2. Materials and Methods
2.1. Area of Study

Two sampling sites (Figure 1) were selected along the Orba river (province of Alessan-
dria, NW Italy): S1 Marciazza (44◦35′13.36′′ N; 8◦36′41.79′′ E; 264 m asl) and S2 Cerreto
(44◦35′56.60′′ N; 8◦36′10.81′′ E; 216 m asl).

Both stations are located below the Ortiglieto dam, but they have very different hydro-
logical conditions. Site 1 (Marciazza) has a natural flow, depending mostly on precipitation,
while site 2 (Cerreto) experiences high and unpredictable water level variations because it
receives tailrace from a hydroelectric plant, so it is subject to unpredictable flow changes
due to the presence of the release channel. More information is available in [43], and here
we report that hydrological conditions varied rapidly and unpredictably, with increases
or decreases in flow (in the range of 2 m3/s) and velocity (from 0.2 to 0.9 m/s) occurring
within a few seconds. The control and disturbed sites are located 3 km apart and are
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comparable in terms of physical and chemical characteristics of the water and land use
(Table 1).
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Table 1. Physical and chemical parameters of water (mean ± SD) and land uses (%) for the sampling
sites. N.T. = non-toxic.

Parameter Control Site Disturbed Site

Conductivity (µS/cm) 185 ± 37.4 170 ± 21.8
pH 7.41 ± 0.5 7.50 ± 0.2
BOD5 (mg/L) 2.50 ± 0.2 3.00 ± 0.2
COD (mg/L) 6.30 ± 0.1 7.60 ± 0.1
Total phosphorous (mg/L) mg P/L <0.05 <0.05
Ammonia nitrogen (mg/L) mg N/L <0.05 <0.05
Daphnia magna (acute toxicity) N.T. N.T.
Vibrio fischeri (acute toxicity) N.T. N.T.
% Natural areas 62% 71%
% Agricultural areas 26% 23%
% Urbanized areas 12% 6%

Land use was calculated using QGIS 3.14, using Corine Land Cover maps and a
1.5 km buffer and considering the sites as watershed closures. As reported above, the
control site is characterised by a natural flow solely dependent on rainfall, while the
disturbed site is affected by unpredictable and sudden variations in river discharge, as
well as water depth and channel width, due to hydropower production from the dam.
Considering that the main environmental features of the two sites are similar, it is likely
that hydrological variations may be the key factor influencing the biological differences of
the benthic communities between these two sampling sites.

2.2. Macroinvertebrate Sampling and Processing

Data collection was performed in 2018 in two seasons to assess the impact of hydrolog-
ical alterations in two different environmental conditions (i.e., summer and autumn). It is
well known that in low-order, mountainous streams, these two seasons are characterised
by different flows, temperatures and energy inputs (e.g., CPOM [44]). Each sampling site
was surveyed once per season and randomly collected in a fixed area of 100 m. Quantitative
samples of benthic macroinvertebrates were collected using a Surber sampler (20 × 20 cm,
255 µm mesh size), individually preserved in 90% ethanol, labelled and returned to the
laboratory. To avoid spatial related issues, Surber samples were taken at least 2 m apart and
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representative of all microhabitats at the site scale. During the summer, 52 samples were
collected from both the control and disturbed sites. Preliminary analysis of the summer
data using taxa accumulation curves (see Supplementary Material, Figure S1) indicated
that the sampling effort (i.e., 52 samples per site) was sufficient to obtain a representative
characterisation of macroinvertebrate community diversity at both sites. Therefore, the total
number of samples was reduced to 41 during the autumn campaign. However, the taxa
accumulation curves show that the sampling effort was sufficient to obtain a representative
community (see Supplementary Material, Figure S1). In the laboratory, all samples were
sorted, and macroinvertebrates were counted and identified by species or genus, except for
Oligochaeta and early instars of some Trichoptera and Diptera, which were identified by
family or subfamily level according to the dichotomous key available for the Italian benthic
macroinvertebrate fauna [45,46]. In the data analysis, we considered taxa richness (i.e., the
number of taxa collected in each sample) and total abundance (i.e., the number of specimens
collected in each sample). To better describe the response of macroinvertebrate communities
to hydrological alterations, a functional approach was adopted by selecting 37 individual
traits (Table 2) belonging to 6 categories expected to be affected by flow variations [47].

