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Abstract: To establish a safety monitoring method for the uplift pressure of concrete dams, spatiotem-
poral information from monitoring data is needed. In the present study, the method of ordering points
to identify the clustering structure is employed to spatially cluster the uplift pressure measuring
points at different locations on the dam; three distance indexes and two clustering evaluation indexes
are used to realize clustering optimization and select the optimal clustering results. The Bayesian
panel vector autoregressive model is used to establish the uplift stress safety monitoring model for
each category of monitoring point. For a nonstationary sequence, the difference method is selected
to ensure that the sequence is stable, and the prediction is carried out according to the presence or
absence of exogenous variables. The result is that the addition of exogenous variables increases the
accuracy of the model’s forecast. Engineering examples show that the uplift pressure measurement
points on the dam are divided into seven categories, and classification is based mainly on location
and influencing factors. The multiple correlation coefficients of the training set and test set data of
the BPVAR model are more than 0.80, and the prediction error of the validation set is lower than
that of the Back Propagation neural network, XGBoost algorithm, and Support Vector Machines. The
research in this paper provides some reference for seepage monitoring of concrete dams.

Keywords: safety monitoring of concrete dam uplift pressure; OPTICS clustering; BPVAR model;
exogenous variables; clustering optimization

1. Introduction

The long-term health and service of concrete dams is important for the safety of
water control and is an important public safety issue related to economic life and social
stability [1–3]. With the continuous construction of concrete dam projects, the geological
conditions of dam site areas have become increasingly complex. To prevent engineering
accidents caused by structural damage, it is necessary to adopt an appropriate dam safety
monitoring strategy [4]. In monitoring concrete dams for safety, the seepage safety of dam
foundations is an important issue. According to statistics [5], a large proportion of concrete
dam failures are caused by dam foundation seepage problems. The Bouzey gravity dam in
France [6], the Austin gravity dam in the United States, and the Malpasset dam in France
were affected by dam break accidents caused by seepage in the dam foundation. In dam
seepage monitoring, commonly employed mathematical models include statistical models,
hybrid models, fuzzy mathematical models, and time series models [7]. These models
are single-point monitoring models. When the number of measuring points is large, the
possibility of false alarms greatly increases [8], and the spatial distribution information of
the monitored quantities is not considered.

In recent years, to change the previous dam safety monitoring modelling methods
from “point” analysis to “area” analysis, scholars have successively proposed methods such
as spatiotemporal distribution models, principal component analysis, multioutput machine
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learning models, and panel data models. By introducing the coordinates of observation
points as influencing factors, Gu et al. [9] formulated a spatiotemporal distribution model
for arch dam deformation. Based on the single surveying point deformation monitoring
theory, Wei et al. [10] established a space–time distribution model by introducing spatial co-
ordinates and using the finite element method (FEM) to calculate the hydraulic component.
Cheng et al. [11] successfully separated environmental effects and noise interference from
monitoring data by analyzing the covariance matrix of the multi-dimensional monitoring
data of dams. Building upon this analysis, they proposed two multivariate dam safety
monitoring models. Popescu et al. [12] proposed unconventional technology based on
blind source separation for main building monitoring and dam monitoring. Zhu et al. [13]
used the data collected by the dam monitoring automation system to propose a least
squares Support Vector Machine method, combining phase space reconstruction and a
Bayesian framework for the defects of previous monitoring data verification methods in
verifying the effectiveness of monitoring the physical quantity data. Xu [14] used Support
Vector Machines and Relevance Vector Machines as research objects and constructed a
dual-objective optimization prediction model of super-high arch dam displacement that in-
tegrates the spatial correlation of deformation by optimizing key parameters. Hu et al. [15]
proposed a partition deformation prediction model for super-high arch dams based on
a principal component hierarchical clustering method and panel data model. Based on
the clustering method in the field of spatio-temporal data mining, Hu et al. [16] extracted
the similarity characteristics of deformation sequences and established a cluster analysis
model of high concrete dam deformation measuring points based on panel data analysis
method. Wang et al. [17] created and validated a mixing coefficient panel model of dam
displacement at multiple monitoring points.

The above time–space model of dam safety monitoring needs to predict the effect
according to a forecast factoring environmental variables. When there is an absence of
environmental variables or when the selection of environmental forecasting factors is
difficult, a time series model can be utilized for analysis. On the other hand, the panel
data model of a time series can capture the dynamic changes of data in time and space,
and the spatiotemporal forecasting effect is good. A vector autoregressive (VAR) model
is combined with panel data to form a panel data-based vector autoregressive (PVAR)
model, which is a breakthrough from the planar to space-based time series model. The
model can consider the relationship between multiple variables at the same time and has
a wide range of applications [18–20]. The benefit of employing multivariate modeling
is that more accurate forecasting results can be obtained by pooling the data instead of
only using the data of a single series [21]. Under normal circumstances, the least squares
method, method of moments, and maximum likelihood estimation methods are utilized
for parameter estimation in the PVAR model. Pesaran [22] noted that due to cross-sectional
heterogeneity, conventional estimation techniques are no longer suitable for panel data.
Zellner [23] and Canova et al. [24] employed Bayesian estimation methods for the PVAR
model. Assuming prior information, the posterior distribution of the model is derived
using the Gibbs sampling method, yielding estimates for the parameters, and the prediction
analysis involving multiple periods in the future can be realized [25]. Compared with
the traditional estimation method, the Bayesian panel vector autoregressive model is
better in its mathematical properties and has less parameter estimation advantages when
considering the spatial and temporal information of panel data.

