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Abstract: This study utilized a straightforward co-precipitation method to successfully synthesize Ce-
La-X(Mn/Pr)-O composite materials for treating simulated hexavalent chromium (Cr(VI)) wastewater
with distinctively porous and fluffy textures, along with tubular morphologies. Notably, Ce-La-Mn-O
demonstrated a remarkable specific surface area of 96.2698 m2/g, mesoporous architecture with a
pore diameter of 6.9511 nm, and an impressive adsorption capacity of 88.79 mg/g. Under optimized
conditions, specifically an initial Cr(VI) concentration of 20 mg/L, a Ce-La-Mn-O dosage of 0.8 g/L,
a reaction temperature of 40 ◦C, an initial pH of 6, and with the application of simulated daylight,
the removal rate of Cr(VI) exceeded 98% within 15 min. Even after three cycles, the removal rate
was maintained at above 80%. Based on a comprehensive suite of morphological, structural, and
performance characterizations, the introduction of Mn/Pr was found to modify the structure of
Ce-La-O and enhance the synergistic interactions among the metals within the Ce-La-O framework.
In addition, Ce-La-Mn-O exhibited superior visible light absorption properties and dual functionality
for catalytic reduction and adsorption. All three materials were found to form -OH polar bond
functional groups, converting it to Cr(III) and subsequently forming Cr(OH)3. The Ce-La-X(Mn/Pr)-
O composite materials provide a robust theoretical foundation for exploring the dual functional
synergistic effects in the efficient removal of Cr(VI) from aqueous systems, indicating their vast
potential for practical applications.

Keywords: co-precipitation method; Ce-La-Pr/Mn; ternary oxide composites; photocatalysis; degradation;
wastewater treatment; Cr(VI)

1. Introduction

Chromium is the 16th-most toxic and carcinogenic substance, and it is mainly derived
from industrial wastewater, causing surface water, groundwater, and soil pollution [1].
It generally exists in the form of trivalent chromium (Cr(III)) and hexavalent chromium
(Cr(VI)) [2]. Small quantities of Cr(III) serve as essential nutrients for maintaining human
health, whereas Cr(VI), as one of the toxic metal ions, exhibits toxicity that is a thousandfold
greater than that of Cr(III) [3]. Cr(VI) has a long-term toxic effect on the ecological environ-
ment and can accumulate in the human body through food chain enrichment, which may
lead to lung cancer, permanent brain injury, and other diseases [4]. Therefore, it is a great
challenge to remove Cr(VI) from wastewater before discharge.

At present, in most research on removing metal ions from wastewater, adsorption
and photocatalytic reduction technologies are widely and deeply applied because of their
easy design, simple operation, and good efficiency in removing pollutants [5,6]. Aiming at
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the existing foundation of removing metal ions, rare earth-based materials have attracted
many researchers’ attention because of their activity and high adsorption capacity [7,8].
Rare earth oxides such as lanthanum oxide (La2O3) and cerium oxide (CeO2) usually
have a high specific surface area and number of active sites, which can effectively remove
Cr(VI) through adsorption and redox reactions [9]. CeO2 is one of the richest and cheapest
rare earth oxides, which has acid resistance and alkali resistance and will not elute when
removing harmful substances from water [10,11]. The research shows that by doping
atoms into the lattice of CeO2, its surface properties, such as surface acidity and defect
sites, can be effectively regulated, and then its adsorption behavior for pollutants can be
affected [12]. At the same time, La is also an ideal doping element, which can change the
surface properties of the catalyst, affect the periodic lattice structure, and adjust the charge
state [13,14]. He et al. and Yi et al. have proved that the doping of La can enlarge the specific
surface area, increase the active sites, enhance the pollutant degradation performance, and
prolong the service life of photocatalytic electrodes [15,16]. Zhang et al. employed N-
modified La-doped hierarchical carbon composites (LNPC) for the treatment of phosphate
in water bodies [17]. However, the materials doped exclusively with Ce or La have the
problems of insufficient photocatalytic activity and low absorption of visible light [18].
Kalidasan et al. and Arulkumar et al. have found that Mn element doping is an effective
method to enhance the degradation efficiency, photocatalytic activity, and visible light
absorption of photocatalysts [19,20]. Mjahed et al. and Mikolajczyk et al. and Li et al.
discovered that doping with Pr significantly enhances the visible light absorption spectrum
and photocatalytic performance of the composite material [21–23]. Therefore, this study
introduces Mn/Pr into the Ce-La binary system to further increase its reduction–adsorption
activity and absorption capacity for visible light.

In this study, Mn/Pr-doped Ce/-La oxide composites were prepared by co-precipitation
method, and the reaction of Cr(VI) on the prepared nanocomposites and the factors af-
fecting the adsorption performance and reducing property, such as surface morphology,
specific surface area, pH, initial concentration, time, etc., as well as the reaction kinetics
and removal mechanism, were discussed.

