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Abstract: Remote sensing (RS) is often employed to estimate suspended sediment concentration
(SSC) in rivers, and the availability of hyperspectral imagery enhances the effectiveness of RS-based
water quality monitoring due to its high spectral resolution. Yet, the necessity of hyperspectral
imagery for SSC estimation in rivers has not been fully validated. This study thus compares the
performance of hyperspectral RS with that of multispectral RS by conducting field-scale experiments
in shallow rivers. In the field experiments, we measured radiance from a water body mixed with
suspended sediments using a drone-mounted hyperspectral sensor, with the sediment and riverbed
types considered as controlling factors. We retrieved the SSC from UAV imagery using an optimal
band ratio analysis, which successfully estimated SSC distributions in the sand bed conditions with
both multispectral and hyperspectral data. In the vegetated bed conditions, meanwhile, the prediction
accuracy decreased significantly due to the temporally varying bottom reflectance associated with
the random movement of vegetation caused by near-bed turbulence. This is because temporally
inhomogeneous bottom reflectance distorts the relationship between the SSC and total reflectance.
Nevertheless, the hyperspectral imaging exhibited better prediction accuracy than the multispectral
imaging, effectively extracting optimal spectral bands sensitive to back-scattered reflectance from
sediments while constraining the bottom reflectance caused by the vegetation-covered bed.

Keywords: suspended sediment; shallow river; hyperspectral imagery; multispectral imagery; UAV;
optimal band ratio analysis

1. Introduction

In riverine systems, it is critically important to understand the dynamics of suspended
sediments, which directly affect river flow, water quality, and morphological processes
in rivers [1,2]. The acquisition of high-resolution spatial data of suspended sediment
concentration (SSC) is required to investigate the physical interactions between suspended
sediments and environmental factors [3,4]. Conventionally, in-situ measurements such as
sampling water or deploying optical sensors at study sites are adopted for SSC observation
in rivers [5,6]. While the in-situ observation provides high-resolution temporal SSC data,
this conventional method is often laborious, not time efficient, and typically yields discrete
spatial data [7]. Rivers have spatially intricate flow and water quality patterns due to
inherent topographical features like meander and confluence, thereby leading to a spatially
heterogeneous distribution of SSC. Therefore, spatially continuous SSC distributions are
essential to enhance our mechanical understanding of suspended sediment transport in
aquatic environments.
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With the recent advances in remote sensing (RS), numerous studies have successfully
retrieved a high-resolution map of water quality constituents such as cyanobacteria, colored
dissolved organic matter, and suspended sediments from multispectral satellite images [8–10].
The RS-based SSC measurement relies on the optical characteristics of a target water body.
Once sunlight penetrates into the water column, it experiences (1) the radiance reflected
from the riverbed; (2) the back-scattered radiance from the water body; (3) the radiance
reflected at the water surface; (4) the path radiance of the atmosphere [11]. Among them,
SSC is most sensitive to the back-scattered radiance characterized by the back-scattering
signals from sediment particles in the water column. In consequence, higher values of
the back-scattered radiance are observed in turbid water with a higher SSC than those in
clear water.

Previous studies of RS-based SSC observation have predominantly focused on estu-
arine and coastal environments owing to the feasibility of acquiring ample spatial data
from satellite imagery and the negligible effect of the bottom reflectance ascribed to deep
water conditions [12–14]. However, the RS application to SSC measurements in riverine
environments has been limited, primarily because of the relatively narrow channel width
of rivers [9,15]. Despite the recent availability of Sentinel-2 and 3 satellites, which have
an enhanced spatial resolution of 5–10 m, the spectral resolution remains a significant
limitation, with a bandwidth of 60–80 nm. This limited spectral resolution is known to be a
critical drawback of satellite-based water quality monitoring in rivers [16,17].