This paper proposes a safety monitoring model that considers space–time information
on the uplift pressure of a dam foundation. First, to identify the clustering structure [26], the
ordering points are employed. The clustering method performs spatial clustering analysis
on the uplift pressure monitoring data, calculates the distance matrix using different
distance indicators, and selects the optimal clustering result based on the evaluation of
the clustering indicators. Second, the stationarity test and optimal lag order calculation
are carried out on the panel data of various measuring points, and the BPVAR model with
exogenous variables is used to establish a safety monitoring model for various measuring
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points. These steps address the problems where the temporal and spatial ranges covered by
the monitoring data of a single pressure measuring tube are limited, that they only reflect
the local seepage behavior at the location of the measuring point, and that the temporal
and spatial laws of the uplift pressure of the dam foundation described are not uniform
and coordinated. Lastly, an engineering example is selected to verify the application effect
of the uplift pressure safety monitoring model proposed in this paper.

2. Basic Theory and Methods
2.1. Time Series Similarity Measure

At present, commonly used time series difference measurement methods are mainly
divided into two types: distance measurement and similarity measurement. Generally
speaking, the distance function needs to satisfy the properties of non-negativity, symmetry,
triangle inequality, the distance to itself is 0, and the size of the distance should be pro-
portional to the degree of difference between sequences. Common distance measurement
methods mainly include Euclidean distance, Manhattan distance, Mahalanobis distance,
and so on. In contrast to the distance metric, the value of the similarity metric is inversely
proportional to the difference. The most commonly utilized similarity methods include the
Pearson correlation coefficient and Bharbyian distance. This paper describes three methods:

(1) Cosine similarity [27]

Cosine similarity is a method to measure the similarity between two vectors by
calculating the cosine value between them. When the cosine similarity is 0, they are
linearly independent; when the cosine similarity is 1, they are completely similar. The
calculation formula is presented as follows:

cos(x, y) =
∑n

i=1 xiyi√
∑n

i=1 xi
2
√

∑n
i=1 yi

2
(1)

where x and y are n-dimensional vectors and are the i-th dimension data of vectors x and
y, respectively. A smaller value represents a higher similarity. In contrast, a larger value
represents a weaker similarity.

(2) Bilateral slope distance [28]

Typically, the calculation of the vertical distance between two points relies solely
on Manhattan or Euclidean distances, disregarding their shape characteristics. However,
shape similarity is crucial in determining the matching mode of similar points. Relying
solely on vertical distance may result in incorrect matching. The slope of a line segment
connecting two points serves as a significant shape feature. Bearing this characteristic in
mind, Hossein and Abbas et al. [29] proposed the utilization of bilateral slope distance as
an alternative to the conventional distance metric, employing it to denote the slope. The
bilateral slope distance is calculated based on the Euclidean distance and the slope distance
of each segment, and the slopes of the sections on both sides are considered. In the time
series TS = [x1,x2, . . .,xL], the value measured on a straight line is defined and calculated
as follows:

θl = Arctan
(

xl+1 − xl
tl+1 − tl

)
(2)

where l ∈ [1, 2, . . .,L]; tl+1 and tl are the corresponding time nodes for xl+1 and xl , respectively.
Two matrices of measurement points are introduced: TS1 = [x1

1, x1
2, . . ., x1

n] and
TS2 = [x2

1, x2
2, . . ., x2

m]. The calculation formulas are presented as follows:

dBSD

(
TS1

i , TS2
j

)
=

∣∣∣x1
i − x2

j

∣∣∣+ ∣∣∣sin θ1
i − sin θ2

j

∣∣∣+ ∣∣∣sin θ1
i−1 − sin θ2

j−2

∣∣∣ (3)

where x1
i and x2

j are the TS1
i a of the i-th item and j-th item, respectively; sin θ1

i and sin θ2
j

are the x1
i right slope and x2

j right slope, respectively; and sin θ1
i−1 and sin θ2

j−2 are the x1
i
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left slope and x2
j left slope, respectively. To balance the size, two sequences are used in TS1

i

and TS2
j and were previously normalized to [−1, 1].