Table 2. Functional traits and their category selected in this study [46].

Category Trait

Maximal potential body size ≤0.25 cm
0.25–0.5 cm
0.5–1 cm
1–2 cm
2–4 cm
4–8 cm
8 cm

Potential number of cycles per year <1
1
>1

Locomotion and substrate relation Flier
surface swimmer
full water swimmer
crawler
burrower
interstitial
temporarily attached
permanently attached

Feeding habits absorber
deposit feeder
shredder
scraper
filter-feeder
piercer
predator
parasite

Transversal distribution river channel
banks, connected side-arms
ponds, pools, disconnected side-arms
marshes, peat bogs
temporary waters
lakes
groundwaters

Current velocity (preferendum) null
slow
medium
fast
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According to the database provided by [48], a fuzzy coding procedure was used
to assign each taxon a score ranging from 0 (i.e., no affinity) to 5 (i.e., high affinity) for
each selected trait. For those taxa identified at the family level, scores were obtained by
calculating the mean value for all genera scores included in that family. To standardise
such affinity scores, they were then transformed into frequencies (i.e., 0–1) by dividing
each taxon individual score for a particular trait by the sum of the scores for the whole
trait category. This allowed us to obtain a taxa X traits matrix that was used to calculate
the functional richness (FRic), functional evenness (FEve) and functional dispersion (FDis).
FRic is an indicator of the amount of functional space occupied by the community, while
FEve indicates the equipartition of abundance distribution of traits in a functional space [48].
Instead, FDis represents the dispersion of taxa in a trait space [49]. Finally, the community-
weighted mean (CWM) trait value was calculated, with the R statistical environment, for
each selected trait with the following formula [50]:

CWM = Σpi × traiti

where pi is the relative abundance of the taxon i in the macroinvertebrate community and
traiti is the value (i.e., frequency value in our study) associated with that trait for taxon i. In
other words, CWM represents a trait-level indicator describing the distribution of values
within each trait for each measured assemblage [50].

2.3. Statistical Analyses

Compositional changes in macroinvertebrate communities between sites, season and
the interaction siteXseason were visually inspected and statistically tested using Non-
Metric Multidimensional Scaling (NMDS) and Permutational Analysis of Variance (PER-
MANOVA), respectively. To this end, all samples were used in this analysis, and the
Bray–Curtis dissimilarity index was applied to macroinvertebrate abundances.

The Kruskal–Wallis test for non-normal distribution and Analysis of Variance (ANOVA)
in normal distribution were used to assess whether taxonomic (i.e., total taxon richness
and total abundance) and functional (i.e., Fric, Feve, Fdis) community metrics, respec-
tively, significantly differed between sites and seasons. Post hoc pairwise comparisons
were conducted using the Shaffer–Tukey Procedure (STP) for the Kruskal–Wallis results,
considering the need for a probabilities correction. Additionally, significant differences in
the community-weighted mean value for each selected functional trait were assessed using
the Kruskal–Wallis test, and pairwise comparisons were performed with the STP test.

All analyses were performed in the R statistical environment [51] by using the ba-
sic functions and the following packages: FD [52] for calculating potential differences
in the functional traits (see Table 2) and CWM trait values, vegan [53] for NMDS and
PERMANOVA and ade4 [54] for CA. The significance threshold was set to p < 0.05.

Moreover, to provide a comprehensive characterization of the trait profile of macroin-
vertebrate communities across sites and seasons, a Correspondence Analysis (CA) was run
based only on the functional traits, for which CWM analysis provided significant results.
The mean CWM trait value for each selected trait was calculated per site.

3. Results

A total of 35,312 macroinvertebrates belonging to 58 taxa were collected. Among
these, five taxa accounted for 68% of the whole community: Hydracarina (18%), Baetis
sp. (16%), Leuctra sp. (15%), Hydropsychidae (11%) and Chironomidae (10%). Taxonomic
community composition differed for both sampling site (F1141 = 0.047; p < 0.001) and season
(F1141 = 0.056; p < 0.001), while the interaction between these two factors was not significant
(F1141 = 0.010; p = 0.084) (Figure 2).
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Figure 2. NMDS ordination plot of benthic macroinvertebrate communities according to the first
two NMDS axes (dotted lines). Symbols indicate the sampling season (i.e., autumn, summer), while
colours indicate the sampling site (i.e., control, disturbed).