2. Materials and Methods
2.1. Materials

Commercially available analytical grade chemicals, including cerium nitrate hexahy-
drate (Ce(NO3)3·6H2O), lanthanum nitrate hexahydrate (La(NO3)3·6H2O), praseodymium
nitrate hexahydrate(Pr(NO3)3·6H2O), manganese nitrate(Mn(NO3)2), ammonium hydrox-
ide (NH3·H2O), hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium sulfate
(Na2SO4), sodium chloride (NaCl), sodium bicarbonate (NaHCO3), calcium chloride
(CaCl2), Zinc chloride(ZnCl2), potassium chloride (KCl), potassium dichromate standard
solution (K2Cr2O7, 0.1002 mol·L−1), and diphenylcarbazide (C13H14N4O) were supplied by
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All solutions were freshly pre-
pared with deionized water (18.2 MΩ cm) utilizing HCl (0.1 mol/L) and NaOH (0.1 mol/L)-
adjusted pH values. The standard solution of K2Cr2O7 was diluted with deionized water
to prepare Cr (VI) stock solution (10–80 mg/L) to simulate wastewater.

2.2. Synthesis of Ce-La-X(Mn/Pr)-O Ternary Oxide Composites

Ce/La oxide composites were prepared using the co-precipitation method. The prepa-
ration method is as follows: 2.778 g of cerium nitrate hexahydrate, 0.693 g of lanthanum
nitrate hexahydrate, and 0.385 g of praseodymium nitrate hexahydrate (or 0.21 mL of
50 wt Mn (NO3)2) were weighed into a 100 mL beaker, and 25 mL of deionized water
was added, and then stirred with a glass rod to make the solution completely dissolved.
Place the beaker on a magnetic stirrer, adjust the rotational speed to 400 r/min, and set the
stirring time to 0.5 h. Put the mixed solution into a water bath at a temperature of 70 ◦C for
0.5 h, and then take it out. Then, 6 mL of 25% wt ammonia was slowly added to the reacted
solution and crystallised for 3 h. The crystals were dried in a drying oven at 105 ◦C for
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12 h.The dried crystals were ground to 250 mesh and then calcined in a muffle furnace.The
calcination temperature is set to 2 h at 500 ◦C, 500 ◦C calcined for 4 h, 2 h at 200 ◦C, natural
cooling at room temperature; composite material preparation is complete, then removed.
The composite material was prepared, removed, put into a sample sealed bag, and kept in
the shade for the test. The preparation process is shown in Figure 1.
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Figure 1. Ce-La-Pr and Ce-La-Mn preparation process schematic.

2.3. Material Characterization

The phase compositions of prepared raw powder and adsorbent material were char-
acterized with X-ray diffraction (XRD, Empyrean, Panalytical, The Netherlands) with Cu
Kα radiation at 40 kV and 40 mA in a scanning range of 10–80◦. The morphology and
microstructure of the sample were observed by scanning electron microscopy (SEM, Philips
XL30 FEG, Amsterdam, The Netherlands) with an energy dispersive spectrometer (EDS).
The functional groups were determined via Fourier transform infrared (FTIR) (Nicolet
iS50 FTIR, Department of Physics, MDU) spectrophotometer in the wavenumber region of
500–4500 cm−1 before and after the reaction. The X-ray photoelectron spectrumetry (XPS,
Thermo Fisher Scientific, Waltham, MA, USA) spectra were collected to analyze the surface
compositions of the samples before and after reaction with Cr(VI). The surface properties
of the raw powder and adsorption material prepared under the optimal process were
determined using adsorption and desorption isotherms measured by an automatic specific
surface area and pore size analyzer (ASAP2460, Micromeritics Instrument Corporation,
Norcross, GA, USA) at −196 ◦C for physical adsorption of nitrogen. The two samples were
degassed and dried at 105 ◦C in a vacuum for 12 h before testing. The Brunauer Emmett
Teller (BET) isotherm was used to process the measured data in the relative pressure range
of 0.1–0.25 to obtain each sample’s specific surface area and micropore volume. The ab-
sorbance of the Cr(VI) solution was determined by an ultraviolet-visible spectrophotometer
(UV-1800, Shanghai Meipuda Instrument, Shanghai, China) using dibenzoyl dihydrazide
spectrophotometry. The concentration of the Cr(VI) solution was obtained according to
the standard curve of absorbance and concentration. Considering that Cr(III) could appear
in the solution after the reaction at lower pH, the total chromium content in the treated
solutions was measured using the inductively coupled plasma spectrometer (ICP-OES,
HKYT-799, Beijing Huakeyitong Analytical Instrument Co., Ltd., Beijing, China). The phase
content and average grain size of the composite material were determined using image
processing software (Image-Pro Plus, Version 7.0, Media Cybernetics, Bethesda, MD, USA)
on SEM images.
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2.4. Cr(VI) Removal Experiment

The experimental apparatus employed in this study comprised four integral com-
ponents: a power supply, reactor, cooling system, and measurement system as shown
in Figure 2. The light source consisted of a blue LED lamp with a central wavelength
spanning from 420 nm to 840 nm. The reactor vessel was a 250 mL beaker situated on a
magnetic stirrer, equipped with a rotor rotating to enhance the reaction kinetics. To prevent
overheating and safeguard the lifespan of the light source, as well as ensure the safety of the
experiment, a cooling fan was strategically positioned around the light source, serving as
the cooling system. In each experiment, 0.04 g of Ce-La-X(pr/Mn)-O composite was added
to 50 mL Cr(VI) solution, and the pH was adjusted to pH = 6 with 0.1 mol/L standard
solution of hydrochloric acid. The temperature was 25 ◦C. We optimized the rotational
speed to precisely 500 r/min, and the illumination was carried out by using a 300-watt
xenon lamp with a wavelength of 420 nm for 120 min. At the end of the reaction, the
solution was filtered using a 0.22 µm filter membrane, and the remaining concentration of
Cr(VI) in the filtrate was measured using a spectrophotometer to calculate the removal rate
of Cr(VI).
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Figure 2. Reaction unit.