(3) Dynamic Time Warping (DTW) [30]

First, two time series, Q = [q1, q2, . . ., qm] and C = [c1, c2, . . ., cn], are introduced
and arranged into an m × n matrix. Each point (i, j) in the matrix represents the distance
measure of qi and cj. In this paper, the absolute distance is used to calculate

d(i, j) =
∣∣qi − cj

∣∣ (4)

After constructing the matrix, a bending path is found by dynamic programming
to minimize the cumulative distance between time series Q and C. The curved path
W = {w1, w2, · · · , wk} is a grid point sequence, where K satisfies (max(m,n) ≤ K ≤ m
+ n − 1), and a mapping function is defined lw: (Q, C)→W. In this way, the correspondence
between Q and C becomes a curved path, where the k-th element of the curved path is

wk = lw
(
qi, cj

)
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ K (5)

The curved path W needs to satisfy the following properties:

(1) Bounded condition: {
w1 = lw(q1, c1)
wK = lw(qm, cn)

(6)

(2) Continuity: {
wk = lw

(
qi, cj

)
wk+1 = lw

(
qi′ , cj′

) ⇒ i′ ≤ i + 1, j′ ≤ j + 1 (7)

(3) Monotonicity: {
wk = lw

(
qi, cj

)
wk+1 = lw

(
qi′ , cj′

) ⇒ i ≤ i′, j ≤ j′ (8)

After satisfying the distance calculation and bending path, the DTW distance of Q and
C can be calculated. This distance represents the cumulative distance of the best alignment
path obtained by dynamic warping, which is used to measure the similarity between the
two sequences.

DTW(Q, C) = min

[
k

∑
i=1

wi

]
(9)

In the dynamic time warping algorithm, the cumulative distance of the curved path
is calculated by the recursive relationship. The cumulative distance of each point can be
expressed by the following formula:

y(i, j) = d(i, j) + min{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)} (10)

where y(i, j) is the cumulative distance of column j, row i, d(i, j) is the distance measure
between the time series qi and cj, and min{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)} are the
minimum values of the cumulative distance between the three adjacent spots.

2.2. Clustering and Evaluation
2.2.1. OPTICS Clustering Algorithm

The purpose of OPTICS is to perform clustering based on density, and OPTICS is
an improved version of DBSCAN (density-based spatial clustering of applications with
noise). In contrast to the DBSCAN algorithm, the OPTICS algorithm does not directly
generate clustering results. Instead, it produces a cluster ordering for each point in the
sample set, reflecting the density of data points and their distance to the nearest cluster
center. The principle of the OPTICS algorithm is to start from a core sample in the sample
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set and obtain all the sample points related to it to generate a cluster. The advantages of the
OPTICS algorithm are that it is insensitive to input parameters and is more suitable for use
on large datasets.

The OPTICS algorithm needs two input parameters: the neighbourhood radius of
the sample point and the minimum number of points (MinPts) within the neighbourhood
radius. According to these two input parameters, the density of a sample point can be
calculated, and based on the density, adjacent sample points with similar densities can
be determined to be the same cluster. When at least one of the MinPts sample points
is contained within the neighbourhood radius of the sample point, the sample point is
referred to as a core point (set), and the set of all the core points is referred to as the core
set. When the core point is not classified, it is put into the seed set (seeds). The core point
satisfies the following condition:

Nε(x) ≥ MinPts (11)

where Nε(x) is the sample point and xε is the number of neighbouring points in
the neighbourhood.

The core distance of sample point x is defined as follows:

cd(x)
{

undefinition, if |Nε(x)| < MinPts
d
(
x, NM

ε (x)
)
, if Nε(x) ≥ MinPts

(12)

The core distance of a sample point x is the minimum radius threshold that makes x a
core point. When x is not a core point, the core distance is not defined.

The reachable distance of sample point y is defined as follows:

rd(y, x)


undefinition,

if |Nε(x)| < MinPts
max(cd(x), d(x, y)),
if Nε(x) ≥ MinPts

(13)

If the distance from point y to the core point x exceeds the core distance of x, the
reachable distance of point y is the actual distance from point y to point x. Contrarily, the
reachable distance of point y is equal to the core distance of point x.

As shown in Figure 1, we assume that the initial parameter sets the minimum number
of points in the neighborhood radius MinPts to three. At point Pε, if the count of neighbor-
ing points within the neighborhood radius exceeds three, then point P is marked as the
core point and its core distance is the third closest point to it q3. The distance between this
point and point P is cdP = distance(P,q3)

. The distance from P is less than cdp, q1, and q2.
The reachable distance is the core distance P; that is, rd(P,q1)

= cdP, and the distance from P
is greater than cdp of q4 and q5. The reachable distance is the distance between them and P;
that is, rd(P,q4)

= d(P,q4)
.
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2.2.2. Clustering Index Evaluation

The clustering index can be roughly divided into two categories: one is the ”external
index”, where the clustering results are evaluated by comparing the clustering results
with the known models; the other category is “internal indicators”, which directly check
the clustering results. In this paper, two internal indicators are used to evaluate the
clustering results.

(1) Silhouette coefficient [31]

The silhouette coefficient combines the similarity between the sample and the cluster
to which it belongs and the dissimilarity with the nearest other clusters. The formula is
as follows:

S =
b − a

max(a, b)
(14)

where a is the average distance of the samples in the cluster and b is the average distance of
the samples between clusters. For S, the value is between −1 and 1, and the closer to 1, the
better the clustering result.

(2) Calinski–Harabasz index [32]

The essence of the Calinski–Harabasz index is the ratio of inter-cluster distance to
intra-cluster distance. Its calculation process is similar to the calculation of variance, so it is
also called the variance ratio criterion. The formula is as follows:

CHI =
BCSS/(k − 1)

WCSS/(n − k)
(15)

where k is the number of clusters, n is the total number of data points, BCSS (between-
cluster sum of squares) is the weighted sum of squares between each cluster centroid and
the overall data centroid, and WCSS (within-cluster sum of squares) is the data point and
its respective sum of squares of the Euclidean distance between the cluster centroids. A
higher value usually indicates a better clustering effect.