Recent researches adopted UAV (unmanned aerial vehicle)-assisted hyperspectral
RS to overcome the limitations of satellite-based RS. This approach offers higher spatial
and spectral resolutions than those of satellite imagery, as depicted in Figure 1, making it
suitable for measuring water depth, cyanobacteria concentration, and SSC in rivers and
streams [16–20]. Some of these studies leveraged on enhancing the prediction accuracy of
SSC by establishing empirical relationships between in-situ measured target values and the
reflectance of hyperspectral bands. Although the former studies successfully validated the
feasibility of hyperspectral-based RS for SSC retrieval in rivers, there have been insufficient
studies comparing the performance of hyperspectral RS with that of multispectral RS in
estimating the SSC. This lack of comparison undermines the necessity of a high spectral
resolution attributed to hyperspectral imagery for accurate SSC measurements.
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The goal of this study is to assess the performance of hyperspectral imaging over
multispectral imaging incorporated with the spectral resolution of conventionally used
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satellite imagery for SSC retrieval in rivers. To achieve this objective, we conduct field
tracer experiments in a real-scale experimental flume by varying the conditions of the
injected sediment and bottom (riverbed) types, and measure SSC using a laser-diffraction
analyzer for the acquisition of in-situ SSC data. Simultaneously, the spectral data of
suspended sediments are acquired with UAV-mounted hyperspectral sensors. Then, we
analyze the relationships between the remotely sensed reflectance and in-situ measured
SSC by deriving empirical equations from an optimal band ratio algorithm. Eventually, the
prediction accuracy of SSC using the hyperspectral approach is compared with that using
the multispectral approach to unravel the importance of hyperspectral information on SSC
estimation in rivers.

2. Materials and Methods
2.1. Field Experiment

To evaluate hyperspectral and multispectral retrievals of SSC across a comprehen-
sive range of SSC and sediment compositions, we employ hyperspectral data along with
corresponding SSC data obtained through a sediment injection experiment conducted
in a real-scale experimental channel. This channel is located at the River Experimental
Center of the Korea Institute of Civil Engineering and Building Technology in Andong,
South Korea. For bottom-type separation, the channel is partitioned into sections with
a vegetated and sand bed, as shown in Figure 2. Featuring a trapezoidal cross-section
of natural river dimensions, it spans a length of 500 m, a top width of 11 m, a depth of
2 m, and three meandering reaches with the sinuosity of 1.2, 1.5, and 1.7. The discharge
can be supplied from 1–8 m3/s by pumping water from the nearby Nakdong River. The
experimental reach extends a length of 180 m from the injection point to the measurement
section (Figure 2a). To investigate the effect of bottom reflectance on SSC retrieval, the
experiments are conducted with two bottom types: the vegetated bed (Figure 2b) and sand
bed (Figure 2c). The length of vegetation is approximately 0.1 m, and a natural arid sand
bottom condition is achieved after removing the vegetation at the measurement section.
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The water depth is set to shallow conditions with a mean depth ranging from approxi-
mately 0.55 to 0.60 m and a maximum depth of 0.9 m. This shallow condition underscores
the significance of bottom reflectance in the overall radiance profiles, even in high turbidity
conditions [20]. The sediment is injected into the midpoint of the water depth using a
specially designed mixer on the bridge and a connected rubber hose. As indicated in Table 1,



Water 2024, 16, 1275 4 of 14

quartz sand (QS) and yellow loess (YL) are used in the experiment for exploring the impact
of the spectral variability inherent to sediment compositions on the RS of SSC. Specifically,
QS primarily exhibits a grayish color with minimal variation in reflectance from visible
to near-infrared regions, resulting in low visibility. In contrast, YL demonstrates a high
reflectance variation, particularly near the red wavelength, leading to high visibility. The
spectral characteristics of these sediments in dry and wet conditions can be found in Kwon
et al. (2023b) [21]. The sediment density and particle size are also substantially different.
As shown in Table 2 of the particle size distribution, QS sediments are mainly composed of
sand particles of which 90% have a diameter larger than 62 µm, and YL consists of about
81% of silt particles with a diameter of less than 62 µm. In this study, thereby, we consider
QS and YL as sand sediments and silt sediments, respectively, to investigate the impact
of particle size on the RS of SSC. YL tends to float similarly to the passive scalar owing to
its low density and particle size. This characteristic implies that the vertical distribution is
close to uniform. However, QS can be transported in a stratified condition near the bed
due to its heavy weight. This trait suggests that detecting QS in rivers could be challenging
because solar energy is exponentially attenuated within the water column [22]. Thus, 20 kg
more of QS is injected compared to YL.

Table 1. Experimental condition of each case.