3. Results and Discussion
3.1. Crystal Structure, Morphology of Composites

In this study, we prepared three composite materials: Ce-La, Ce-La-Pr, and Ce-La-
Mn-O, using identical experimental conditions. Analysis of the XRD patterns (Figure 3)
revealed distinct characteristic diffraction peaks corresponding to the cubic fluorite struc-
ture of CeO2 (JCPDS #34-0394) [24]. These peaks suggest a high degree of dispersion or
weak crystallization of the active components. Compared to the standard CeO2 card, the
characteristic peaks of Ce-La-Pr and Ce-La-Mn shifted towards lower angles, particularly
in regions such as the (111), (200), (220), and (311). Compared to Ce-La and Ce-La-Pr, the
diffraction peaks in the sample were clearly visible on each corresponding crystal plane,
but their intensities were significantly reduced, and the half-peak width was wider. This
indicates a decrease in material crystallinity and grain size [25]. For Ce-La-Mn, when the
doping levels of La and Mn are low, these elements primarily occupy lattice sites within
CeO2, replacing some Ce atoms. This substitution disrupts the crystal structure of CeO2,
leading to strong interactions between Ce, La, and Mn. Consequently, a Ce-O-Mn solid
solution is formed, suppressing the growth of single crystals [26]. During the formation
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of this solid solution, the incorporation of Mn ions with a smaller ionic radius into the
CeO2 lattice introduces lattice defects. These defects enhance the mobility of surface oxy-
gen species and oxygen diffusion within the lattice, improving the material’s catalytic
properties [27]. The shift in the diffraction peaks of Ce-La-Mn indicates changes in the
lattice parameters of the corresponding phase. This is attributed to the difference in ionic
radii between the components of the composite material. Specifically, the radius of Ce
(2.7 Å) is smaller than that of La (2.74 Å) but larger than that of Mn (1.79 Å). According to
Bragg’s equation (2dsinθ = nλ), the decrease in lattice parameters of Ce-La-Mn results from
the incorporation of La and Mn into the CeO2 lattice, leading to distortions in the cubic
fluorite structure.
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tic peaks).

The specific surface area of the composite material affects the exposure rate of active
sites and the diffusion process of reactants. Nitrogen adsorption–desorption isotherm tests
were conducted on three composite materials under identical conditions (Figure 4). As
shown in Figure 4a, all materials exhibited H3 hysteresis loops, following the trend of IV-
type isotherms. A higher adsorption capacity is observed at the high-pressure end, which
is typically attributed to the formation of slit pores caused by the accumulation of platelet
particles. The pore structure parameters of the three materials are presented in Table 1. The
specific surface area of Ce-La-Mn calculated by BET is 96.2698 m2/g, with a porosity of
0.167296 cm3/g and a pore diameter of 6.9511 nm. Compared to Ce-La and Ce-La-Pr, there
is a significant increase in both parameters, and all belong to the mesoporous structure. As
seen in Figure 4b, the pore diameters of all three materials are within the range of 0–20 nm,
indicating a mesoporous structure [28]. The introduction of Mn reduces the pore diameter
to below 10 nm, indicating that Mn enhances the specific surface area of the Ce-La--based
composite material to a greater extent. The large and irregular surface morphology of
the porous structure provides more active sites for adsorption and reduction reactions. In
summary, the doping of Mn makes Ce-La-Mn an ideal material for the removal of Cr(VI) in
water purification.
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Table 1. Structural properties of Ce-La and Ce-La-Pr and Ce-La-Mn.

Samples SBET (m2/g) Vtotal (cm3/g) P (nm)

Ce-La 39.3386 0.133710 13.5958
Ce-La-Pr 48.8215 0.150878 12.3616

Ce-La-Mn 96.2698 0.167296 6.9511

The SEM observations and microstructural analyses of Ce-La-Mn before Cr(VI) re-
moval are presented in Figure 5. Compared to Ce-La and Ce-La-Pr, this material exhibits
a rougher surface texture. Following the introduction of Pr/Mn into the Ce-La binary
system, the average particle size of the prepared Ce-La-Pr/Mn composites decreased from
57.9 ± 15.0 nm to 25.6 ± 4.5/28.2 ± 5.1 nm compared to the binary system. The loosely
packed structure of the material contributes to a larger specific surface area, smaller par-
ticles, and improved dispersion, all enhancing its activity for Cr(VI) removal [29]. XRD
analysis revealed that the introduction of Pr/Mn into the CeLaOx lattice during preparation
caused lattice distortion and the formation of a Ce-La-O-Pr/Mn solid solution. Notably, the
incorporation of Mn results in stronger interactions between metal ions than Pr, leading to
an increase in specific surface area and the generation of active sites. These characteristics
favor the removal of Cr(VI) by the composite material.
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UV-Vis DRS spectroscopy was employed to investigate the light absorption character-
istics of Ce-La-X(Mn/Pr) (Figure 6). Ce-La itself exhibits a strong absorption band in the
ultraviolet region (400 nm), attributed to charge transfer during the O 2p to Ce 4f transition
of Ce4+ and O2− [30]. Upon doping with Pr and Mn, the light absorption capacity in the
visible region (400–700 nm) is enhanced, resulting in a red shift in the absorption spectrum.



