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Abstract: It is essential to reduce carbon emissions in wastewater treatment plants (WWTPs) to
achieve carbon neutrality in society. However, current optimization of WWTPs prioritizes the
operation cost index (OCI) and effluent quality index (EQI) over greenhouse gas (GHG) emissions.
This study aims to conduct a multi-objective optimization of a WWTP, considering GHG emissions,
EQI, and OCI. The anaerobic-anoxic-oxic integrated membrane bioreactor (AAO-MBR) process in
an actual WWTP was selected as a typical case, tens of thousands of scenarios with combinations of
six operational parameters (dissolved oxygen (DO), external carbon resource (ECR), poly aluminum
chloride (PAC), internal reflux ratio (IRR), external reflux ratio (ERR), and sludge discharge (SD))
were simulated by GPS-X software (Hydromantics 8.0.1). It was shown that ECR has the greatest
impact on optimization objectives. In the optimal scenario, the main parameters of ATDO, MTDO,
IRR, and ERR were 0.1 mg/L, 4 mg/L, 50%, and 100%, respectively. The EQI, OCI, and GHG of the
best scenario were 0.046 kg/m3, 0.27 ¥/m3, and 0.51 kgCO2/m3, which were 2.1%, 72.2%, and 34.6%
better than the current situation of the case WWTP, respectively. This study provides an effective
method for realizing low-carbon and economical operation of WWTPs.

Keywords: multi-objective optimization; Pareto analysis; greenhouse gas emissions; AAO-MBR;
operational parameters

1. Introduction

Reducing greenhouse gas emissions is of utmost importance in the global fight against
climate change. The Paris Agreement, established in 2015, has motivated numerous coun-
tries to establish objectives for carbon peaking and carbon neutrality [1]. As a result,
industries around the world have adapted their development strategies and implemented
emission-reducing measures. According to statistics from major developed countries, the
wastewater treatment industry is among the top ten contributors to total carbon emissions,
accounting for 1% to 2% [2]. It is expected that the total greenhouse gas emissions (in
terms of CO2 equivalent) from China’s wastewater treatment industry will be as high
as 365 million t by 2030. It accounts for 2.95% of the country’s total emissions [3,4]. On
29 December 2023, the Chinese government released the policy entitled “Opinions on the
Implementation of Promoting Synergistic Efficiency in Wastewater Treatment for Reducing
Pollution and Reducing Carbon”. It announced Chinese plans to build 100 green and low-
carbon benchmark plants for wastewater treatment in 2025 with high-efficiency recycling in
energy and resources. Therefore, measures such as adopting new processes and improving
operation levels to achieve carbon reduction in the wastewater treatment industry are of
great significance in achieving carbon neutrality.
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Due to the diversity of municipal wastewater treatment processes, there is a large
level of complexity and uncertainty when it comes to balancing multiple objectives such as
operational efficiency and low-carbon emissions. In practice, improving effluent quality
and minimizing operating costs are still the primary concerns of operation managers. To
attain these objectives, it is crucial to explore avenues for reducing the operation cost index
(OCI) and greenhouse gas (GHG) while upholding the standards of the effluent quality
index (EQI). This is a problem involving the optimization of multiple objectives in nature.

In terms of single-objective and bi-objective optimization, there have been numerous
reports. Wu et al. [5] used WEST 2012® software to simulate and optimize an industrial
wastewater effluent plant with complex influent compositions, which led to the reduction
in OCI from 6.2 to 5.5 €/m3. Cao et al. [6] screened and analyzed the sensitivity of
61 parameters. They developed a quadratic polynomial response surface model of six key
process parameters. Finally, the water quality improvement was achieved by optimizing
two process parameters, dissolved oxygen (DO) and solids retention time (SRT). All of the
above studies focus on the single-objective optimization problem of wastewater treatment
process. However, they have not formed an integrated and comprehensive study. Vega
et al. [7] combined real-time optimization and hierarchical control with nonlinear model
predictive control, and evaluated the wastewater treatment process EQI and OCI through
the control structure. Zhang et al. [8] proposed a multi-objective optimization and control
method of BP neural network combined with a genetic algorithm, which effectively solves
the problems of EQI and OCI, a pair of mutually constrained optimization objectives.
Guerrero et al. [9] used both OCI and EQI as the control optimization objectives, which
produced a set of optimal operating setpoints that could be approximated by a Pareto
surface. These optimization studies can guide wastewater treatment plants (WWTPs) to
effectively reduce OCI without consideration about GHG emissions.