2.3. BPVAR Model Theory
2.3.1. Unit Root Test for Panel Data

The unit root test is a commonly employed hypothesis testing method for testing the
stationarity of time series data. If there is a unit root, it is a nonstationary series; if there is
not, it is a stationary series. To verify the panel monitoring data of the piezometer, whether
to include a unit root, the following panel autoregressive model is used [33]:

yi,t = ρiyi,t−1 + z′i,tγi + εi,t (16)

where i = 1, 2, M; t = 1, 2, M; ρi represents the autoregressive coefficient; z′i,tγi represents
the size of the individual effect; and εi,t is the error term.

In view of the possible autocorrelation of the error term in Equation (16), Levin et al. [34]
proposed the Levin–Lin–Chu test method to test whether the panel monitoring data of the
pressure measuring tube contains the unit root.

yi,t = δyi,t−1 + z′i,tγi +
pi

∑
j=1

θijyi,j−1 + εi,t (17)

where δ is the autoregressive coefficient, θij is the statistic, and pi is the lag order of
the model.

The LLC test requires that the δ values of the individuals are equivalent. This prereq-
uisite is difficult to achieve in actual situations, which is a shortcoming of the LLC test. In
order to solve this problem, Im et al. [35] proposed the Im–Parasram–Shin unit root test
method. The test performed by the IPS is a Lagrangian multiplier test [36]:
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yi,t = δiyi,t−1 + z′i,tγi + εi,t (18)

where δi is the autoregressive coefficient.
The Fisher-type test is a statistical test method which is usually used to compare the

goodness of fit of two or more models. We used the four methods proposed by Choi [37] to
test whether the panel monitoring data contain the unit root and synthesize the individual p
values into Fishers’ statistics. Using one of the four methods of “inverse chi-square change”.

P = −2
n

∑
i=1

ln Pi
d→ χ2(2n), (Ti → ∞) (19)

where Ti represents the time dimension of measuring point i. Due to the negative sign,
the larger the P statistic, the more inclined it is to reject the null hypothesis of the “panel
unit root”.

For the analysis and forecasting of nonstationary time series, some processing needs
to be performed to make them stationary. The commonly employed processing methods
for nonstationary time series include the following:

(1) Difference method

The difference method refers to performing first-order or multi-order differences on
a nonstationary time series to obtain a stationary time series. The first-order difference
usually refers to the difference between two adjacent terms and is calculated as follows:

y′t = yt − yt−1 (20)

Multiple-order differencing can be sequentially performed until the series
satisfies stationarity.

(2) Seasonal difference method

If the time series has seasonality, it can be processed by using the seasonal difference
method. The seasonal difference usually refers to the difference between two adjacent
terms in each season, and the formula is presented as follows:

y′t = yt − yt− f (21)

where f represents the length of the season. The seasonal difference can be iterated until
the series satisfies stationarity.

(3) Sliding average method [38]

The moving average method computes the mean value of the time series within the
moving window to smooth out the noise and trend. The sliding average is calculated by
methods such as the simple moving average and weighted moving average.

2.3.2. Test of Lag Order on Panel Data

The lag order selection of panel data is important in panel data analysis because
the selection of too high a lag order may lead to excessive complexity of the model, re-
sulting in overfitting and model distortion. Too low may lead to information loss or
residual autocorrelation. Therefore, for the optimal lag order test of panel data, scholars
usually propose some information criteria to avoid over-fitting problems. The commonly
applied criteria are the Akaike information criterion, Bayesian information criterion, and
Hannan–Quinn information criterion.

The AIC [39] serves as a standard for assessing the goodness of fit of a model, expressed
as follows:

AIC = 2k − 2ln(L) (22)

where k represents the number of parameters in the model and L denotes the likelihood
function value of a given model.
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Both the BIC and AIC are statistical metrics used for model selection and comparison.
The main difference between the AIC and BIC is the degree to which they penalize model
complexity. The AIC imposes a lighter penalty on model complexity, while the BIC imposes
a heavier penalty. Thus, when selecting a model, the BIC is more likely to choose a simpler
model, thus avoiding overfitting. The formula is as follows [40]:

BIC = kln(b)− 2ln(L) (23)

where b is the sample size.
HQIC is similar to the AIC in model selection, considering the balance between

goodness of fit and model complexity. Compared with the AIC, HQIC imposes stricter
penalties on model complexity when the sample size is small, so it may be more suitable
for model selection in some cases. The formula is as follows [41]:

HQIC = −2ln(L) + ln (ln(b))× k (24)