Water 2024, 16, 1178 7 of 19

The absorption edges shift to approximately 600 nm and beyond 800 nm, respectively, with
a significant increase in light absorption intensity above 400 nm. This enhancement is likely
due to lattice defects and oxygen vacancies introduced by doping [9]. The increased visible
light absorption generates more electron–hole pairs, favoring the photocatalytic reaction.
The band gap sizes were estimated using the Kubelka–Munk equation:(

αhv)1/n = A
(
hv − Eg

)
(1)

where α is the absorption coefficient, hv is the discrete photon energy, and A is a constant.
The exponent n is related to the type of optical transition in the band gap. For direct
band gap semiconductors, the exponent n equals 1/2, whereas for indirect band-gap
semiconductors, it equals 2. Given that Ce-La-based composites exhibit indirect band-gap
characteristics [31], an exponent of n = 2 was employed in our analysis. Based on these
calculations, the band gaps of Ce-La, Ce-La-Pr, and Ce-La-Mn are 2.30 eV, 2.01 eV, and
1.91 eV, respectively. Mn doping results in a narrower optical band gap due to multi-body
effects on the CB and VB, leading to stronger interactions between Ce, La, and Mn, higher
rates of photogenerated electron—hole separation, and a broader photoresponse range [32].
Collectively, these findings indicate that Ce-La-Mn has a suitable band gap and excellent
photocatalytic reduction ability for Cr(VI) under visible light irradiation.
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3.2. Cr(VI) Removal Test

Figure 7a illustrates the impact of dosage on the removal of Cr(VI) from aqueous
media by composite materials. Analysis of the figure reveals that the removal efficiency of
Cr(VI) by the three composite materials increases with increasing dosage, and the increment
in removal rate diminishes when the dosage exceeds 0.14 g. This phenomenon can be
explained by the fixation process of Cr(VI) reactions, where Cr(VI) initially diffuses from
the solution onto the surface of the composite materials. Subsequently, with the transfer of
electrons from the Ce, La, Mn/Pr cores, Cr(VI) is reduced to Cr(III), which then precipitates
or adsorbs onto the surface of the materials. At lower dosages, the stronger driving force
for Cr(VI) diffusion and the limited active sites on the composite materials prolong the
fixation time of Cr(VI), leading to increased reaction time and a slower reaction rate. This is
attributed to the decrease in solute flux or concentration gradient within the solution, or
the concentration difference between the solute in the solution and the composite material
surface. The removal efficiency of Cr(VI) by the three composite materials gradually
enhances with an increase in dosage. The incremental increase in removal efficiency
becomes marginal beyond a dosage of 0.14 g.
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Figure 7. (a) Effect of addition amount on catalyst performance, experimental conditions:
Cr(VI) = 20 mg/L, pH = 6, T = 25 ◦C, photocatalysis; (b) Effect of pH on catalyst performance,
experimental conditions: Cr(VI) = 20 mg/L, absorbent = 0.04 g, T = 25 ◦C, photocatalysis; (c) Effect of
initial concentration on catalyst performance, experimental conditions: absorbent = 0.04 g, pH = 6,
T = 25 ◦C, photocatalysis; (d) Effect of Photocatalytic conditions on catalyst performance, exper-
imental conditions: Cr(VI) = 20 mg/L, absorbent = 0.04 g, pH = 6, T = 25 ◦C; (e,f) Effect of tem-
perature on catalyst performance, experimental conditions: Cr(VI) = 20 mg/L, absorbent = 0.04 g,
pH = 6, photocatalysis.

The impact of reaction pH on the removal of Cr(VI) from aqueous media by composite
materials was recorded in Figure 7b. At a pH of 6, Ce-La-X(Mn/Pr) demonstrates the
highest removal efficiency, achieving 100% removal. Nevertheless, under strongly acidic
conditions (pH 2–4), the removal rate exhibits a marginal decrease. This can be attributed
to the inability of the reduction product Cr(III) to deposit onto the surface of Ce-La-X
composite materials through the formation of Cr(OH)x compounds, which is influenced
by acid–base neutralization [33]. Ce-La-X can utilize its oxygen storage capacity and form
more hydrogen bonds with HCrO4

- under acidic conditions. Furthermore, the presence of
H+ ions in the solution promotes their adsorption onto the surface of the composite material,
thereby enhancing the electrostatic adsorption of HCrO4

−. As the pH gradually rises in
alkaline conditions, the removal rate decreases significantly. This is presumably attributed
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to interactions between CrO4
2− and OH−, which gradually enhance electrostatic repulsion

between Cr(VI) and the adsorbent, subsequently leading to a decrease in adsorption
capacity and efficiency. Moreover, the photocatalytic reduction process of Cr(VI) by the
material is influenced by the acidity or alkalinity of the system.