Regarding the tri-objective optimization of EQI, OCI, and GHG, although there are
some research reports in recent years, there are still some deficiencies that need to be
improved. Lu et al. [10] assessed the effectiveness of gauging a dynamic simulation model
in regulating GHG in WWTP. The evaluation puts forth a fresh approach for achieving
optimal control of such plants, taking into account EQI, OCI, and GHG. It is important to
mention, however, that while the proposed framework is sound in theory, it lacks practical
real-world case studies. X. Flores-Alsina et al. [11] found that aerobic tank dissolved oxygen,
primary sedimentation tank suspended solid (SS) removal, anaerobic digester temperature,
and reflux strategy had effects on the three objectives considered (GHG, EQI, and OCI). But
these objectives could not be optimized for all of them. Similar conclusions were obtained
in the study of C. Sweetapple et al. [12], where none of the 315 aeration strategies set up
could simultaneously achieve the co-optimization of the three objectives. The operation
energy consumption, water quality, and carbon emissions of WWTP based on continuous
batch reactor were studied, but no collaborative optimization was achieved [13].

Since EQI, OCI, and GHG are three mutually constrained optimization objectives, it is
difficult to achieve the optimal solution of the three objectives at the same time. Hence, it is
necessary to adopt a nonlinear multi-objective optimization method to determine the overall
optimal solution [8]. For this purpose, the study employs Pareto optimization principles
and introduces the upstream logic in the NSGA-II algorithm—the Non-dominated Sorting
Genetic Algorithms, which has proven effective in optimizing control strategies for WWTPs
from prior studies. Chen et al. [14] used NSGA-II to achieve multi-objective optimization
of operational energy consumption, effluent quality, total volume of structures, and SS
of structures based on the activated sludge method. Beraud et al. [15] coupled NSGA-II
with a common wastewater treatment plant model to illustrate how the algorithm can be
used to determine the feasibility of Pareto optimality. It is worth noting that researchers
use mathematical models to simulate complex process conditions and obtain basic data
for optimization evaluation commonly. In this way, as the high input of time and labor
decreases apparently, so does the cost of trial and error. Moreover, the issues caused by
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uncertainty and inefficiency in relying on traditional methods to optimize operational
parameters can be avoided efficiently, as well [16].

At present, there are hundreds of domestic and foreign wastewater treatment pro-
cesses. Among them, the combination of anaerobic-anoxic-oxic (AAO) and membrane
bioreactor (MBR) processes (named AAO-MBR) has aroused general attention, because
it can achieve high and stable effluent quality, short hydraulic retention time, and low
residual sludge volume [17,18]. Due to its high effluent quality, the resulting wastewater
can not only be discharged directly into the environment, but also reused for non-potable
water applications [19]. Considering the increasing use of AAO-MBR in upgrading projects
and underground WWTPs, more than 25% of underground WWTPs use AAO-MBR as the
primary process [20], the typical AAO-MBR process was selected as the research object in
this study. The nonlinear multi-objective optimization method was explored to achieve
low-carbon emission taking into account the effluent quality and operation cost. We es-
tablished a process model with the help of GPS-X simulation and modeling software to
analyze the effects of six typical operational parameters on EQI, OCI, and GHG. A non-
dominated sorting method was adopted to search for the Pareto-optimal set of solutions
and screen the optimal solution from it. Through the above process, the necessary trade-offs
between conflicting control objectives were made, which provided support for enhancing
the sustainability of the wastewater treatment system.

2. Materials and Methods
2.1. A Multi-Objective Optimization Framework

The research framework of the multi-objective optimization comparison method used
in this paper is visually depicted in Figure 1. Different from the traditional multi-objective
weighted evaluation optimization method, this paper searches for the optimal combination
of operational parameters based on the three mutual restraint objectives of EQI, OCI, and
GHG by means of Pareto optimal solution set. The optimization process entails three major
parts: model construction, multi-parameter evaluation, and optimization comparison.
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Figure 1. The research framework of the multi-objective optimization.

Firstly, the process model was built with the help of GPS-X (Hydromantics 8.0.1)
simulation and modeling software. The key operating conditions included six operational
parameters, including dissolved oxygen (DO) concentration, external carbon resource
(ECR), phosphorus removal agent poly aluminum chloride (PAC), internal reflux ratio (IRR),
external reflux ratio (ERR), and sludge discharge (SD). Among these, the DO concentration
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included the aerobic tank dissolved oxygen (ATDO) concentration and the membrane tank
dissolved oxygen (MTDO) concentration. Based on the baseline scenario, the simulated
value points of six operational parameters were set.