2.3.3. Bayesian Estimation of PVAR

The general form of the panel vector autoregressive model is as follows:

yi,t =
N

∑
j=1

p

∑
E=1

Ae
ij,tyj,t−e + Ci,txt + εi,t (25)

where yi,t is a c × 1 vector, which represents the c endogenous variables of the measuring
point i at the time point t; Ae

ij,t is an n × n coefficient matrix, which represents the response
of measuring point i to the e-th lag term of measuring point j at time t; xt is an m × 1 vector,
representing exogenous variables; Ci,t is an n × m coefficient matrix, which represents the
correlation between endogenous variables and exogenous variables; and εi,t is the n × 1
residual error vector of measuring point i. In the present study, the panel data of uplift
pressure measuring points were input into the model as endogenous variables, and the
upstream water level, precipitation, temperature, and timeliness were input as exogenous
variables. After adding exogenous variables, the form is expressed as follows:

yi,t =
N

∑
j=1

p

∑
E=1

Ae
ij,tyj,t−e + Ui,txt + εi,t (26)

where Ui,t is the coefficient matrix relating the endogenous variables to the exogenous
variables; xt is the water level factor {Hu1, Hu2, Hu3, Hu4, Hu5, Hu6, Hd}, rainfall factor {P1,
P2, P3, P4, P5, P6}, temperature factor {sin ( 2πl

365 ), cos ( 2πl
365 ), sin ( 4πl

365 ), cos ( 4πl
365 )}, and ageing

factor {σ, lnσ}. An m × 1 exogenous vector consisting of Hu1, Hu2, Hu3, Hu4, Hu5, and Hu6
is the reservoir water level on the observation day, the average reservoir water level on the
first day, two days before, three to four days before, five to fifteen days before, and sixteen
to thirty days before the observation day, respectively. Hd is the downstream water level
on the corresponding date; P1, P2, P3, P4, P5, and P6 is the precipitation on the observation
day and the average precipitation on the first day, two days before, three to four days
before, five to fifteen days before, and sixteen to thirty days before the observation day,
respectively; l is the number of days; and σ is the number of days from the initial stage of
water storage or engineering measure divided by 100; that is, to increase by 1.0 for every
100 days [1].

Due to the complexity of the general form in practice, Zellner et al. [42] proposed an
alternative approach, employing a hierarchical prior identification scheme, which essen-
tially follows the method outlined by Jarocinski [43]. In the alternative method proposed
by Zellner et al. [42] the only estimated parameter is β. Other fundamental parameters
are assumed to be known, including the group of residual covariance matrices Σi and the
vector autoregressive coefficient b, Σb. The posterior distribution of the model is as follows:

π(β, b, Σb, Σ |y ) ∝ π(y|β, Σ)π(β|b, Σb )π(b)π(Σb)π(Σ) (27)
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where π(β, b, Σb, Σ |y ) is the complete posterior distribution, π(y|β, Σ) is the likelihood
function, π(β|b, Σb ) is the conditional prior distribution, π(b)π(Σb) is two overarching
priors, and π(Σ) is the prior.

The π(y|β, Σ) is as follows:

π(y|β, Σ) ∝
N

∏
i=1

|Σb|−1/2exp
(
−1

2
(βi − b)′(Σb)

−1(βi − b)
)

(28)

The prior distribution of Σi is the classical diffusion prior, which is given by the
following formula:

π(Σi) ∝ |Σi|−(n+1)/2 (29)

The method provided by the Gibbs sampler is the basis for establishing the model [44].
Hence, it is imperative to derive the posterior distribution of parameters βi, b, Σb, and Σi.
The conditional distribution of βi is represented as follows, with any term not involving βi
being treated as a proportionality constant:

π(βi|β−i , y, b, Σb, Σ) ∝ π(y|βi, Σ)π(βi|b, Σb ) (30)

where β−i is used to represent all β coefficients minus βi the collection of variables.
The conditional distribution of b is represented as follows, with any term not involving

b being treated as a proportionality constant:

π(b |y ,β, Σb, Σ) ∝ exp
(
−1

2
(b −βm)

′
(

N−1Σb

)−1
(b −βm)

)
(31)

where βm is the arithmetic mean of vector βi.
The conditional distribution of Σb is represented as follows, with any term not involv-

ing Σb being treated as a proportionality constant:

π(Σb |y ,β, b, Σ) ∝ λ
− s

2−1
1 exp

(
−ν

2
1

λ1

)
(32)

where s = h + s0, ν = ν0
N
∑

i=1

{
(βi − b)′(Ωb)

−1(βi − b)
}

.

The conditional distribution of Σi is represented as follows, with any term not involv-
ing Σi being treated as a proportionality constant:

π(Σi|Σ−i , y,β, b, Σb) ∝ |Σi|−(T+n+1)/2exp
(
−1

2
tr
[

Σ−1
i

∼
Si

])
(33)

where
∼
Si = (YI − XIBI)

′(YI − XIBI).

3. Building Method of the Concrete Dam Uplift Pressure Safety Monitoring Model

A flowchart of the uplift pressure safety monitoring method for concrete dam founda-
tions based on the OPTICS clustering method and BPVAR model proposed in this paper is
shown in Figure 2, and the main steps are listed as follows:

(1) The uplift pressure monitoring data sample set D and the neighbourhood radius at
each measuring point are input. The minimum number of points in the neighbourhood
radius MinPts.

(2) The distance matrix is calculated based on the DTW, cosine similarity, and bilateral
slope distance.