Acidic conditions:
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Based on the Nernst Equation, an increase in the concentration of H+ leads to an
elevation in the electrode potential of the Cr2O7

2−/Cr3+ couple, favoring the reaction
proceeding from left to right and thereby increasing the rate of Cr(III) formation. Conversely,
as the concentration of OH− increases, Cr(III) precipitates as Cr(OH)3, occupying effective
photocatalytic active sites and thereby decreasing photocatalytic performance. Furthermore,
the decreased electrode potential of CrO4

2−/Cr (OH)3 significantly reduces the driving
force for the photocatalytic reaction, making it insufficient to promote the reaction and,
thus, more difficult for Cr(VI) to be reduced.

Figure 7c demonstrates the impact of initial Cr(VI) concentration on the removal of
Cr(VI) by composite materials. Both Ce-La and Ce-La-Mn exhibit a decreasing removal
rate with increasing concentration. Notably, Ce-La-Mn, incorporating Mn, experiences a
less pronounced decrease. This is attributed to the reduction of active sites with rising
ion concentration [34]. At higher Cr(VI) concentrations, intraparticle diffusion spreads the
adsorbate across the adsorbent surface, leading to a further decrease in removal rate [35].
Mn introduction in Ce-La-Mn causes lattice distortion due to smaller ionic radius of Mn3+,
resulting in smaller grains, increased surface area, and more active and adsorption sites [36].
All materials show an increase in adsorption capacity with higher Cr(VI) concentrations. Ce-
La rises from 9.83 mg/g to 35.32 mg/g, Ce-La-Pr from 9.99 mg/g to 66.35 mg/g, and Ce-La-
Mn from 10 mg/g to 88.79 mg/g. This increase suggests more active sites become available
with increasing metal concentration. The introduction of a third element significantly
enhances the adsorption and catalytic reduction capabilities of Ce-La-based composites.

Figure 7d demonstrates the photocatalytic impact on Cr(VI) removal by Ce-La-Mn
composites in aqueous solutions. Without photocatalysis, Ce-La-Mn removes Cr(VI) at
87.78%, exceeding Ce-La but trailing Ce-La-Pr. During the reaction, a decline in removal is
observed after 45 min, followed by an increase at 75 min, stabilizing below the optimal rate.
Introduction of photocatalysis elevates Cr(VI) removal to 99.79%, surpassing Ce-La-Pr and
Ce-La. This improvement reflects a significant boost in photocatalytic efficiency. The light
absorption is attributed to charge transition from the valence to conduction band. Mn dop-
ing enhances carrier migration on the composite surface, promoting electron trapping and
photocatalytic activity [37]. The synergistic effect of Ce, La, and Mn tunes the composite’s
band structure and optical properties, suppressing electron–hole recombination. Traditional
rare earth composites absorb limited visible light due to UV-biased band structures [9].
Ce-La’s quantum confinement limits visible light absorption. Mn doping, with its unique



Water 2024, 16, 1178 10 of 19

electronic structure, enables visible light absorption. Mn’s 3d electron levels interact with
the composite’s bands, creating a new band structure, enhancing Cr(VI) reduction [38].

Figure 7e,f depict the impact of reaction temperature on Cr(VI) removal from aqueous
solutions using Ce-La-Mn and Ce-La-Pr composites. As shown in Figure 7e, the removal
rate of Cr(VI) by Ce-La-Mn increases initially with temperature, peaking at 50 ◦C. Subse-
quently, as the reaction proceeds, the removal rate of Cr(VI) by Ce-La-Mn increases with
temperature in the range of 30–40 ◦C. However, with further increases in temperature from
40–70 ◦C, the removal rate decreases, achieving an optimal removal rate of 99.99% at 40 ◦C.
This suggests that within the range of 30–40 ◦C, the elevated temperature enhances the
adsorption and reduction capabilities of Ce-La-Mn for Cr(VI), providing greater possibili-
ties for effective collisions between molecules and accelerating the reaction rate, and thus
increasing the removal rate [39]. However, above 40 ◦C, a reduction in active sites and
surface area leads to a decrease in the removal rate. Conversely, Ce-La-Pr achieves an opti-
mal removal rate of 99.43% at 50 ◦C. The decrease in removal rate may be attributed to the
reduction of active sites and surface area, resulting in a loss of activity for the composite ma-
terial, preventing further reactions. Given the typical temperature range of Cr(VI)-related
industrial wastewater (5–40 ◦C), Ce-La-Mn’s broad temperature adaptability highlights its
potential for industrial applications without additional temperature treatment.

