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Abstract: Considering the increased risk of urban flooding and drought due to global climate change
and rapid urbanization, the imperative for more accurate methods for streamflow forecasting has
intensified. This study introduces a pioneering approach leveraging the available network of real-
time monitoring stations and advanced machine learning algorithms that can accurately simulate
spatial–temporal problems. The Spatio-Temporal Attention Gated Recurrent Unit (STA-GRU) model
is renowned for its computational efficacy in forecasting streamflow events with a forecast horizon
of 7 days. The novel integration of the groundwater level, precipitation, and river discharge as
predictive variables offers a holistic view of the hydrological cycle, enhancing the model’s accuracy.
Our findings reveal that for a 7-day forecasting period, the STA-GRU model demonstrates superior
performance, with a notable improvement in mean absolute percentage error (MAPE) values and
R-square (R2) alongside reductions in the root mean squared error (RMSE) and mean absolute error
(MAE) metrics, underscoring the model’s generalizability and reliability. Comparative analysis with
seven conventional deep learning models, including the Long Short-Term Memory (LSTM), the
Convolutional Neural Network LSTM (CNNLSTM), the Convolutional LSTM (ConvLSTM), the
Spatio-Temporal Attention LSTM (STA-LSTM), the Gated Recurrent Unit (GRU), the Convolutional
Neural Network GRU (CNNGRU), and the STA-GRU, confirms the superior predictive power of
the STA-LSTM and STA-GRU models when faced with long-term prediction. This research marks
a significant shift towards an integrated network of real-time monitoring stations with advanced
deep-learning algorithms for streamflow forecasting, emphasizing the importance of spatially and
temporally encompassing streamflow variability within an urban watershed’s stream network.

Keywords: streamflow forecasting; river discharge; groundwater level; STA-LSTM; STA-GRU

1. Introduction

Hydrological forecasting involves predicting streamflow, rainfall–runoff, and other
hydrological variables, which are vital for water resource management, environmental
planning, and addressing hydrological extremes such as floods, droughts, and variations in
streamflow [1–3]. In the context of streamflow forecasting, the utilization of groundwater
level data has become increasingly significant, underpinned by the hydrological principle
of the interaction between groundwater and surface water. The variation in groundwater
levels not only reflects the recharge of groundwater resources following precipitation
infiltration but also indicates the contribution of groundwater to river flow, especially in
predicting and mitigating drought impacts [4,5].

Understanding the relationship between groundwater levels and streamflow is crit-
ical for effective water resource management and proper preparation for drought condi-
tions [6–8]. The fluctuations in groundwater levels play a pivotal role in influencing soil
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moisture availability, directly impacting the occurrence and duration of soil drought condi-
tions [9–11]. During drought periods, groundwater is a critical source of moisture through
capillary action, supporting plant growth and maintaining soil hydration [12,13]. How-
ever, a persistent decline in groundwater levels disrupts this replenishment mechanism,
gradually depleting soil moisture storage and exacerbating soil drought severity.

Moreover, lowering groundwater levels can also lead to the upward migration of
soil salts, exacerbating soil salinization issues, which negatively affect vegetation cover
and agricultural productivity [14–16]. Therefore, monitoring and modeling groundwater
levels are crucial in developing effective drought early warning systems and response
strategies. A deeper understanding of groundwater and soil moisture dynamics enables
more accurate predictions of drought likelihood and severity, providing a scientific basis
for water resource management and agricultural irrigation planning.

The advancement of remote sensing technology and Geographic Information Sys-
tems (GIS) has made monitoring and predicting groundwater levels more precise and
efficient [17–19]. Data fusion techniques allow for integrating groundwater level moni-
toring data with other hydro-meteorological data, providing more comprehensive and
accurate data support for streamflow forecasting.

Despite the potential value of groundwater level data in streamflow forecasting, their
application has challenges and limitations [20]. For instance, the acquisition of groundwater
level data may be constrained by the density of monitoring networks and monitoring
technology. Additionally, the complex interactions between groundwater dynamics and
surface water require accurate simulation through advanced models [21–23].