Taxon richness was always significantly higher in the control site than in the disturbed
site in both seasons, while no statistical differences were observed in the number of taxa
from one season to the other within the same site (Figure 3a). Despite the total abundance of
macroinvertebrate being generally higher in the control than in the disturbed site, significant
differences were found only between the control site in autumn and the disturbed site in
summer (Figure 3b). Functional richness varied seasonally, with significant differences only
between the control site in autumn and both the control and disturbed sites in summer
(Figure 3c). Finally, no significant variations in the functional evenness and functional
dispersion were observed between sites and seasons (Figure 3d,e).

When looking at the variation in the community-weighted mean (CWM) trait values
between sites and seasons, statistical differences were found for 21 out of 37 single traits.
Among the body size traits, CWMs of macroinvertebrates with maximal potential size
0.5–1 cm varied seasonally and were significantly lower in the control site in autumn than
control and disturbed sites in summer (Figure 4a). By contrast, the CWM trait value of
benthic macroinvertebrates with maximal body size 2–4 cm was generally higher in the
disturbed site than the control site, with significant differences only for summer season
(Figure 4b).

All the traits associated with the voltinism (i.e., number of cycles per year) showed
significant variations between sites and seasons. On average, the CWM trait value for
taxa with a number of cycles per year <1 was higher in the disturbed site than the control
site, but significant differences were observed only between the control site in autumn
and disturbed site in summer (Figure 4c). Very similar results were found for univoltine
macroinvertebrates (i.e., number of cycles per year =1; Figure 4d), while the opposite
trend was observed for plurivoltine macroinvertebrates (i.e., number of cycles per year >1;
Figure 4e).
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per year <1, (d) potential number of cycles per year =1, (e) potential number of cycles per year >1.
The black line indicates the median value, while lower and upper box edges indicate the first and
third quartiles, respectively. Vertical lines represent ± 1.5 interquartile distances, while dots represent
observations that fall outside this range. Letters above boxes indicate significant differences based on
pairwise comparisons.

Among the substrate and locomotion relationship category, disturbed sites had gener-
ally higher CWM trait values for surface swimmers than the control sites, despite statistical
differences observed only in summer (Figure 5a). The opposite trend was found for water
swimmers that were always and significantly higher in the control site compared to the
disturbed site (Figure 5b). The community-weighted mean trait value associated with
burrower taxa showed significant differences only in summer when it was higher in the
disturbed site than the control site (Figure 5c). With respect to temporarily attached macroin-
vertebrates, the lowest CWM trait value was observed in the control site in summer and
was significantly lower than control and disturbed sites in autumn (Figure 5d).
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feeder, (i) piercer, (j) predator. The black line indicates the median value, while lower and upper box
edges indicate the first and third quartiles, respectively. Vertical lines represent ± 1.5 interquartile
distances, while dots represent observations that fall outside this range. Letters above boxes indicate
significant differences based on pairwise comparisons.

Significant variations in the CWM trait values were observed for all the feeding groups.
On average, the CWM values of deposit feeders and shredders varied seasonally and were
significantly lower and higher, respectively, in the disturbed site in summer than in the
control site in autumn (Figure 5e,f). The community-weighted mean trait values associated
with scrapers were always and significantly higher in the control site than disturbed site
(Figure 5g), while for filter feeders, statistical differences were evident only between seasons
rather than sites (Figure 5h). Although predator piercer macroinvertebrates accounted for a
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small proportion of the benthic communities, their CWM values were always significantly
higher in the control site than disturbed site (Figure 5i). By contrast, the opposite situation
was found for predators insofar as the CWM values associated with this feeding habit were
always higher in the disturbed site than the control site (Figure 5j).