Figure 8a illustrates the impact of reaction time on the removal of Cr(VI) from aqueous
solutions by the composite materials. Analysis of the figure reveals that Ce-La-Mn, Ce-
La-Pr, and Ce-La all achieve their optimal removal rates within the first 15 min of the
120-min reaction period. A slight decrease is observed at 30 min, followed by an increase
at 45 min, gradually stabilizing around the optimal removal rate. This behavior can
be attributed to the initial abundance of active sites and high solute gradient. As the
adsorption process proceeds, however, the available active sites on the adsorbent surface
gradually decrease, slowing down the adsorption rate of heavy metal ions. With further
increases in reaction time, surface diffusion or internal migration of some adsorbed heavy
metal ions within the composite material may occur, forming complex structures that
reduce competition for active sites and promote the formation of new adsorption sites [40].
Consequently, the removal rate may increase again as the reaction time prolongs. Eventually,
a dynamic equilibrium is reached between the adsorption and desorption of heavy metal
ions, resulting in a stable removal rate. The local enlarged view shows that under identical
reaction conditions, Ce-La-Mn exhibits superior removal rates compared to Ce-La-Pr and
Ce-La, demonstrating the universality of this doping method and the further enhancement
of Ce-La-based ternary composite performance.
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The reusability, stability, and cost-effectiveness of materials are crucial in wastewater
treatment, serving as key factors for the practical application of composites. To assess these
properties, adsorption–desorption cycling experiments were conducted. Under the same
experimental conditions as mentioned earlier, the filtered composites were immersed in
50 mL of 0.1 mol/L NaOH solution for 3 h. Subsequently, they were rinsed with deionized
water until the pH was neutral, a process repeated twice before being placed in an oven at
85 ◦C for 12 h to dry. The dried material was then reused for the subsequent cycle. This
cycling process was repeated.

The results are presented in Figure 8b. As evident from the figure, repeated cycling
leads to a gradual decrease in Cr(VI) removal efficiency for both Ce-La-Mn and Ce-La-Pr.
However, even after three cycles, the removal rate remains above 80%, indicating high
recyclability, stability, and performance retention of these materials. This demonstrates
their potential for practical applications.

Analysis of Figure 9a,c reveals the impact order of anions on Cr(VI) removal by Ce-La-
X is Cl− < SO4

2− < HCO3
−. Cl− has lower binding energy and competes less with Cr(VI) for

adsorption sites. An increase in HCO3
− and SO4

2− concentrations enhances Cr(VI) removal,
possibly due to ion competition adsorption suppressing its adsorption and reduction [41].
Lower concentrations favor adsorption of these ions, while higher concentrations slightly
improve photocatalytic Cr(VI) reduction. Figure 9b,d indicate the cations’ influence on
Cr(VI) removal: K+ < Ca2+ < Zn2+. Zn2+ forms a milky precipitate, indicating its high
oxidation level and chemical instability, competing with Cr(VI) for reaction sites [42].
Zn2+’s larger ion radius compared to K+ and Ca2+ enhances its impact on Cr(VI) removal.
However, this study considers only single ions; in practical applications, the combined
presence of multiple ions complicates adsorption and requires further investigation.
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3.3. Reaction Kinetics

Reaction kinetics is an important factor to evaluate the Cr (VI) removal performance of
composite materials. In this study, a quasi-first-order kinetic model was used to preliminary
investigate the reaction kinetics of Ce-La-X (Mn/Pr). Fit according to Equations (6) and (7):

log(qe − qt) = logqe −
K1t

2.303
(6)

t
qt

=
1

K2q2
e
+

t
qe

(7)

In the reaction equations, qe represents the equilibrium concentration of Cr(VI) ad-
sorbed (mg/g), while qt denotes the concentration at any time t (min). K1 and K2 are
the pseudo-first-order and pseudo-second-order rate constants (min−1), respectively. The
experimental results at different temperatures were fitted with both models, and the
findings are presented in Figure 10 and Table 2. Both models showed strong linearity
(R2 > 0.91), with the pseudo-second-order model exhibiting the best fit (R2 > 0.9998). This
model suggests strong interactions or multiple reaction steps in Cr(VI) removal by Ce-La-X,
indicating its suitability for describing the reaction kinetics.
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Table 2. Kinetic parameters of Cr (VI) removal by Ce-La-Pr and Ce-La-Mn.

Temperature 25 ◦C 35 ◦C 45 ◦C

Pseudo-First-Order Kinetics model
Ce-La-Mn

K1 0.02043 0.00725 0.01194
R2 0.95001 0.93181 0.94660

Pseudo-second-order kinetic model
Ce-La-Mn

K2 0.03555 0.04078 0.03965
R2 0.99987 0.99989 0.99981

Pseudo-first-order kinetic model
Ce-La-Pr

K1 0.01338 0.02146 0.03111
R2 0.91714 0.97242 0.91314

Pseudo-second-order kinetic model
Ce-La-Pr

K2 0.04107 0.04037 0.04061
R2 0.99997 0.99999 0.99998
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3.4. Reaction Mechanism

To elucidate the reaction mechanism of the composite material, the morphology,
valence state, element distribution, and content were analyzed before and after the reaction.