1.1. Streamflow Prediction Models

The advancement of machine learning models, such as Artificial Neural Networks
(ANNs), Adaptive Neuro-Fuzzy Inference Systems (ANFISs), and Support Vector Ma-
chines (SVMs), offers new opportunities for improving the accuracy of streamflow predic-
tions [5,24–30]. By integrating groundwater levels with other key hydrological variables
(e.g., rainfall, river water discharge, soil moisture), these models provide a more nuanced
understanding of hydrological processes, enabling better management of water resources
during both surplus and deficit conditions.

This part also introduces the evolution of deep learning in hydrology [31,32]. It
discusses the shift from traditional models to data-driven approaches and highlights the
advantages of deep learning in capturing nonlinear relationships and spatial dependencies.
Early deep learning applications in hydrology, such as Long Short-Term Memory (LSTM)
networks, are examined [33,34].

Since LSTM has a unique internal structure that allows it to handle and remember long-
term sequential dependencies, it is an excellent option for solving these issues [27,35–37].
Streamflow forecasting is a classic time-series prediction issue where LSTM is promis-
ing [26,38,39]. This method necessitates managing and comprehending constant meteo-
rological and hydrological data to anticipate future streamflows. However, most LSTM
models are mainly used for rainfall and river discharge forecasting for individual sites [40].

With the development of deep learning technology, scientists started experiment-
ing with more intricate models—such as the Generalized Structure of Group Method of
Data Handling (GSGMDH) and combinations of Convolutional Neural Networks (CNNs)
with LSTM—to deal with meteorological and hydrological data from various geographic
locations [41–43]. These models are helpful for streamflow prediction in multiple catch-
ments because they successfully integrate spatial and temporal information accurately.
This explains how LSTMs capture the temporal correlations between spatial patterns and
how CNNs encode them. It offers case examples that show how Convolutional Neural
Network LSTM (CNNLSTM) models work well to estimate daily streamflow with high
accuracy [44,45].

Streamflow prediction is a data-driven challenge. It also necessitates attention to
several intricate affecting elements caused by humans and nature. Hybrid models are
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widely used as they improve the stability and generalizability of single models. While
deep learning models such as LSTM, CNNLSTM, convolutional LSTM (ConvLSTM), and
others have demonstrated great promise in streamflow prediction, further refinement and
optimization of these models are required to tackle the diverse obstacles associated [46,47].

Furthermore, the attention method can help the model cope with long-term dependen-
cies more successfully since the streamflow prediction dataset comprises both time series
and spatial series, with a vast amount of data over a long period. The attention mechanism
can raise prediction accuracy by assisting the model in more effectively extracting relevant
information from the input data. Regarding streamflow forecasting, the Spatio-Temporal
Attention LSTM (STA-LSTM) model has proven effective [48].

Accuracy should be guaranteed, but prediction models should aim for maximum
computing efficiency. Based on ideas from the LSTM model, the Gated Recurrent Unit
(GRU) is a forecasting model [49–51]. Although the study findings with GRUs and LSTM are
comparable, there are some significant differences between the two models. For example,
GRUs have an excellent numerical ability, indicating that they can efficiently acquire and
remember important information over extended periods. This capability is essential for
jobs that need long-term dependencies, as the model must generate accurate predictions by
considering historical data.

A gating mechanism in the GRU model allows it to update its hidden state only
when necessary in response to input data. Specifically, a GRU uses an update gate, which
combines the functions of input and LSTM forget gates [49,52]. This combination shortens
training durations and improves computational efficiency by streamlining the architecture
and lowering the number of parameters.