Among the transversal distribution category, significant differences were observed
for 4 out of 7 single traits. In particular, the community-weighted mean trait value of
macroinvertebrate taxa preferring the river channel was significantly higher in the control
site than the disturbed site but only in summer (Figure 6a). On the contrary, the opposite
trend was found for taxa associated with ponds, pools and disconnected arms: their CWM
value was generally higher in the disturbed site than the control site despite statistical
differences being evident only in summer (Figure 6b). On average, the control site had
higher CWM values of macroinvertebrates related to temporary water compared to the
disturbed site, with significant differences only in autumn (Figure 6c), while the opposite
trend was observed for macroinvertebrates preferring groundwaters (Figure 6d).
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With respect to the water velocity, significant differences were found only for macroin-
vertebrates associated with medium and fast velocity, with a lower CWM trait value in
the disturbed site than the control site in autumn (Figure 6e) and seasonal differences
(Figure 6f), respectively.

Results of the Correspondence Analysis (Figure 7) depicted a clear separation of the
sampling sites based on the functional traits, along with evident seasonal differences. The
control site occupied the top half of the graph, with the autumn and summer communities
oriented on the top-left and top-right sides, respectively. Macroinvertebrate communities of
the control site were mainly composed of piercers, water swimmers, scrapers, plurivoltine
taxa and taxa associated with temporary waters. On the contrary, the disturbed site
occupied the bottom half of the graph, with the autumn and summer communities oriented
on the top-left and top-right sides, respectively. Compared to the control, macroinvertebrate
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communities in the disturbed sites were mostly composed of surface swimmers, predators,
2–4 cm sized invertebrates, and taxa associated with ponds/pools/disconnected arms.
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4. Discussion

The findings of this study shed light on the impact of human-induced hydrological
variations in a river ecosystem, in an Apennines area, as assessed through the lens of
macroinvertebrate community structure, functional feeding groups and biological traits. A
total of 35,312 macroinvertebrates, belonging to 58 taxa, were comprehensively assessed.
In particular, some taxa dominated the community, with Hydracarina, Baetis sp., Leuctra
sp., Hydropsychidae and Chironomidae together constituting a substantial proportion. We
detected significant variation regarding both sampling site and season in the taxonomic
community composition. The observed differences in taxon richness and total abundance
between the control and disturbed sites highlight the influence of artificial flow modifica-
tions on macroinvertebrate communities [55]. Taxa richness and invertebrate abundance
were higher in the control than in the disturbed site across seasons, according to the results
of Takao et al. (2008) that reported the reduction in diversity with low taxa richness and
the predominance of a particular species below the tailrace [56]. Regarding comparisons
in taxa richness among seasons, differences within the same site were not evident, while
we detected a difference between sites only comparing the control site in autumn and the
disturbed site in summer. Autumn was the season with the highest macroinvertebrate
number of taxa, as has been reported for other low-order European rivers [57,58].

In terms of functional richness, we observed interesting and significant variations
comparing season samplings, with noteworthy differences occurring markedly between
the control site in autumn and both control and disturbed sites in summer. The reduction in
functional richness may be due to the disappearance of certain taxa with highly specialized
traits (e.g., aquatic respiration, clingers, shredders) in the disturbed sites [59,60], indicating
a decreased resource availability and a potential ecosystem alteration [61]. However, no
significant fluctuations in functional evenness and dispersion were discerned between
sites and seasons, indicating a certain degree of stability in the functional structure of the
macroinvertebrate community.

Examination of community-weighted mean (CWM) trait values provided further in-
sight into specific traits affected by hydrological regulation [62]. Indeed, the assessment of
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community-weighted mean (CWM) trait values for 37 individual traits exposed statistically
significant differences between sites and seasons for 21 traits. Traits associated with body
size, voltinism, substrate, locomotion, feeding habits and transversal distribution showed
some variation between sites and seasons [63]. Regarding body size traits, macroinver-
tebrates with a maximal potential size of 0.5–1.0 cm revealed seasonal variations, with
significantly higher CWM trait values in both control and disturbed sites in summer com-
pared to the control site in autumn. It is likely that small-sized species may characterise
environments with high instability, as the result of anthropogenic disturbances imposed on
the organisms [64].