Case Sediment
Type

Bottom
Type

Mean
Depth (m)

Sediment
Density (mg/m3)

d50
(µm)

Injected
Mass (kg)

Injected
Volume (L)

Data Acquisition
Date

Case 1
QS

Sand 0.59 2.36 165 60 127 28 April 2021
Case 2 Vegetation 0.55 2.36 165 60 128 27 April 2021
Case 3

YL
Sand 0.59 1.23 16.3 40 127 28 April 2021

Case 4 Vegetation 0.55 1.23 16.3 40 127 27 April 2021

Table 2. Particle distribution density (%) of injected suspended sediments.

Sediment Type Clay (d < 4 µm) Silt (4 < d < 62 µm) Sand (62 µm < d)

QS 0.35 3.43 96.2
YL 18.9 80.6 0.44

During the experiment, a calibrated laser-diffraction analyzer (LISST-200X, Sequoia
Scientific Inc., Bellevue, WA, USA) is used for the in-situ SSC measurement. This sensor
is deployed in the middle of the measurement section. Simultaneously, spatio-temporal
hyperspectral images (HSIs) are collected by a drone. In this setup, a microHSI 410 SHARK
hyperspectral camera (Corning, Glendale, AZ, USA) is mounted on the DJI M600 drone
(DJI, Shenzhen, China) which was connected using a DJI Ronin 3-axis handheld gimbal
to ensure stable orthophotos. The microHSI 410 SHARK is a push-broom type sensor
covering a spectral range of 400–1000 nm. The captured image comprises 150 spectral
bands and 682 spatial pixels per line. The drone hovers at 25 m above the water surface at
the measurement section, capturing HSIs at a sampling rate of 120 Hz under 29.5 degrees
field of view. Therefore, line-scanning HSIs over time are acquired at the measurement
section with a spatial resolution of 1.89 cm. The captured images are converted from a
digital number to radiance and corrected the spatial nonuniformity using non-uniformity
corrections [23]. Subsequently, radiometric correction is conducted to achieve a reflectance
version of images, indicating a normalized value regardless of solar energy. The detailed
pre-processing method is elaborated in Kwon et al. (2022a) [17].

From the corrected images, the reflectance spectra corresponding to the SSC measure-
ment are extracted by spatially averaging five pixels surrounding the SSC measurement
points. The temporal interval of the SSC measurement is 1.5 s so that the reflectance spectra
are also temporally averaged to the same interval to align both datasets. The dataset of
the SSC and reflectance used in this study is summarized in Table 3, and it entails spectral
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variability arising from sediment and bottom characteristics. This comprehensive experi-
mental setup allows for a more thorough and in-depth assessment of both hyperspectral
and multispectral approaches by decomposing confounding factors such as sediment and
bottom variability.

Table 3. Summary of the matched dataset of SSC and reflectance.

Case Case 1 Case 2 Case 3 Case 4

Count 356 228 314 437
SSC (ppm) 26.67 ± 20.76 19.97 ± 8.12 65.34 ± 67.90 45.19 ± 38.22

Reflectance range 0.01–0.24 0.01–0.32 0.01–0.33 0.04–0.15

2.2. Optimal Band Ratio Algorithm

In the RS of suspended sediments in water environments, the light intensity from the
water column recorded on a spectral sensor is a predictor of retrieving SSC from aerial
images. This key variable reaching the sensor can generally be decomposed into four major
sources as follows:

Lu(λ) = Lb(λ) + Lc(λ) + Ls(λ) + Lp(λ) (1)

where Lu(λ) is the total radiance reaching the sensor; Lb(λ) is the bottom radiance; Lc(λ)
is the back-scattered radiance from the water body; Ls(λ) is the upwelling radiance from
the water surface; Lp(λ) is the path radiance through the atmosphere; and λ denotes
the wavelength of the light [24]. For a practical application of Equation (1), Lp(λ) can
be neglected using atmospheric correction algorithms [25,26], and its influence can be
minimized using the low-altitude flight of a UAV. Also, the radiance from the water surface
Ls(λ) can be eliminated by minimizing the surface reflection with glint removal algorithms
or orthographic imaging techniques [27,28].