Additionally, the efficient information flow inside the model is promoted by the
streamlined architecture of the GRU, which combines the hidden state and cell state. The
GRU’s design facilitates the extraction of pertinent information and the elimination of extra-
neous details, making it especially appropriate for jobs that require sequential data analysis.
The usefulness of the GRU and Convolutional Neural Network GRU (CNNGRU) models
for streamflow prediction has been investigated throughout the last two years [53,54].
Regarding short-term streamflow projections, the GRU model outperforms the LSTM [55].

Table 1 compares different machine learning models based on their daily streamflow
prediction performance, considering both models that account for spatio-temporal dynam-
ics and those that do not. The variety of models demonstrates the breadth of approaches in
the field, with each model exhibiting different strengths in prediction accuracy and error
metrics. Fine-tuning pre-trained deep-learning models for regional hydrological modeling
is another area of interest. By calibrating models for a broad region and then adapting them
to specific catchments with limited data, researchers aim to address the challenge of data
scarcity in hydrology.

Table 1. The performance of streamflow prediction models.

Reference Model RMSE MAE R2

Chu, Haibo et al. (2021) [27]
DBN 43.04 12.42 0.82

FCN-PMI-DBN 26.51 8.08 0.95

Wegayehu et al. (2021) [53]

GRU 46.63 20.89 0.55

CNNGRU 45.61 21.79 0.57

LSTM 48.64 22.79 0.51

CNNLSTM 45.38 21.85 0.57

Vatanchi et al. (2023) [42]
ANFIS N/A 26.17 0.93

BiLSTM N/A 32.15 0.92
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1.2. Advancements in Streamflow Forecasting through Deep Learning

In employing deep learning techniques to analyze large spatio-temporal datasets,
two prevalent challenges encountered are the vanishing gradient problem and overfit-
ting [56–58]. These issues often result in minimal weight updates, leading to significantly
slow learning rates or worse scenarios with a complete inability for the network to learn.
LSTM and GRUs introduce gating mechanisms that allow the network to control the flow of
information more flexibly, enabling the retention of long-term dependencies while prevent-
ing gradient vanishing during the training of long sequences, thereby effectively mitigating
the vanishing gradient problem [59,60].

Moreover, the transition of datasets from an hourly to a daily granularity exacerbates
these challenges, necessitating models that can swiftly identify and learn crucial features
from the now more compact datasets. The attention mechanism can quickly identify and
learn key features when the dataset is small [61,62].

Therefore, this paper aims to contribute to the field by introducing the STA-LSTM
and STA-GRU models, which integrate a spatial–temporal attention mechanism within the
conventional LSTM and GRU frameworks. This attention mechanism enhances the model’s
performance on smaller datasets by enabling more focused and efficient identification and
learning of critical data features. Applying spatial–temporal mechanisms within these
models facilitates superior learning in spatio-temporal datasets. Furthermore, the research
brings new content to the issue by integrating groundwater level data with conventional
precipitation and discharge station data, thus enhancing the deep learning methodologies’
performance, especially in predicting low flow conditions.

Such advancements are particularly crucial for tasks that are reliant on temporal
and spatial data dimensions, including streamflow prediction. By proposing STA-LSTM
and STA-GRU models that incorporate spatial–temporal attention mechanisms, this paper
addresses the deep learning challenges presented by changes in data granularity and dataset
size reduction, offering novel methodologies for practical spatio-temporal data analysis.

2. Materials and Methods

Figure 1 constitutes a detailed cartographic depiction of the Credit River Watershed,
which has been annotated to identify the hydrological monitoring infrastructure within
the region. The map artfully delineates the stream network with comprehensive blue lines,
clearly representing the fluvial pathways. A legend explains the symbology employed,
while the orientation and scale are conveyed through an unambiguous north arrow and a
graduated scale bar, respectively. Based on the provided map of the Credit River Watershed,
the catchment area can be characterized as a region with a well-developed hydrological
monitoring infrastructure. The catchment includes a network of hydrometric, climate,
and groundwater level stations that collectively provide data essential for forecasting and
ecological conservation efforts.