Analysis of traits associated with voltinism (number of cycles per year) disclosed signif-
icant variations between sites and seasons. For example, the richness of the plecopterofauna
decreases at the disturbed site compared to the control. In the latter, organisms of the genus
Leuctra, known to be among the more tolerant Plecoptera, increase in number as they
probably utilise resources and niches vacated by the more sensitive species [47].

Within the substrate and locomotion relationship category, disturbed sites exhibited
higher CWM trait values for surface swimmer with statistical differences evident in summer.
Conversely, water swimmers consistently displayed higher CWM trait values in the control
site, irrespective of season. Notably, burrower taxa as Limoniidae exhibited significant
differences only in summer, with higher CWM trait values in the disturbed site compared to
the control site. These taxa have a high adaptive capacity. Regarding temporarily attached
macroinvertebrates, the lowest CWM trait value was observed in the control site in summer,
significantly lower than both control and disturbed sites in autumn.

The study further elucidated variations in CWM trait values for different feeding
groups. Deposit feeders and shredders, according to other studies such as [65], exhibited
seasonal variations, with significantly lower and higher CWM values, respectively, in the
disturbed site during summer compared to the control site in autumn. Scraper-associated
trait values were consistently higher in the control site: this group was mainly represented
by Heptageniidae, a family of mayflies considered to be sensitive to habitat quality [66].
Filter feeders displayed seasonal rather than site-specific differences. Despite their relatively
small proportion in benthic communities, predator piercers’ CWM values were consistently
higher in the control site.

In the transversal (i.e., river bank, channel, side arm, etc.) distribution category,
significant differences were observed for four out of seven traits. Macroinvertebrate taxa
preferring river channels had significantly higher CWM trait values in the control site,
while taxa associated with ponds, pools and disconnected arms displayed higher CWM
values in the disturbed site, with statistical differences evident in summer [67]. Interestingly,
macroinvertebrates related to groundwater displayed higher CWM values in the disturbed
site. Considering water velocity preferences, significant differences were identified only for
macroinvertebrates associated with medium and fast velocity.

The Correspondence Analysis provided a visual representation of the separation of
sampling sites based on functional traits and seasonal dynamics. The control site displayed
a community composition dominated by piercers, water swimmers, scrapers and plurivol-
tine taxa, while the disturbed site exhibited a contrasting pattern, with macroinvertebrate
communities mainly composed of surface swimmers, predators and taxa associated with
ponds/pools/disconnected arms.

It is important to recognise that some responses, particularly those related to functional
traits, may manifest over longer time scales. Therefore, observed changes should be consid-
ered as part of an ongoing dynamic process, with the potential for further adjustments in
pursuit of a new equilibrium adapted to human-regulated conditions [68].

5. Conclusions

The observed taxonomic composition and abundance of macroinvertebrates provide
crucial insights into the ecological consequences of human-induced flow alterations. Func-
tional richness showed seasonal variation, following the dynamic nature of ecosystem
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response to changing environmental conditions. In particular, the greatest impacts (as
evidenced by the comparison between control and disturbed sites) were recorded in sum-
mer, when Apennine lotic systems are more fragile because naturally experience low flow
conditions and high temperatures. Correspondence Analysis visually represented the
segregation of sampling sites based on functional traits, with distinct seasonal patterns. In
general, our results are consistent with the notion that functional traits can provide a more
integrative perspective on ecosystem responses than taxonomic composition alone. The
observed patterns in functional traits and community composition highlight the complexity
of hydrological changes in river ecosystems.

So far, data on the effects of hydrological variations have been limited to alpine rivers
or in any case to rivers flowing in high- to medium-altitude mountain areas. To the best of
our knowledge, this is one of the few studies realised outside this context, as it was carried
out in an Apennine area where the environmental conditions are less severe, the water
supply is exclusively pluvial and the macrobenthic communities are generally very rich and
diversified. In conclusion, this study highlights the multiple effects of hydrological regula-
tion on macroinvertebrate communities in river ecosystems. By integrating taxonomic and
functional approaches, we gain a more comprehensive understanding of how dams affect
aquatic biodiversity and ecological functions. These findings help to implement informed
conservation and management strategies and highlight the need for long-term assessments
to capture the full range of ecosystem responses to human-induced hydrological changes.
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