Even though Lc(λ) is the principal component that controls the spatio-temporal vari-
ability of SSC, it is hardly feasible to interpret separately with Lb(λ) because isolating Lb(λ)
from Lu(λ) is difficult due to the optical complexity of a riverbed composed of various bed
materials such as sand, gravel, rock, and vegetation [24]. Moreover, both Lc(λ) and Lb(λ)
are affected by water depth. Thus, many previous studies tried to simplify the complex
relationship between Lc(λ) and Lb(λ) and suggested simplified radiative transfer equations
as follows [9,22,29]:

Rrs(λ) =
Lu(λ)

Ed(λ)
(2)

Lu(λ)

Ed(λ)
= R∞(λ)

(
1 − e−K(λ)H

)
+

ρb
π

e−K(λ)H (3)

where Rrs is the remotely sensed reflectance; Ed is the irradiance, R∞ is the reflectance of
an infinitely deep water column; H is the water column depth; K(λ) is the attenuation
coefficient; and ρb is the bottom albedo, which is a distinctive characteristic depending
on the bottom type. These equations show that the water body radiance exponentially
increases with the attenuation coefficient and water depth as described in the first term on
the right-hand side of Equation (3). This term has a maximum value when the water depth
is assumed as an infinitely deep condition (Rrs(λ) = R∞(λ)). The second term describes the
bottom reflectance, which is also expressed as K(λ) and H. The difference with the first term
is that the bottom reflectance exponentially decreases as water depth H increases.

As indicated in Equation (3), the two major terms Lb(λ) and Lc(λ) are affected by
various physical factors. The water body radiance Lc(λ) changes with sediment properties
(particle size, density, mineral components, etc.) since R∞ and K(λ) are influenced by both
the inherent optical property of sediment particles (back-scattering) and light conditions
of apparent optical properties [29–32]. The bottom radiance Lb(λ) varies significantly
with bottom types because the bottom albedo ρb is generally characterized by the optical
characteristics of bottom materials. Sediment properties can also affect the bottom radiance
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attributed to the attenuation coefficient K(λ), as shown in Equation (3). Consequently, the
spectral characteristics of the riverbed and sediment can be considered as key factors to
retrieve the SSC from spectral images.

To retrieve the SSC with varying sediment and bed types from remotely captured
HSIs and selected multispectral images (MSIs), we employ an optimal band ratio analysis
(OBRA) to analyze the relationships between the SSC and reflectance. OBRA is the method
widely used for interpreting the optical attributes of a target variable and determining
its appropriate spectral bands from multispectral data [21,33,34]. OBRA is encoded to
extract effective spectral bands from HSI data by iteratively comparing the coefficient of
determination (R2) between the SSC and band ratios of all combinable spectral band pairs.
Based on the calculation results of R2, the best pairs of spectral bands with the highest
correlation can be determined as effective spectral bands, which are used as input variables
to estimate SSC. The process of OBRA is illustrated in Figure 3.
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In this study, the SSC is estimated using a log-transformed single-band ratio as an
independent variable as follows:

SSC ∝ ln
[

R(λ1)

R(λ2)

]
(4)

where R is the total reflectance at a specific wavelength λ. After selecting the optimal band
pairs with the highest accuracy of SSC regression on a band ratio, an OBRA-based linear
regression model is constructed to predict SSC as follows:

SSCp = aX + b
(

X = ln
[

R(λ1)

R(λ2)

])
(5)

where SSCp is the predicted SSC, and a and b are the regression coefficients.
This study compares the performance of SSC prediction between hyperspectral and

multispectral approaches by using all spectral bands of HSI data and only using selected
MSI data. We predict SSC with 3 different input spectral datasets of (1) HSI data; (2) MSI
data of Landsat-9 bands; and (3) MSI data of Sentinel-2 bands. The multispectral bands (MSI
data) are selected considering the band wavelengths of Landsat-9 and Sentinel-2, which
are often used for the RS of suspended sediments in coastal and inland water [7,15,35].
However, the direct use of the satellite imagery in the study reach is not available since the
channel width of the study reach is much smaller than the spatial resolution of the Sentinel-
2 and Landsat-9 images. For this reason, we generate the MSI data equivalent to the spectral
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bands of the above satellite images using the field-measured HSI data at a spatial resolution
of 1.89 cm as a following procedure. The input spectral data of the multispectral approaches
for OBRA are produced by averaging the HSI band data to each corresponding band of
the representative Landsat-9 and Sentinel-2 bands. For example, for the Landset-9 Band 1,
which has a wavelength ranging 430–450 nm, the reflectance values of the corresponding
HSI bands to the wavelength of 430–450 nm are arithmetically averaged and considered
as an input reflectance of the Landset-9 Band 1 for OBRA. Each dataset consists of 4 cases
depending on the sediment and bed types (Table 3), and multispectral bands are selected
within the HSI wavelength range of 400–1000 nm to yield MSI data representing Landsat-9
and Sentinel-2 bands by repeating the above band-averaging process with HSI data for
each case. Table 4 summarizes the MSI data and the HSI data used for OBRA.