Strategically situated hydrometric monitoring stations are denoted by dark blue square
signs, each bearing unique alphanumeric identifiers such as 02HB001 and 02HB031. These
stations are instrumental in collecting hydrological data, playing a pivotal role in assessing
aquatic resource distribution, streamflow forecasting, and ecological conservation efforts.

Additionally, the map illustrates the spatial distribution of precipitation stations (green
circle signs) and groundwater level stations (pink rhombus signs), marked with labels such
as P6152695 and W0000165. The role of these stations is crucial in quantifying precipitation
and groundwater level inputs, serving as a foundation for hydrological modeling and the
comprehensive analysis of the watershed’s hydrological cycle.

The hydrometric station 02HB029 is strategically positioned near Mississauga, which
is central to the hydrological analysis. This station serves as the terminus for hydrological
predictive models tasked with projecting the discharge values over a forthcoming 7 day
interval. We utilized data from 14 hydrological stations spanning from 1 April 2006 to 31
March 2021. This dataset includes 7 river discharge stations, 4 groundwater level stations,
and 3 precipitation stations. The 15-year historical dataset was divided for model training,
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validation, and testing purposes, allocating 70% for training, 10% for validation, and 20%
for testing.
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Figure 1. The real-time monitoring stations in the Credit River Watershed.

In Figure 2, four distinct curves corresponding to different data series—02HB029
(DC29), 02HB025 (DC25), 02HB018 (DC18), and W0000165 (GW165)—are observable. These
curves indicate groundwater level and discharge measurements taken from various lo-
cations or under varying conditions. For example, all series converge to reach a peak on
approximately 28 December 2008. This simultaneous peak in groundwater level (GW165)
and discharge (DC29, DC25, DC18) suggests a near-instantaneous response of the ground-
water to changes in river discharge. This implies that the rise in groundwater level and the
increase in river discharge occur concurrently, with no significant lag time discernible.

In the predictive model, DC29 serves as the output variable and is situated at the
outlet of the watershed in a heavily urbanized area. This station exhibits a slightly higher
ratio of standard deviation over the mean, which is indicative of the impervious urban
area’s impact on the variability and extreme flow events (flash floods) as Table 2. There is
also a notable difference in the mean precipitation at station P6152695, which is likely due
to an escarpment that affects the local wind patterns and precipitation.
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Figure 2. Peak values for discharge stations and groundwater level stations.

Table 2. The statistics for the hydrometric, groundwater, and precipitation station dataset.

Stations Max Min Mean Std Std/Mean

DC29 144.00 2.00 9.06 8.68 0.958

DC25 101.00 1.92 7.47 6.69 0.896

DC18 60.80 1.70 4.94 3.74 0.757

DC20 6.32 0.21 0.51 0.31 0.608

DC31 1.48 0.11 0.17 0.05 0.294

DC01 27.10 0.66 2.10 1.57 0.748

DC13 9.33 0.20 0.69 0.54 0.783

GW163 426.13 422.27 424.44 0.79 0.002

GW018 449.77 447.67 448.84 0.31 0.001

GW026 390.20 386.37 387.33 0.64 0.002

GW165 281.53 279.92 280.77 0.30 0.001

P6152695 73.60 0.00 1.32 4.27 3.235

P6158731 126.00 0.00 2.21 5.61 2.538

P6155750 62.80 0.00 2.22 5.67 2.554

2.1. The Correlation of Discharge, Groundwater Level, and Precipitation

The heatmap in Figure 3 is a graphical representation of the correlation coefficients
between various variables; such heatmaps are commonly utilized to discern the strength
and direction of linear relationships within a dataset. Correlation values are contained
within the range of −1 to 1, where 1 denotes a perfect positive linear correlation, −1
denotes a perfect negative linear correlation, and 0 indicates no linear correlation. The
color scheme of the heatmap, ranging from dark red to dark blue, visually emphasizes
the strength of the positive and negative correlations, respectively, with lighter shades
indicating weaker correlations.
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ter level.