(3) Based on the matrix calculated in (2), the OPTICS algorithm is used for clustering.
(4) Spatial clustering results for different distance matrices using the clustering index

silhouette coefficient and variance ratio criterion and the results with the silhouette
coefficient closest to one and the largest Calinski–Harabasz index were selected. This
result was the optimal clustering result. The uplift pressure measuring points with
similar heights were utilized to create panel data.
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(5) The stability of each type of uplift pressure measuring point’s panel data is assessed
through the application of LLC, IPS, and ADF-Fisher methods.

(6) If a series is nonstationary, the difference method is used to convert it to a
stationary series.

(7) According to Equations (22)–(24), the order of the model was determined by using the
AIC, BIC, and HQIC, and the minimum information criterion was utilized to ascertain
the optimal lag order of the model.

(8) Whether there is monitoring data of exogenous variables in the data is determined.
If so, the exogenous variables (water level, precipitation, temperature, and time) are
entered to establish the model according to Equation (26); otherwise, the model is
created according to Equation (25).

(9) By using the Gibbs sampling method to infer the posterior distribution of the model
parameters, the fitting results of the uplift pressure monitoring data are obtained from
the posterior probability distribution of the model parameters. The model uses one-
step advance forecasting. For the case of no exogenous variables, the forecast result is
calculated according to Equation (25), and it consists mainly of two parts: endogenous
variables and the residual vector. The number of lag terms of endogenous variables
is calculated by the optimal lag order determined. For the presence of exogenous
variables, the forecast result is calculated according to Equation (26) and is composed
of three parts: endogenous variables, exogenous variables, and residual vectors. The
number of lag terms of endogenous variables is determined by the optimal lag order.
The prediction interval of the BPVAR model represents a 95% confidence interval.Water 2024, 16, x FOR PEER REVIEW 11 of 23 
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4. Engineering Examples
4.1. Project Overview

The water retention system of the hydropower station consists of a roller-compacted
concrete gravity dam reaching a maximum height of 113.0 m, with a 308.5 m overall length
of the dam crest, and a dam crest elevation of 179.0 m. Its main task is to generate electricity.
The uplift pressure holes in the dam foundation are distributed in two areas: the first area
is in the vertical foundation corridor, and the second area is in the horizontal corridor. The
UP1~UP16 measuring points are located in the first area, and the UP17~UP25 side points
are located in the second area. There are a total of 25 measuring points, as shown in Figure 3.
The UP8, UP10, UP12, UP15, and UP16 measuring points lost more data and so did not
appear. The values measured at all the points included manual and automated values.
The period from November 2002 to November 2008 was the time series of automated
monitoring, and the monitoring frequency was once a day. The dam is located in Yongding
County, Fujian Province. The dam site is in the middle of the cotton beach canyon section of
the main stream of the Tingjiang River. The valley of the dam site is narrow, a “V”-shaped
valley with basically symmetrical terrain, and the mountains on both sides are strong.
The bedrock is early Yanshanian biotite granite with medium-fine grain structure and
massive structure, and the slightly weathered rock is dense and hard. There are also granite
porphyry veins, diorite lamprophyre veins, and multiple sets of faults in the rock mass.
The rock mass of the bank slope of the river valley is seriously weathered, except for the
whole, strong, weak, and slightly weathered zones, and has the characteristics of spherical
and interlayer weathering. There are many boulders left in the weathered rock, and the
permeability of the rock mass is weak. The engineering geological conditions for dam
construction are good.
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4.2. Spatial Cluster Analysis

In the above piezometric tubes, the monitoring series UP1~UP7, UP9, UP11, UP13,
UP14, and UP17~UP24 cover more than one year, and the data from these measuring points
are reliable. Therefore, the OPTICS clustering method was selected to spatially analyze the
above 20 measuring points. For the cluster analysis, the interval was between 1 January
2004 and 31 December 2008. A total of 1553 data points for each piezometric tube were
included in the cluster analysis. Figure 4 shows the correlation analysis diagram for the
20 measuring points, and Figure 5 shows the 20 measuring points. The smallest cumulative
distance map of the measuring points was constructed. The uplift pressure monitoring data
of the 20 piezometers were clustered by the OPTICS density clustering method using the
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distance matrix calculated by the three distance indicators (cosine similarity, bilateral slope
distance, and DTW), and a visualization diagram of the clustering results was obtained,
as shown in Figure 6. Table 1 lists the evaluation indicators of the three clustering results.
The silhouette coefficient uses the value of −1~1, and the value of the silhouette coefficient
based on the DTW distance is closest to 1. The variance ratio criterion is in the range of
0~∞, and the variance based on the DTW distance is the maximum. Therefore, overall, the
clustering result based on the DTW distance was the best. Based on the results of clustering
evaluation indicators, the clustering results of OPTICS based on the DTW distance prevailed
in the present study when the uplift pressure measuring points of the dam foundation
were divided into seven categories. The water level of the piezometer for each type of
measuring point is shown in Figure 7. Table 2 is the classification table of seven types of
measuring points.
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Figure 6. OPTICS clustering results for the uplift pressure measuring points on the dam foundation.
(a) Based on the cosine similarity; (b) based on the bilateral slope distance; (c) based on the DTW
distance.