Table 4. Summary of multispectral and hyperspectral data used for OBRA.

Type of Dataset Spectral Range Number of Bands Used

Multispectral bands
(MSI data)

Landsat-9 Band 1–Band 8
(430–880 nm) 6

Sentinel-2 Band 1–Band 9
(432–955 nm) 9

Hyperspectral bands
(HSI data) - 400–1000 nm 150

3. Results and Discussion
3.1. Multispectral Retrieval of SSC

The OBRA results with MSI data to derive effective spectral bands for the study cases
are shown in Figures 4 and 5 that indicate R2 maps, which describe the correlation between
the measured SSC and log-transformed single-band ratios with all possible pairs of the
Landsat-9 and Sentinel-2 bands. According to these figures, R2 values significantly differ
depending on a change in the bed type. The sand bed cases show a satisfactory level of
prediction accuracy with an R2 of 0.77–0.82, while a relatively low accuracy (R2 of 0.26–0.38)
is obtained from the cases of a vegetated bed. This result demonstrates that vegetation is a
factor that distorts the relationship between the SSC and total reflectance, magnifying the
contribution of bottom reflectance in the UAV-measured total reflectance used as a predictor
of SSC [36]. In specific, turbulence near the riverbed causes vegetation to move randomly,
and this phenomenon can induce high levels of noise in the total reflectance, whereas a
sand bed is relatively stable against turbulent flow. Thus, the non-fixed bottom condition
of a vegetated bed results in temporally non-stationary bottom reflectance, thereby leading
to low R2 values in estimating the concentration of both QS and YL cases, even if the
YL case shows slightly higher R2 values due to its inherently brighter characteristics [21].
Nevertheless, the sediment type is less sensitive to the correlation between the SSC and
reflectance compared to the bed type. Some previous field-based RS research also reported
that a bottom reflectance induced by vegetation cover substantially affects the spectral
characteristics of a water body in shallow water, thereby complicating the interaction
between reflectance and target matters [20,36]. Kwon et al. (2023b) [21] investigated the
impact of sediment and bottom characteristics on the RS of SSC by decomposing the fraction
of the sediment signal and bottom signal from total reflectance. This study demonstrated
that the fraction of the bottom signal is much larger than that of the sediment signal in the
vegetated bed, and this behavior decorrelated the relationship between the total reflectance
and measured SSC in the shallow and vegetated rivers.
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From the OBRA results, we notice a difference in selecting effective spectral bands
for each case. SSC estimation with the Landsat-9 and Sentinel-2 bands results in no signif-
icant difference in the R2 values. For the effective spectral bands, both the multispectral
approaches show a similar trend that one of the effective bands is in blue (band 2 for
Landsat-9 and band 1, 2 for Sentinel-2) or green bands (band 3 for Landsat-9 and Sentinel-2)
and another band is in red (band 4 for Landsat-9 and Sentinel-2), red-edge (band 5, 6 for
Sentinel-2), and near-infrared (band 5 for Landsat-9 and band 7, 8 for Sentinel-2). However,
some discrepancy is found in selecting red bands between the two multispectral methods.
This is because Sentinel-2 has a fine spectral resolution near the red bands, while Landsat-9
is constrained to a coarse spectral resolution near the red bands with a wide wavelength
range of band 8 (panchromatic band: 500–680 nm).

3.2. Hyperspectral Retrieval of SSC

The OBRA results based on HSI data are displayed in Figure 6. The overall aspects of
both the correlation and effective spectral bands show similar trends with the MSI data-
based OBRA results. The hyperspectral approach exhibits combinations of blue or green
and red-related spectral bands for the effective spectral bands. Also, the R2 values decrease
noticeably with the emergence of vegetation cover on the streambed. Specifically, the
sand bed cases characterized as temporally homogeneous conditions of bottom reflectance
present higher prediction accuracy with an R2 of 0.80–0.82 compared to those (R2 of
0.35–0.39) of the vegetated bed cases, honoring the reduced impact of bottom reflectance
on RS-measured total radiance, as previously explained in the section of multispectral SSC
retrieval. This result reveals that the bottom type exerts a more significant control than the
sediment type on not only the multispectral SSC estimation but also the hyperspectral SSC
estimation.
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The hyperspectral approach uses a much larger number of spectral bands (150 bands)
than the multispectral approaches, allowing us to identify a high R2 area at a high resolution,
as shown in Figure 6. The difference between effective spectral bands of the MSI and HSI
data is approximately less than 100 nm and shows a roughly similar tendency in the R2