In predicting outputs for streamflow station DC29, it is imperative to identify vari-
ables with substantial correlations. The variables DC25 and DC18 exhibit robust positive
correlations with DC29, with coefficients of 0.98 and 0.94, respectively. This suggests that
these variables are potentially significant predictors of DC29’s output.

The watershed is also subject to climate change, leading to significant temperature,
precipitation, and evapotranspiration trends [63,64]. Although precipitation has shown an
increasing trend, so has evapotranspiration, which could offset the potential increase in
discharge that might be expected from more rainfall [65]. The increased temperature could
lead to higher evaporation and plant transpiration rates, further reducing the amount of
rainfall that contributes to groundwater recharge and surface water levels.

Given these factors, the low impact of rainfall on discharges in the Credit River
Watershed can be attributed to the combined effects of urbanization, land use diversity,
climate change, and the complex hydrological processes that govern the movement and
storage of water within the watershed.

Moreover, the positive correlations among all the hydrological stations indicate that the
influences between the chosen stations are consistent with natural hydrological patterns.
This conformity implies that the selected stations are interrelated and can be reliably
employed in subsequent hydrological prediction.

For constructing a predictive model for the downstream discharge (DC29 is located
in an urban area), the selection of predictors should be executed with a nuanced under-
standing of the data to ensure that correlations are meaningful and not merely incidental.
Moreover, it is crucial to address the issue of multicollinearity, wherein several independent
variables are highly correlated, as this can undermine the reliability of the model’s coeffi-
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cients. Employing advanced machine learning techniques can facilitate the integration of
multiple predictive variables to establish a robust predictive model for the water station
DC29’s output.

The Shapley Additive Explanations (SHAP) summary plot provides a comprehensive
visualization of the feature contributions across all observations in the dataset to present
their impact on the predictive model output. The TreeExplainer, a model-agnostic tool
provided by the SHAP library, is used to analyze an XGBoost model trained on our
dataset. Before data input, the data are processed through Min–Max Normalization. The
XGBoost model is trained with a learning rate of 0.01 for 100 iterations using a reshaped
training dataset, ensuring that it captures the sequential dependencies in the data. The data
comprise variables collected from various hydrological stations, including river discharge,
groundwater level, and precipitation, spanning a forecasting period of 28 days ahead to
predict the target variable ‘DC29’. The horizontal axis quantifies the SHAP values, which
indicate the magnitude and direction of each feature’s effect on the model’s prediction. A
negative SHAP value denotes a negative influence, whereas a positive value indicates a
positive impact on the prediction outcome. In Figure 4, examining the vertical axis, we
observe a list of features representing different hydrological and meteorological variables
that the model considers.

Water 2024, 16, x FOR PEER REVIEW 8 of 23 
 

 

Moreover, the positive correlations among all the hydrological stations indicate that 
the influences between the chosen stations are consistent with natural hydrological pat-
terns. This conformity implies that the selected stations are interrelated and can be reliably 
employed in subsequent hydrological prediction. 

For constructing a predictive model for the downstream discharge (DC29 is located 
in an urban area), the selection of predictors should be executed with a nuanced under-
standing of the data to ensure that correlations are meaningful and not merely incidental. 
Moreover, it is crucial to address the issue of multicollinearity, wherein several independ-
ent variables are highly correlated, as this can undermine the reliability of the model’s 
coefficients. Employing advanced machine learning techniques can facilitate the integra-
tion of multiple predictive variables to establish a robust predictive model for the water 
station DC29’s output. 