Secondly, the orthogonal combination of parameter simulation values was carried out
through data traversal to form an orthogonal simulation scenario. GPS-X software was
used to realize mass simulation calculation and automatic output results.

Finally, based on the simulation results of the orthogonal parameter set, the evaluation
values of each scenario were solved by the equal proportion weighting calculation. The
optimal scenario was selected to determine the optimal operation parameter combination.

2.2. Technological Process Modeling and Scenario Analysis
2.2.1. Construction of Process Model

The case plant is located in Luohu District, Shenzhen, China. It adopts the AAO-MBR
treatment process, and the actual treatment scale is 33,500 m3/d, with hydraulic retention
time (HRT) of 17.33 h and solid retention time (SRT) of 10.94 d. The influent water quality
is shown in Table S1, and the design effluent is required to meet the Class A standard of the
China Urban Wastewater Treatment Plant Emission Standard (GB18918-2022) [21].

Based on the actual process and operational parameters of the case WWTP, the model is
generalized and the parameters are calibrated according to the standardized procedure [22].
Its actual operational parameters and unit structures are shown in Tables S2 and S3. The
generalized model of the case plant is depicted in Figure 2.
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The daily water quality data in 2022 is collected for model calibration of the baseline
scenario. Then, the relevant stoichiometric and dynamic parameters in the structure are
adjusted to make the simulated effluent water quality the same or close to the actual effluent
water quality, with reference to the previous studies [6,23]. The results of the calibration
and the baseline simulation scenario of the effluent quality are shown in Table S1. After
calibration, the average errors of BOD5, COD, SS, TN, TP, and NH4

+-N were 7.0%, 10%,
8.0%, 0.3%, 18%, and 25%, respectively, and the maximum absolute errors were 0.15, 1.23,
0.02, 0.03, 0.03, and 0.02 mg/L. Almost all the indicators’ errors were within acceptable
limits [24].

The Python Script Manager attached to the software is used to achieve external control.
A large number of exhaustive simulations run within a certain range are completed under
the premise of fixed process flow and structure. At the same time, the script is written in
Python environment to realize automatic data import and export. The automated operation
is implemented through the loop statements of the upper logic. The logical structure of
which is shown in Figure S1.



Water 2024, 16, 995 5 of 16

2.2.2. Orthogonal Scenario Settings of Operational Variable

Referring to the basic operational parameters presented in Table S2, we set the op-
timized values of the six operational parameters, DO (ATDO, MTDO), ECR, PAC, IRR,
ERR, and SD of the case WWTP, respectively. These six were chosen from a larger set of
operational and design parameters as the set of most likely to be significant to the objective
functions [25,26]. These values are combined with the actual operating data of WWTP and
the simulative scenario values are shown in Table S4.

Through the way of data traversal, the value points of the operational parameters
(Table S4) are arranged and combined successively, forming a total of 80,000 (4 × 4 ×
4 × 5 × 5 × 5 × 10) groups of parameter combinations, forming orthogonal scenarios.
These scenarios are simulated in the construction of the case WWTP model, and the results
obtained are used for subsequent analysis. The values of MTDO had no significant effect
on the three objectives (Figure S2). Therefore, the effects of six operational parameters,
ATDO, ECR, SD, PAC, IRR, and ERR, on EQI, OCI, and GHG were examined separately.

2.3. Calculation Method of Three Optimizable Objectives
2.3.1. Effluent Quality Index (EQI)

The effluent quality is characterized by EQI with a unit of kg/m3, which represents
the total amount of pollutants discharged per ton of wastewater treated by the study object.
In this study, EQI is characterized by COD, BOD5, TSS, Soluble PO4-P, NOx (NO2 + NO3),
and TKN. Their weighting factors are used with default values of 1, 2, 2, 2, 2, 1, and 20,
respectively. The values are obtained directly from the software, and the reference formula
in the software is shown in Equation (1):

EQI = Q
6

∑
i=1

wiSi (1)

where Q is the effluent flow of WWTP, m3/d, wi is the weight of the ith pollutant in the
EQI. Si is the concentration of the ith pollutant in the EQI, mg/L.

2.3.2. Operating Costs Index (OCI)

The operating cost is characterized by OCI with a unit of $/m3. The OCI includes
energy costs, pharmaceutical costs, and sludge disposal costs. The energy costs include
aeration energy costs, pumping energy costs, mixing energy costs, heating energy costs,
and other energy costs. Similarly, the OCI value can be directly output by GPS-X software,
and the OCI calculation formula is shown in Equation (2):

OCI = Care + Cche + Cdisp (2)

where Care is electronic energy cost, 0.1 $/kWh. Cche is chemical cost, including the carbon
source cost of 2.0 $/kg, PAC cost of 0.5 $/kg, and sludge pretreatment chemical cost of
1.0 $/kg. Cdisp is sludge disposal cost, including the sludge transportation cost of 80 $/t.