values across the band pairs. For all the study cases, relatively high values of R2 mainly
appear within 500–800 nm (Figure 6). The discrepancy of the selected effective bands
between QS and YL can be explained by the difference in the intrinsic optical properties of
each sediment type. Notice that the optimal band ratios differ substantially with a change
in bed type, and this trend is also observed in the multispectral approaches (Figure 5).

According to the bed type, different interactions between back-scattering reflectance
and bottom reflectance lead to the different selection of optimal wavelengths in OBRA.
In the sand bed conditions, the back-scattered reflectance from the injected sediments
controls the total reflectance more dominantly than bottom reflectance because the sand
bed generates spectrally homogeneous bottom conditions. Both the suspended sediments
and sand bed exhibit similar optical characteristics; however, the suspended sediments
hinder the bottom signal and are less attenuated by the water column. This relatively strong
back-scattered reflectance results in a high correlation between the SSC and total reflectance.
In the same context, OBRA determines effective spectral bands at the wavelength sensitive
to the back-scattered reflectance for the sand bed cases. While for the vegetated bed cases,
OBRA is encoded to seek effective bands at the wavelength, where the effect of bottom
reflectance on total reflectance is minimized relatively to back-scattered reflectance since
the temporally changing bottom reflectance associated with the arbitrary movement of
vegetation induced by near-bed turbulence weakens the correlation between the SSC and
total reflectance.

The comparison results with the multispectral approaches indicate that the hyper-
spectral approach shows an overall better performance in estimating the SSC for all the
study cases. This can be confirmed with the improved R2 values obtained from the HSI
data against the MSI data. Here, the largest difference of 0.09 between the MSI data of the
Sentinel-2 bands and the HSI data is observed in the cases of QS with a vegetated bed,
and the mean absolute percent error (MAPE) decreases to around 7% in the QS–vegetation
case, as shown in Table 5. In addition, the MAPE values for all the study cases decrease
with the difference increasing up to about 9% between the hyperspectral approach and the
multispectral approach based on the Landsat-9 bands. Especially in the vegetated bed cases,
prediction accuracy is improved with the HSI data because the hyperspectral approach
is advantageous of specifying effective spectral bands at a high spectral resolution. This
advantage allows us to more precisely extract the spectral bands which most constrain the
impact of vegetation-induced bottom reflectance on total reflectance for retaining a strong
correlation between the SSC and total reflectance. A relatively high MAPE is found in the
YL cases owing to the large fluctuation in the measured YL concentration (Table 3) resulting
from the material properties of YL. The fine and cohesive YL sediments might experience
adsorption/desorption processes more frequently and resuspend to a water body more
actively than coarse and cohesionless QS sediments [37]. Moreover, YL sediments could
be more affected by turbulence while they transport in the flowing water body due to the
small particle size, and turbulent diffusion stimulates the random motion and resuspension
of the suspended particles [38]. Thus, the complex physical interplay between settling,
resuspension, adsorption/desorption, and turbulent diffusion possibly contributes to the
aforementioned strong variability of YL concentration as well as high levels of noise in the
total reflectance.

In spite of the meaningful findings from the hyperspectral application to SSC re-
trieval, the hyperspectral approach and the multispectral approaches incorporated with the
Landsat-9 and Sentinel-2 bands both demonstrate satisfactory performance in estimating
the SSC, especially for spectrally homogeneous bottom conditions. In perspective of cost
efficiency, therefore, the use of hyperspectral data in SSC estimation should be carefully
considered, although the hyperspectral SSC retrieval shows an overall better performance



Water 2024, 16, 1275 11 of 14

relative to the multispectral approaches. If the sufficient spectral specification of optical
sensors for a target matter is achieved, the multispectral approaches are also capable of ac-
curately reproducing SSC distributions in a water body less affected by bottom reflectance,
such as the sand bed cases of this study [39]. However, effective spectral bands and the
predictive equations derived from OBRA highly depend on both sediment and bottom
types. This result interprets that the additional efforts to control the spectral variability
arising from streambed conditions in shallow water are required to resolve the locality
problem for its global application.