Table 1. Cluster evaluation indicators.

Evaluation Indicators Cosine Similarity Bilateral Slope Distance DTW

Silhouette coefficient 0.51 0.55 0.58
Variance ratio criterion 2684 2848 2850
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Figure 7. Changes in the water level at the seven measuring points. (a) Category I; (b) category II;
(c) category III; (d) category IV; (e) category V; (f) category VI; (g) category VII.
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Table 2. Classification of the seven types of measuring points.

Category Instrument ID Number Similar Reasons

Category I UP1, UP2, UP3 The measuring point is located in front of the grouting curtain in the same
dam section (dam Section 6).

Category II UP4, UP5, UP13, UP14 The measuring point is adjacent to and arranged behind the grouting curtain.
Category III UP6, UP7 The measuring point is located in the same dam section (dam Section 5) and near the right bank.
Category IV UP9, UP11 The measuring point is located in the middle section of the dam and close to the riverbed.
Category V UP17, UP18 The measuring points are located in the same lateral corridor (5 dam sections).
Category VI UP19, UP20, UP21, UP23 The measuring point is located in the lateral corridor and near the upstream water level.

Category VII UP22, UP24 The measuring point is located in the lateral corridor and near downstream, which is greatly
affected by the downstream water level.

4.3. BPVAR Model Construction
4.3.1. Stationary Test of Panel Data

For non-stationary panel data, the model estimation results may be biased. Therefore,
before constructing the model, the unit root test should be performed on the panel data.
Using the fourth type of measurement point as a reference, the data show a significant
growth trend; at this time, it is a nonstationary time series. The processing method in
the present study involves using the logarithmic difference in the variables, as shown in
Figure 8, to convert the data into a stationary time series and then perform a stationarity
test. In this study, the LLC, IPS, and ADF-Fisher tests are employed to examine the unit root
of the panel data concerning uplift pressure. The specific test results are listed in Table 3. It
can be seen from Table 3 that the p values are all less than 0.1, rejecting the null hypothesis
of ‘nonstationary panel data’, so the panel data is stationary.
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Table 3. p value of the unit root test for panel data.

Type of Measuring Point LLC IPS ADF-Fisher

Category I 0.01 0.01 0.02
Category II 0.02 0.01 0.00
Category III 0.03 0.02 0.03
Category IV 0.00 0.00 0.05
Category V 0.02 0.01 0.09
Category VI 0.00 0.00 0.01
Category VII 0.06 0.04 0.09
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4.3.2. Selection of the Optimal Lag Order

The optimal lag order of the model was determined using the AIC, BIC, and HQIC
criteria. The details are shown in Table 4. The optimal hysteresis order of the first type
of monitoring point, fifth type of monitoring point, and sixth type of monitoring point is
fourth; the optimal hysteresis order of the second type and fourth type of monitoring point
is third; and the optimal hysteresis order of the third and seventh type of measuring points
is second.

Table 4. Test of the optimal lag order for panel data.

Type of Measuring Point Lag Order AIC BIC HQIC

Category I

1 −5.26 −5.25 −5.22
2 −6.15 −6.12 −6.08
3 −6.22 −6.18 −6.12 *
4 −6.25 * −6.20 * −6.11

Category II

1 −17.09 −17.06 −17.02
2 −17.21 −17.16 −17.08 *
3 −17.25 * −17.19 * −17.07
4 −17.25 −17.16 −17.01

Category III

1 −5.00 −4.96 −4.89
2 −5.25 −5.18 * −5.06 *
3 −5.26 * −5.15 −4.98
4 −5.26 −5.12 −4.89

Category IV

1 −7.93 −7.93 −7.91
2 −8.32 −8.31 −8.29
3 −8.35 −8.33 * −8.30 *
4 −8.36 * −8.33 −8.29

Category V

1 −6.75 −6.72 −6.68
2 −7.08 −7.04 −6.96 *
3 −7.11 −7.04 * −6.93
4 −7.13 * −7.04 −6.89

Category VI

1 −4.71 −4.70 −4.69
2 −4.77 −4.76 −4.74
3 −4.79 −4.77 −4.74
4 −4.81 * −4.79 * −4.75 *

Category VII

1 −3.88 −3.81 −3.80
2 −3.87 −3.86 * −3.84 *
3 −3.87 −3.86 −3.83
4 −3.86 * −3.85 −3.81

Note: * Denotes the optimal lag order.

4.3.3. Model Adaptation and Forecasting Analysis

This paper creates panel data consisting of identical monitoring points and uses the
BPVAR model to fit and predict.

The number of pre-iterations and effective iterations of Gibbs sampling are set to
2000 and 1000, respectively. Panel data from seven types of monitoring points are parti-
tioned into three segments: the learning set, the test set, and the verification set. The time
span of the learning set is from 1 January 2004 to 10 December 2008, and includes a total of
1533 sets of data for model fitting and hyperparameter adjustment. The test set contains
10 sets of data from 11 December 2008 to 21 December 2008 to evaluate model performance
and possible adjustments. The verification set covers 10 sets of data from 21 December
2008 to 31 December 2018 to verify the robustness and prediction error of the model. After
debugging several times, the overall tightness of the model is determined to be 0.5, the lag
attenuation parameter is 1, and the constant term is 0.