Since the associated economic indicators in the software use USD$ as the unit, we
convert them to USD$ in the analysis with reference to the USD-RMB exchange rate at the
beginning of May 2023, based on 1 USD equals 6.91 RMB.

2.3.3. Greenhouse Gas (GHG)

Operational greenhouse gas emissions are characterized using GHG in units of
tCO2 eq/m3. Among the widely used carbon emission accounting methods, the actual-
measurement method is not applicable in the simulation and calculation scenarios. This
study combines the emission factor method with the mass balance method to slice the
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carbon emissions of the wastewater treatment plant into multiple parts for separate calcula-
tions. The accounting equations are shown in Equations (3) and (4):

GHG = Q(Cin − Cout)× EF × GWP (3)

GHG = AD × EF × GWP (4)

where AD is the activity data for the emission source and the unit depends on the calculated
emission source. EF is the emission factor and the unit depends on the activity data. Q is
the effluent flow of WWTP, m3/d. Cin is the concentration of the corresponding pollutant
in the influent water, mg/L. Cout is the concentration of the corresponding pollutant in the
effluent water, mg/L. GWP is Global Warming Potential. GWPCH4 is 25 tCO2 eq/tCH4
and GWPN2O is 298 tCO2 eq/tN2O.

The total carbon emissions are composed of 10 components, which are presented in
Table S5. For specific calculations of biochemical processes, power, and chemicals carbon
emissions for each structure, refer to Equations (S1)–(S10). Three of the direct emissions
(S1), (S2), and (S10) are calculated with the mass balance method (Equation (3)), while the
rest of the emission processes are conveniently calculated with the emission factor method
(Equation (4)).

2.4. Non-Dominated Sorting Method

Referring to the concept of Pareto optimum, the upstream logic-non-dominated sorting
method was introduced in the NSGA-II algorithm to filter out the Pareto optimal solution
from tens of thousands of simulation scenarios. It enables us to achieve multi-objective
comprehensive optimization of the three objectives, EQI, OCI, and GHG. This method is
ideal for optimizing control strategies in WWTPs as it can handle nonlinear optimization
problems. Moreover, it is capable of evaluating the objective function with fewer conditions
and achieving multi-objective optimization in a single simulation [27].

A cycle-based iterative ranking method is used to achieve the above optimization. For
each round of the study objects within the study scope, the “dominance” relationship of
each scenario point with other scenario points is examined separately. Then, the optimal
scenario in a “non-dominated” state is selected in each round until all the remaining
scenarios are not dominated by each other.

In general, the scenarios with Pareto rank 1 obtained by multi-objective sorting are
not unique. In order to further complete the screening in “Pareto-optimal” scenarios, this
study establishes a ranking method with constraints, focusing on the comprehensive level
of objectives under certain weights. By setting the weights, we calculate the composite
objective values to complete the final ranking. In this study, the three objectives are
considered to be of the same importance, thus the weight factors Ki,j of the three objectives
were equal. MATLAB (2021B) programming is used to implement the non-dominated
sorting and draw the Pareto frontier. The calculation of the integrated objective value for
the i’th scenario is shown in Equation (5):

Si =
3

∑
j=1

Ki,j·Fi,j/F0,j (5)

where Si is the value of the composite objective for the ith scenario. j is the number of the
objective. Ki,j is the weight of the jth objective (Ki,1 = Ki,2 = Ki,3 = 1/3). Fi,j is the value of
the jth objective for the ith scenario, with units referenced to the objectives. F0,j is the value
of the jth objective for the based scenario, with units referenced to the objectives.