Table 5. Summary of OBRA results for all study cases.

Dataset Sediment
Particle Type Bed Type R2 Optimal Bands MAPE (%)

Hyperspectral
(HSI data)

QS
Sand

0.82 527 nm/743 nm 17.0
YL 0.80 607 nm/619 nm 37.9
QS Vegetated 0.35 467 nm/607 nm 45.9
YL 0.39 567 nm/803 nm 84.5

Landsat-9
(MSI data)

QS
Sand

0.79 Band 3 (560 nm)/Band 5
(865 nm) 18.7

YL 0.77 Band 3 (560 nm)/Band 8
(590 nm) 38.8

QS Vegetated 0.29 Band 2 (480 nm)/Band 8
(590 nm) 51.2

YL 0.34 Band 2 (480 nm)/Band 5
(865 nm) 93.6

Sentinel-2
(MSI data)

QS
Sand

0.81 Band 2 (492.4 nm)/Band
6 (740.5 nm) 16.0

YL 0.78 Band 3 (559.8 nm)/Band
5 (704.1 nm) 40.3

QS Vegetated 0.26 Band 1(442.7 nm)/Band
4 (664.6 nm) 52.7

YL 0.38 Band 3 (559.8 nm)/Band
8 (832.8 nm) 84.1

4. Conclusions

This study compared the performance of hyperspectral imaging with that of multi-
spectral imaging in estimating the SSC in riverine environments. We carried out field-scale
tracer experiments and measured radiance from a water body, where suspended sediments
are artificially injected, using UAV-mounted hyperspectral sensors with 150 spectral bands.
In the experiments, the riverbed and sediment types were considered as controlling fac-
tors for quantifying the effect of bottom reflectance and the inherent optical properties of
sediments on SSC retrieval in rivers. We could successfully estimate the concentration of
quartz sand and yellow loess using OBRA in the condition of shallow water overlying the
sand bed. The key findings from this work can be summarized as:

Both multispectral and hyperspectral approaches accurately estimated the variability
of SSC in the non-vegetated bed condition with an R2 of about 0.8, while a larger discrepancy
between estimation and observation was found in YL compared to QS due to a relatively
high fluctuation in SSC associated with its smaller particle size.

The hyperspectral approach exhibited superior performance in estimating the SSC in
the vegetated bed conditions, honoring its higher spectral resolution, which is effective to
define the effective spectral bands maximizing the back-scattering signal from suspended
sediments while minimizing bottom reflectance. However, prediction accuracy decreased
substantially in the vegetated bed because vegetation cover induces the inhomogeneous
optical conditions of the riverbed.

Despite the aforementioned advantages of the hyperspectral approach in the veg-
etated bed conditions, a similar performance was found in estimating the SSC in the
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non-vegetated bed conditions when comparing the hyperspectral data to the multispectral
data corresponding to the Landsat-9 and Sentinel-2 bands.

Consequently, the present work elucidated that the riverbed conditions significantly
impact RS-based SSC monitoring in shallow rivers since vegetation cover on the riverbed
distorts the relationship between the SSC and total reflectance, exacerbating the effect of
bottom reflectance in estimating the SSC. Even though the hyperspectral imaging showed
an overall better performance for SSC estimation under the vegetated bed conditions due
to its high spectral resolution compared to the multispectral imaging, the results of SSC
estimation in this study revealed that a global or stationary regression model is limited in
resolving the spatio-temporally varying spectral properties of a water body, particularly
caused by the bottom reflectance of the riverbed in the shallow water conditions. To address
this constraint of the global regression model, some papers combined clustering approaches
with regression and successfully enhanced the transferability of regression models under
optically complex conditions by classifying spectrally different bottoms [19,40]. Using
machine learning regression can be beneficial in extracting important features that explain
the optical variability of the water body from various spectral bands to address the spectral
heterogeneity of the riverbed. However, these advanced approaches still require further
assessment to be developed into a comprehensive global regression model applicable to
both multispectral and hyperspectral data. Therefore, an important next step of this study
would be to integrate and evaluate a broader range of approaches for resolving the spatio-
temporal changes in the optical features of a water body, thereby enabling more accurate
estimations of SSC in rivers.
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