Figure 11 shows the SEM images of Ce-La-Mn after its reaction with Cr(VI). The
post-reaction surface exhibits a roughened texture with numerous fine, irregular particles,
which obstruct the pore structure and result in a blurred edge and reduced specific surface
area. This indicates a successful interaction with Cr(VI) in the aqueous environment. The
EDS-Mapping analysis of the reacted composite reveals a uniform distribution of Ce, La,
Mn, O, and Cr on its surface. Quantitative analysis (Table 3) confirms that O dominates,
while the atomic ratios of Ce/La (4.09) and Ce/Mn (7.37) closely align with the original
molar ratios used in its preparation (4:1 and 0.72:1). Together, these observations confirm
the successful incorporation of Cr into the composite material.
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Table 3. Element content table.

Element Wt% At%

O 30.46 75.39
Ce 49.95 17.55
La 12.32 4.29
Mn 6.84 2.38
Cr 0.43 0.39

The FTIR results (Figure 12) indicate that the presence of hydroxyl groups at 3427 cm−1

and a feature peak at 850 cm−1 [43], which remains unchanged in the three Ce-La-based
composites after the reaction, suggest that the removal of Cr(VI) is related to the presence
of hydroxyl groups on the surface of the composites. Chromate ions are adsorbed onto
the composite surface through hydrogen bonding with -OH groups, which serve as one
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of the main functional groups involved in the adsorption process [44]. Among the three
composite oxides, the Ce-La-O oxide exhibits the most prominent characteristic peak,
indicating a higher content of -OH groups in the following order: Ce-La-O > Ce-La-Mn-O >
Ce-La-Pr-O. The -OH group, being a charged polar group, can undergo redox reactions.
Coupled with the catalytic effect of CeO2, it generates Cr(OH)3. The bending vibration
characteristic peaks of Ce-OH and La-OH, as well as the peak at 1055 cm−1, exhibit blue
shifts. The stretching vibrations of Ce-O, La-O, and Mn-O bonds lead to red shifts in
their characteristic peaks. The decreased peak intensity after the reaction further indicates
the adsorption and reduction of Cr(VI). Due to differences in the electronic structure and
bonding states of Ce, La, Mn, and Pr in the oxides, their mixing may lead to electron transfer
and rearrangement, affecting the vibration frequencies of chemical bonds and resulting in
shifts in the characteristic peaks. This may also give rise to new reaction intermediates or
products compared to the original binary composites. Additionally, the introduction of the
doping element Mn appears to enhance the reaction efficiency, resulting in more Cr(VI)
being adsorbed onto the composite surface and reduced to Cr(III).
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Variations in pH affect the Zeta potential, as shown in Table 4 and Figure 13. Ce-La-Mn
has a pHZPC (point of zero charge) of 3.3, which is lower than Ce-La-Pr’s, suggesting
that Ce-La-Mn has a stronger acidic character, providing more active sites and acidic
environments conducive to the reduction of Cr(VI) ions. Under acidic conditions, Cr(VI)
ions are more likely to be reduced to trivalent chromium ions, reducing their toxicity.
Moreover, negative charges resulting from the dissociation of surface functional groups
like -OH and -COOH repel negatively charged chromate ions, preventing their adsorption
at high pH values. As pH decreases, surface functional groups protonate and become
positively charged, conferring a positive charge on the Ce-La-Mn surface. The positive
charge strongly attracts chromate anions, and unstable HCrO4

− or Cr2O7
2− ions are more

prone to occupying adsorption sites and absorbing photons for reduction under weakly
acidic conditions. Consequently, a higher removal rate of chromate is observed in weakly
acidic environments.
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Table 4. Zeta potential.

pH 3 5 6 7 9 11

Zeta potential
(Ce-La-Pr) 30.3 11.96 0.38 1.28 3.97 9.14

Zeta potential
(Ce-La-Mn) 2.53 −6.80 −7.71 −8.37 −12.00 −18.35
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Figure 14a presents the XPS spectra of Ce 3d for Ce-La-Mn before and after the reaction.
The symmetry of the spectra for both the unreacted and reacted Ce-La-Mn is poor. When
fitted according to the Ce 3d orbital peaks, the spectra can be divided into two regions
corresponding to Ce 3d5/2 (881–897 eV) and Ce 3d3/2 (898–917 eV). The Ce 3d orbitals
produce spin-orbit splitting, resulting in multiple peaks. The letters U and V represent the
spin-orbitals of 3d3/2 and 3d5/2, respectively. After the reaction, the proportion of Ce(IV)
in the Ce-La-Mn catalyst decreased from 89.47% to 72.60%, while the proportion of Ce(III)
ions increased from 10.53% to 27.4%. This indicates that Ce exists in both Ce(III) and Ce(IV)
valence states in the composite material, with the majority of Ce being in the Ce(IV) state.
During the reaction, a significant amount of Ce(IV) gains electrons and undergoes an ionic
reaction to convert to Ce(III), thereby enhancing the adsorption and photocatalytic activities
of the composite material and improving its removal efficiency [45].