3. Results and Discussion
3.1. Effect of Operational Parameters on Effluent Quality Index (EQI)

The influence of the six operational parameters on the EQI values is shown in Figure 3.
In general, the EQI values increase with the increase in ATDO and SD values, and decrease
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with the increase in PAC and ERR values. The change in ECR and IRR values does not have
a significant effect on the EQI. Among these, the change in PAC values affects the most
largely, indicating that PAC is the most influential operational parameter.
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The EQI value of the case plant increases slightly with the increase in ATDO, which
is shown in Figure 3a, indicating that high ATDO does not enhance the EQI, a similar
conclusion was found in the study [28]. Since the subsequent membrane tank is able to
share the aerobic tank pressure, the AAO-MBR process allows for extremely low ATDO
values to be utilized, resulting in more stable EQI scenarios being met and retained. Jiang
et al. [29] demonstrated that the AAO-MBR process improves water quality by efficiently
removing nitrogen and phosphorus with limited aeration (DO = 0.5–1.0 mg/L), which
is consistent with the simulation results. It is noteworthy that while reducing ATDO to
0.1 mg/L facilitates short-range denitrification, the actual engineering design parameter
was set at 2 mg/L. This suggests that an empirical-based design can achieve local optimum
values. However, due to insufficient empirical coverage of various scenarios, determining
comprehensive and optimal solutions may not always be possible. The results depicted in
Figure 3b reveal a noteworthy reduction in the EQI value, as the PAC value rises, which
is especially prominent when the PAC value is low. It indicates the significance of PAC
in decreasing the integrated water quality index. It also suggests that as the PAC dosage
increases, its optimization effect on the EQI dwindles. These two points match with the
findings [24,30]. By adding a small amount of ECR, the EQI values have a certain decrease,
but with the increase in the dosage, the EQI values will turn to increase (Figure 3c). It
indicates that ECR has a limited effect on the overall optimization of effluent water quality
as the input of ECR to reduce effluent TN may lead to the increase in COD at the same
time, which needs to be analyzed in conjunction with the actual influent C/N ratio. The
increases in the C/N ratio in a certain range can enhance the removal of TN and COD [31].
IRR has little effect on the EQI, which is a relatively insensitive parameter, as presented in
Figure 3d. Due to the fact that IRR mainly regulates the denitrification process while the
carbon source is relatively low, increasing the IRR ratio does not contribute significantly
to the effluent quality. The EQI value decreases significantly as the ERR rises (Figure 3e).
This is because the rise in ERR increases the concentration of the bicycles, and further
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improves the EQI. Wang et al. [32] recorded that the NH3-N removal was 98.1%, 98.5%,
and 98.9% when the ERR was taken as 100%, 300%, and 500%, respectively. It indicated
that the increase in ERR contributes to the water quality, which is in agreement with the
simulation results. It has been noted that when the SD increases, the EQI value of the case
plant also tends to increase, as depicted in Figure 3f. This is reason that higher SD results in
a shorter SRT and lower concentration of mixed liquor suspended solids (MLSS), which
are unfavorable conditions for biological treatment [33]. As a result, the effluent quality
decreases. Furthermore, the study recommends that this process is better suited for a state
of long sludge age.

3.2. Effect of Operational Parameters on the Operation Cost Index (OCI)

The influence of the six operational parameters on the OCI values is shown in Figure 4.
It can be seen that IRR and SD do not have a significant effect on the OCI. An increase in
the values of the remaining operational parameters causes an increase in the OCI, with a
change in the value of ECR causing the largest change in the OCI. It suggests that ECR is
the operational parameter with the greatest influence.
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As Figure 4a shows, the OCI experiences gradual growth as the ATDO increases.
This growth is especially pronounced when the ATDO concentrations are either lower
than 0.5 mgO2/L or higher than 4 mgO2/L. This is the reason that low ATDO reduces
energy consumption, and thus OCI in the AAO-MBR process [34,35]. Conversely, higher
ATDO levels mean that the water is already saturated with dissolved oxygen, causing a
decrease in oxygen transfer rate and utilization. This, in turn, results in an increase in
energy consumption and OCI. Other studies have also arrived at similar conclusions [36,37].
Additionally, it has been shown that the aeration process accounts for around 50% of the
total power consumption of a WWTP [38] and over 30% of the total OCI [39]. This highlights
the crucial role of ATDO in optimizing OCI in wastewater treatment processes. A smooth
increase in the OCI with the rise in PAC is presented in Figure 4b. And it matches the
traditional concept of the impact of operation. The lower values of OCI for the base
scenario demonstrate that the parameter values for the base scenario are relatively better.
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The OCI increases dramatically with the increase in ECR (Figure 4c). There is a positive
correlation with OCI as the amount of added carbon source is linearly related to the cost of
pharmaceuticals as the unit price remains constant. This finding is also well supported by
a study that optimizing the dosage rate with a dosing control system can reduce OCI [40].
The effect of ERR is more pronounced on the case plant compared to IRR because the inner
return pumps have a lower head than the outer return pumps, and therefore contribute
relatively less to OCI, which are shown in Figure 4d,e. Kim et al. [41] analyzed the effect
of six decision variables on OCI, in which the effect of IRR on OCI is smaller than ERR,
which is consistent with the simulation scenario results. Meanwhile, due to the existence of
a multi-stage sludge return line, the number of return pumps and energy consumption are
greater compared to other wastewater treatment processes. The change in SD value does
not contribute much to OCI (Figure 4f). Improving the OCI of the case plant by adjusting
the SD poses a significant challenge. However, utilizing recycled biogas as an energy
source can effectively lower electricity consumption. The amount of biogas produced
is directly proportional to the SD; therefore, increasing biogas production by raising the
SD can help reduce OCI [41]. Yet, this approach has its limitations. Heightening biogas
production may increase carbon and nitrogen loads on the environment. Additionally, only
the biodegradable portion of the sludge can be transformed into biogas, while the remaining
part would require transportation, potentially increasing OCI from 25% to 65% [42]. As a
result, further research is necessary to determine the feasibility of this pathway.