The seventh type of measuring point data is adopted, and the fitting results of the
model measuring points of UP22 and UP24 are shown in Figure 9. The multiple correlation
coefficients between the fitted value and the measured value are 0.98 and 0.94, respectively,
and the fitting effect is good.
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points; (b) fitting results of UP24 measuring points.

The prediction results of the UP22 and UP24 models with and without the addition
of exogenous variables are shown in Figure 10. Each measuring point in the test set was
represented by 10 data samples. The prediction error, calculated as the difference between
the predicted and actual values, was evaluated for each sample in the test dataset of the
model with the addition of exogenous variables roughly fluctuated at approximately 0.1 m,
indicating that the prediction accuracy of the BPVAR model improved after the addition of
exogenous variables.
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variables added); (d) UP24 measuring point prediction results (exogenous variables added).
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In order to verify the accuracy of the BPVAR model prediction, a BPVAR model, BP
(Back Propagation) neural network, XGBoost algorithm, and Support Vector Machine (SVM)
are used to predict and analyze the uplift pressure of UP22 and UP24 measuring points, as
shown in Figure 11. Based on the prediction outcomes, the BPVAR model demonstrates
greater consistency between its predicted values and the actual measurements compared
to the other three models. Furthermore, the predicted values fall within the 95% confidence
interval, suggesting that the BPVAR model exhibits clear advantages in prediction accuracy.
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To thoroughly assess the predictive accuracy of the BPVAR model, calculate and
evaluate the mean absolute error, mean absolute percentage error, mean square error, and
root mean square error for both the BP model, SVM model, XGBoost model, and BPVAR
model. The seventh type of measuring point data is adopted; the prediction error indexes
for each model are presented in Table 5. A radar chart is constructed based on the error
indexes from Table 5, as shown in Figure 12. Observing the radar chart, it becomes evident
that the MAE, MAPE, MSE, and RMSE of the BPVAR model surpass those of the BP model,
SVM model, and XGBoost model. This highlights the superior predictive accuracy of the
BPVAR model, offering valuable insights for uplift pressure prediction and analysis.

Table 5. Evaluation of model prediction accuracy.

Monitoring Point Assessment Metrics BPVAR BP SVM XGBoost

UP22

MAE 0.114 0.848 0.228 0.125
MSE 0.05 1.033 0.071 0.058

MAPE 0.124 0.921 0.246 0.135
RMSE 0.224 1.017 0.267 0.241

UP24

MAE 0.121 0.173 0.529 1.319
MSE 0.056 0.066 0.285 1.873

MAPE 0.149 0.191 0.586 1.473
RMSE 0.237 0.257 0.534 1.369



Water 2024, 16, 1190 19 of 21

Water 2024, 16, x FOR PEER REVIEW 20 of 23 
 

 

(a) (b) 

Figure 11. Model validation results for the seventh type of measuring point. (a) UP22; (b) UP24. 

To thoroughly assess the predictive accuracy of the BPVAR model, calculate and eval-
uate the mean absolute error, mean absolute percentage error, mean square error, and root 
mean square error for both the BP model, SVM model, XGBoost model, and BPVAR model. 
The seventh type of measuring point data is adopted; the prediction error indexes for each 
model are presented in Table 5. A radar chart is constructed based on the error indexes 
from Table 5, as shown in Figure 12. Observing the radar chart, it becomes evident that 
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Figure 12. Radar diagram of prediction errors for the seventh type of surveying point. (a) UP22
measuring point prediction error radar chart; (b) UP24 measuring point prediction error radar chart.

5. Conclusions

The OPTICS algorithm was used to cluster the uplift pressure measuring points, and
three different distance indexes were used to calculate the distance matrix. Clustering
optimization was realized according to the two clustering evaluation indexes, and the dam
foundation measuring points were divided. Then, a BPVAR safety monitoring model was
established for each type of measuring point. The actual engineering data was verified,
and the conclusions are summarized as follows:

(1) Through the calculation of the clustering evaluation index, the DTW-based clustering
results among the OPTICS clustering results calculated by three different distance
indicators were found to be consistent with the variation pattern of the uplift pressure
monitoring value. Research on engineering applications has shown that the uplift
pressure measuring points of a water conservancy project dam foundation can be
divided into seven types, and the measuring points of the same type show similar
variation in the law of uplift pressure.

(2) After adding exogenous variables to the BPVAR model, the multiple correlation
coefficients between the fitted values and the measured values of the training set
and the test set data exceeded 0.80, indicating that the modeling effect of the model
was good, and the predicted uplift pressure fell within the 95% confidence interval,
indicating that the BPVAR model performed well in interval prediction. The MAE,
MAPE, MSE, and RMSE predicted by the BPVAR model were smaller than those of
the BP model, the SVM model, and the XGBoost model.

In this study, although the BPVAR model shows good interval prediction ability, the
hyperparameter values in the model are still subjective; hyperparameter values refer to the
overall tightness of the model and the lag attenuation parameter. Therefore, future research
will focus on finding more effective methods to determine the most accurate hyperparameters.
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