Figure 14b presents the XPS spectra of O 1s for the composite material before and
after the reaction. When fitted according to the O 1s peaks, the spectra can be divided into
three regions between 528 eV and 534 eV: lattice oxygen (Olatt) at 529 eV, oxygen vacancies
(Ovs) at 531–532 eV, and adsorbed oxygen (Oads) predominantly in the form of -OH above
533 eV [46]. After the reaction, most of the lattice oxygen and all of the adsorbed oxygen
were converted into oxygen vacancies. The proportion of lattice oxygen decreased from
55.08% to 49.87%, while the oxygen vacancies increased from 40.88% to 49.87%. A higher
concentration of lattice oxygen is beneficial for enhancing the photocatalytic performance
of the composite material. Compared to Ce-La-Pr, Ce-La-Mn exhibits a higher conversion
rate of oxygen vacancies, indicating superior performance. This is consistent with the trend
in the activity of the composite material.

Figure 14c displays the XPS spectra of Mn 2p3/2 for the composite material before and
after the reaction. When fitted according to the Mn 2p3/2 peaks, three peaks can be observed
between 635 eV and 650 eV due to the shake-up effect and the presence of multiple split
peaks. These peaks, in order of increasing binding energy, correspond to Mn(II), Mn(III),
and Mn(IV). Before the reaction, the composite material contained Mn(II) at 33.33%, Mn(III)
at 54.12%, and Mn(IV) at 12.55%. After reacting with Cr(VI), the proportion of Mn(II)
decreased to 13.16%, while Mn(III) increased to 73.42% and Mn(IV) increased to 13.48%.
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This indicates that during the reaction, a significant amount of Mn(II) was converted to the
higher oxidation state of Mn(III), while a smaller portion was converted to Mn(IV). The
appearance of oxidized Mn species after the reaction suggests a correlation between the
reduction of Cr(VI) and the oxidation of Mn to higher states. This suggests that doping
Mn into Ce/La oxides facilitates the formation of Cr(III), which favors the subsequent
immobilization of chromium salts.
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Figure 14d presents the XPS spectra of Cr 2p for the composite material before and
after reaction. Through peak fitting based on Cr 2p, three forms of Cr were observed in the
reacted composite material, including Cr(OH)3 accounting for 29.1%, Cr2O3 accounting for
66.24%, and Cr(VI) accounting for 4.67%. These findings indicate that upon reaction, the
majority of Cr(VI) has been reduced to Cr(III), with only a minor fraction of Cr(VI) being
physically adsorbed onto the composite material. Compared to Ce-La-Pr, the elevated
proportion of Cr(OH)3 in Ce-La-Mn indicates a richer array of active sites, thereby promot-
ing the formation of Cr(III)-OH- complexes during the reaction. This academic language
underscores the enhanced reduction of Cr(VI) by Mn-doped Ce/La oxides and highlights
the potential advantages of the composite material in chromium salt immobilization.

Based on previous analysis, we hypothesize a reaction mechanism for Ce-La-X(Mn/Pr)-
O in removing Cr(VI) from aqueous solutions (Figure 15). Photocatalysis triggers Cr(VI)
to cleave hydroxyl groups on the composite surface, inducing charge instability. This
instability is stabilized by electron transfer, reducing Cr(VI) to the more stable Cr(III). The
presence of Ce, La, and Ce(III) species likely enhances this reduction. Cr(VI) ultimately con-
verts to Cr(III), which dissolves or adsorbs as Cr(OH)3 on the composite surface. A minor
fraction of Cr(VI) adsorbs directly onto active sites. The redox reaction can be schematically
represented as follows:

Ce-La-X(Mn/Pr)-O + hv → e− + h+ (8)

H2O + 2h+ → 1/2O2 + 2H+ (9)

Cr2O7
2− + 14H+ + 6e− → 2Cr3+ + 7H2O (10)
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4. Conclusions

In this study, utilizing the co-precipitation method, we successfully fabricated a Ce-
La-based multicomponent composite oxide optimized with a Ce:La:X(Mn/Pr) molar ratio
of 0.72:0.18:0.1. The material was crystallized for 3 h and subsequently calcined at 500 ◦C
for 4 h using ammonia as the precipitating agent. Under photocatalytic conditions, a mere
0.04 g of this composite exhibited remarkable Cr(VI) removal efficiency, achieving over
98% removal within 15 min from a 50 mL solution containing 20 mg/L Cr(VI). Notably,
even after three cycles of use, the removal efficiency remained above 80%. The Ce-La-Mn
composite oxide exhibited dual functionalities of reduction and adsorption, demonstrating
exceptional performance in Cr(VI) removal. The introduction of photocatalysis significantly
enhanced the reduction efficiency of Cr(VI) by the composite, while the doping of Mn
profoundly augmented the interaction among metal elements. This interaction not only
facilitated the generation of surface active centers on the Ce-La oxide, promoting in-situ
“reduction–adsorption”, but also bolstered the surface electron transport capacity and
broadened the visible light absorption range of the Ce-La oxide, thereby facilitating the
conversion of Cr(VI) to Cr(III). Unlike conventional Ce-La binary oxides, the Ce-La-Mn
oxide did not exist as a mere mixture of Ce, La, and Mn oxides. Instead, the mutually doped
oxides and Ce-La-Mn solid solutions synergistically enhanced the performance of Cr(VI)
reduction and adsorption. This study offers a novel approach for the preparation of rare
earth multi-component composite oxides and their efficient utilization in Cr(VI) removal.
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