3.3. Effect of Operational Parameters on Greenhouse Gas (GHG)

The influence of the six operational parameters on the value of GHG is shown in
Figure 5. It can be seen that GHG rises with the increase in the values of ECR and ATDO,
and the effect of the remaining four operational parameters on GHG is not significant.
Among them, the increase in the value of ECR caused a large increase in GHG, which is the
same as OCI and is the most influential operational parameter.
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GHG increases with an increase in ATDO which is presented in Figure 5a. This
is because higher ATDO increases power consumption and GHG increases with power
consumption [43]. A study showed a similar conclusion by demonstrating that electricity
consumption is directly related to indirect GHG emissions [44]. The GHG corresponding
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to the baseline scenario values are lower than the remaining simulated scenario values,
indicating that the ATDO design values have been taken to a more optimal level. Huang,
F et al. [45] reduced power consumption and GHG emissions by optimizing DO settings
through a DO control system using a conventional proportional-integral control strategy.
Flores-Alsina et al. [46] investigated the control strategy of WWTP and activated sludge
process modeling for GHG emission benchmarking. They used the Benchmark Simulation
Model No 2 (BSM2G) to optimize the ATDO values to achieve carbon reduction. According
to Figure 5b, GHG levels remain relatively stable as PAC increases. This suggests that
carbon emissions from PAC have a minimal impact on the plant’s overall GHG levels.
However, as shown in Figure 5c, the GHG levels steadily increase with the rise in ECR,
indicating a certain degree of linearity. Determining the emission factor reveals a linear
relationship between the amount of additional carbon source injection and carbon emissions.
When this component accounts for a significant proportion, an increase in added carbon
sources can have a significant impact on the GHG emissions of the entire plant. It is
worth noting that in practical situations, it is crucial to consider the influent of C/N ratio
when making determinations. Kishida et al. [47] found that an appropriate C/N ratio
can substantially decrease N2O emissions during the denitrification stage. IRR and ERR
have a small impact on the GHG and the trends are depicted in Figure 5d,e. The power
consumption in the sewage treatment process contributes the most to GHG, while the
power consumption in the whole process mainly lies in the energy consumption of sewage
lifting pump and aeration energy consumption. The energy consumption of reflux pump
accounts for a small proportion [48]; therefore, it contributes little to GHG. At the same
time, ERR has a more significant influence on GHG than IRR. On the one hand, the internal
reflux pump has a lower head than the external reflux pump. On the other hand, the
internal reflux mainly controls the effect and process of denitrification. The denitrification
process produces NO2, and the emission of NO2 is mainly affected by DO and C/N [49].
Thus, the contribution of IRR to GHG is relatively minor. Figure 5f shows that the change
in the value of SD has almost no effect on the GHG of the case plant, which manifests
that the optimization of the GHG by changing the value of SD alone is not very effective.
In addition, CH4 accounts for a relatively large proportion of the carbon emissions from
wastewater treatment processes [50]; therefore, it is possible to generate electricity from
the collection of discharged CH4 and realize the recycling of resources, thus effectively
reducing GHG [51].

3.4. Multi-Objective Optimization of the Anaerobic-Anoxic-Oxic and Membrane Bioreactor
(AAO-MBR) Process

In order to synthesize the interrelationships among the three objectives and screen
the strategies to optimize the operational results, a comprehensive comparison of the
three objectives was performed using multi-objective optimization. The study involved
analyzing 55,460 different optimization scenarios and comparing them to one set of baseline
scenarios in the case plant. The relative relationship between these scenarios and their
Pareto ratings was determined using a non-dominated ranking method. The data were
compared to produce a total of 133 Pareto ratings (Table S6).

Scenarios with high Pareto ratings are better than scenarios with low Pareto ratings
for all three objectives (here, lower values for all three metrics are preferred). If all scenarios
were plotted in a three-dimensional coordinate system using the three objectives as coordi-
nates, scenarios with high Pareto ratings would be at the more “frontier” position. Plots
with Pareto ratings of 1, 50, and 127 in blue, orange, and yellow are depicted in Figure 6a,
respectively, in the 3D coordinate system, interpolating the points to construct an envelope
with extra data points.



Water 2024, 16, 995 11 of 16

Water 2024, 16, x FOR PEER REVIEW 12 of 15 
 

 

phosphorus removal chemicals. By implementing these methods, it will further reduce 
GHG and OCI while still ensuring compliance with the EQI standard. 

Based on the results of this study, some issues could be considered in the future. On 
the one hand, the main parameters for process simulation, such as structure size, stoichi-
ometric parameters, and kinetic parameters, are mainly based on the default values in 
GPS-X software. It can be calibrated and localized with extensive data from actual 
wastewater plants if data are available in future studies. On the other hand, equal consid-
eration is given to optimization objectives. When the weights of optimization objectives 
are not equal, such as carbon reduction as the goal, it is necessary to determine the index 
weight factor or adopt a fuzzy evaluation method to assist decision-making. 

 
Figure 6. Scenarios with different Pareto levels and distribution of optimal scenario indicators. (a) 
Blue, orange, and yellow dots indicated the scenarios with Pareto levels of 1, 50, and 127, respec-
tively; the relationship of OCI and EQI (b), GHG and EQI (c), and OCI and GHG (d) for the “Pareto-
optimal” scenarios. 

Table 1. Multi-objective average weighted optimal ranking of EQI, OCI, and GHG for the case plant. 

Serial Num-
ber 

ATDO MTDO ECR PAC IRR ERR SD EQI OCI GHG 
mgO2/L mgO2/L m3/d gAl/m3 % % m3/d kgCO2/m3 Ұ/m3 kg/m3 

251 0.1 4 0 2 50 100 1000 0.046 0.27 0.51 
1501 0.1 4 0 2 100 100 1000 0.046 0.28 0.52 
1511 0.1 5 0 2 100 100 1000 0.046 0.28 0.52 
2751 0.1 4 0 2 200 100 1000 0.045 0.28 0.52 
2761 0.1 5 0 2 200 100 1000 0.045 0.29 0.53 
1521 0.1 6 0 2 100 100 1000 0.045 0.29 0.53 
4001 0.1 4 0 2 300 100 1000 0.045 0.29 0.53 
2771 0.1 6 0 2 200 100 1000 0.045 0.29 0.54 
4011 0.1 5 0 2 300 100 1000 0.045 0.29 0.54 

Figure 6. Scenarios with different Pareto levels and distribution of optimal scenario indicators.
(a) Blue, orange, and yellow dots indicated the scenarios with Pareto levels of 1, 50, and 127, re-
spectively; the relationship of OCI and EQI (b), GHG and EQI (c), and OCI and GHG (d) for the
“Pareto-optimal” scenarios.

The 75 simulated scenarios with a Pareto rating of 1 can be considered “optimal”.
Although the data for these scenarios vary and there are even relatively discrete extremes
in some of the scenarios, it is not possible to achieve full progress in all three objectives on
the basis of these 75 sets of data. The distribution of the values of the three objectives for
the “Pareto-optimal” scenario is shown in Figure 6b–d. There is a clear trade-off between
the three objectives. In these scenarios, the OCI spans a wide range, indicating that there
are still parameter combinations that have a large positive impact on the OCI, but a small
negative impact on the other objectives, successfully realizing the “non-dominated” state.
In the optimal scenario, with very few outliers removed, the EQI value is concentrated in the
range of 0.033–0.046 kg/m3, the OCI value is concentrated in the range of 0.27–1.49 ¥/m3,
and the GHG value is concentrated in the range of 0.51–0.82 kgCO2/m3.

After normalizing and weighting the EQI, OCI, and GHG objectives in equal pro-
portions, the top 10 ranked scenarios were calculated as presented in Table 1, where the
optimal scenario was 0.046 kg/m3 for EQI, 0.27 ¥/m3 for OCI, and 0.51 kgCO2/m3 for
GHG. Compared to the baseline scenario (0.047 kg/m3 for EQI, 0.97 ¥/m3 for OCI, and
GHG is 0.78 kgCO2/m3), the optimization is improved by 2.1%, 72.2%, and 34.6%, respec-
tively, which significantly optimizes OCI and GHG under the premise of guaranteeing the
EQI. Sweetapple et al. [52] used a non-dominated sorting genetic algorithm to find the
Pareto-optimal solution for the three objectives. After the trade-off optimization, EQI is
kept basically unchanged, while GHG and OCI are optimized to improve by 17.4% and
3.6%. Santín et al. [53] controlled the whole plant biological wastewater treatment process
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by the fuzzy controller, EQI, OCI, and GHG were optimized by 1.97%, 14.4%, and 8.24%,
respectively. Although the differences in wastewater plant size and influent water quality
may affect the optimization effect, it can reflect the advantage of the trade-off objective of
the Pareto multi-objective optimization method to a certain extent.

Table 1. Multi-objective average weighted optimal ranking of EQI, OCI, and GHG for the case plant.

Serial
Number

ATDO MTDO ECR PAC IRR ERR SD EQI OCI GHG

mgO2/L mgO2/L m3/d gAl/m3 % % m3/d kgCO2/m3
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251 0.1 4 0 2 50 100 1000 0.046 0.27 0.51
1501 0.1 4 0 2 100 100 1000 0.046 0.28 0.52
1511 0.1 5 0 2 100 100 1000 0.046 0.28 0.52
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Focusing on the optimal combination of operational parameters, it can be seen that
ATDO maintains a very low concentration of 0.1 mg/L, MTDO is also maintained by pulse
aeration and other measures to maintain 4–6 mg/L, IRR is 50–300%, ERR is 100%, a small
amount of PAC (2 gAl/m3) is added, the SD is maintained at a low value of 1000 m3/d,
and the value of the ECR is taken to be 0, which means that the plant can meet the effluent
standard without the addition of the carbon resource. The effluent standard can also be
achieved. It can be seen that ERR, SD, and ATDO were taken to low values, which is the
same as the results of univariate analysis. IRR and MTDO have a lower impact on the
GHG, and therefore were taken to more dispersed values. PAC dosing was not taken to the
lowest value, because 0 PAC would result in the effluent TP exceeding the standard, which
would lead to a decrease in EQI [54].

To reduce pollution and carbon emissions in an environmentally-conscious and cost-
effective manner, the sewage plant should prioritize reducing both ERR and SD. This
approach will assist in diminishing the amount of sludge produced during the sewage
treatment process and aid in lowering carbon emissions during sludge disposal. One
effective way to control ERR is by adjusting the operating frequency of the return pump,
while sludge settling time and organic loading rate can also be adjusted to minimize the
solid content of the sludge [55]. In addition, the sludge production rate can be lowered
by optimizing the operational parameters of the biochemical tank and accurately dosing
phosphorus removal chemicals. By implementing these methods, it will further reduce
GHG and OCI while still ensuring compliance with the EQI standard.

Based on the results of this study, some issues could be considered in the future. On the
one hand, the main parameters for process simulation, such as structure size, stoichiometric
parameters, and kinetic parameters, are mainly based on the default values in GPS-X
software. It can be calibrated and localized with extensive data from actual wastewater
plants if data are available in future studies. On the other hand, equal consideration is
given to optimization objectives. When the weights of optimization objectives are not equal,
such as carbon reduction as the goal, it is necessary to determine the index weight factor or
adopt a fuzzy evaluation method to assist decision-making.

4. Conclusions

In this paper, three optimization objectives of WWTP were optimally weighed through
a multi-objective optimization method. It demonstrated the potential to reduce GHG
emissions cost-effectively while ensuring that the water quality meets the standards, and
the following specific conclusions are drawn:
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Starting from the idea of Pareto optimization, the GPS-X simulation and modeling
software were used to screen 75 scenarios from tens of thousands of orthogonal simulation
scenarios to reach the Pareto optimal level. Using the non-dominated sorting method,
the optimal solutions were obtained by equal proportional weighting, which guided the
attainment of the optimal combinations of operational parameters, as ATDO was kept at
a very low concentration of 0.1 mg/L, MTDO was kept at 4 mg/L, IRR was 50%, ERR
was 100%, a small amount of PAC (2 gAl/m3) was added, SD was kept at a low value of
1000 m3/d, and ECR was taken to be 0. This paper provides an optimal decision-making
solution for this WWTP, which is conducive to the realization of sustainable development
in the wastewater treatment industry.

Optimizing the performance of objectives requires a deep understanding of how it
responds to operational parameters. Based on simulation results, there appears to be a
significant linear relationship between ECR and the three key objectives that operators
should prioritize. At the same time, the change in the C/N ratio due to the addition of ECR,
thus affecting GHG emissions, is an essential direction for future research.
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effluent water quality, and simulated effluent water quality of the case plant; Table S2: Operational
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