The Shapley Additive Explanations (SHAP) summary plot provides a comprehensive 
visualization of the feature contributions across all observations in the dataset to present 
their impact on the predictive model output. The TreeExplainer, a model-agnostic tool 
provided by the SHAP library, is used to analyze an XGBoost model trained on our da-
taset. Before data input, the data are processed through Min–Max Normalization. The 
XGBoost model is trained with a learning rate of 0.01 for 100 iterations using a reshaped 
training dataset, ensuring that it captures the sequential dependencies in the data. The 
data comprise variables collected from various hydrological stations, including river dis-
charge, groundwater level, and precipitation, spanning a forecasting period of 28 days 
ahead to predict the target variable ‘’DC29’. The horizontal axis quantifies the SHAP val-
ues, which indicate the magnitude and direction of each feature’s effect on the model’s 
prediction. A negative SHAP value denotes a negative influence, whereas a positive value 
indicates a positive impact on the prediction outcome. In Figure 4, examining the vertical 
axis, we observe a list of features representing different hydrological and meteorological 
variables that the model considers.  

 
Figure 4. SHAP summary plot among the precipitation, discharge, and groundwater level stations. Figure 4. SHAP summary plot among the precipitation, discharge, and groundwater level stations.

Precipitation (P6152695, P6158733, P6155750) features different measurement points or
forms of precipitation data. Precipitation is a critical component of the hydrological cycle
and can significantly influence streamflow directly and through its impact on groundwa-
ter recharge.

Groundwater level (GW163, GW018, GW026, GW165, P6152695) features refer to
groundwater level measurements from various locations. Groundwater levels can affect
streamflow, especially in regions with strong hydrological connections between groundwa-
ter and surface waters.
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Discharge (DC29, DC25, DC18, DC31, DC20, DC01, DC13) is directly related to the
downstream streamflow, and the DC29 is the most downstream water station. The color
gradient, from blue to red, represents the actual feature value, with red signifying higher
feature values and blue indicating lower ones.

The distribution of points along the x-axis for each feature demonstrates the variability
in the SHAP values across individual observations. For example, the feature ‘P155750’ at
the top has a spread of points mainly to the right of the zero line, indicating that it generally
has a higher positive impact on the model’s predictions when it has a higher feature value
(as indicated by the red points).

On the other hand, the feature DC29 at the bottom has points spread around the zero
line, suggesting a more varied influence on the model’s output, depending on the value
of the DC29 feature. Moreover, broader distributions indicate that a feature has a more
variable impact on the model output. Points to the right suggest a higher positive effect on
the model’s prediction, and those further to the left suggest a negative impact. As shown in
the SHAP diagram, we confirmed the selection of the 14 features as model input variables.
To better capture the complex interactions among features, we incorporated an attention
mechanism to more effectively employ the features that had the greatest impact on the
predicted outcome and enhanced the performance of the model.

2.2. Concepts and Evaluation Measures of the Models

In the ConvLSTM diagram (Figure 5), the structure starts with Conv2D layers, followed
by an LSTM cell. The LSTM cell has three gates: the input, forget, and output gates, all
contributing to the cell’s ability to add or remove information to the cell state ct. This cell
state acts as a “memory” of the network, retaining important information throughout the
processing of the sequence. The output ht is the hidden state at time ‘t’, which carries
information to the next time step and can be used for further predictions.
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Similarly, in the ConvGRU diagram (Figure 6), the input is first processed through
Conv2D, with convolutional layers that handle spatial information by applying filters to
the input data. Within the GRU cell, there are two gates: the reset gate rt and the update
gate ut. Both are responsible for determining how much of the past information needs to
be passed along to the future. GRUs are similar to LSTMs in that they effectively capture
temporal dependencies but with a simpler structure that combines the forget and input
gates into a single update gate. This can make GRUs faster to train and can work better on
less complex sequences.
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In Figure 7, the initial stage is the CNN cell, which performs feature extraction for
input X through a series of operations. It begins with convolutional layers that apply filters
to the input to produce feature maps. This is followed by a ReLU (Rectified Linear Unit)
activation function that introduces nonlinearity into the system, allowing the model to
learn more complex patterns. Afterward, max pooling is applied to reduce the spatial
dimensions of the feature maps, condensing the information and reducing the number of
parameters. These processed features are then passed to the LSTM model. LSTM units are
designed to remember long-term dependencies and can maintain information in memory
for long periods.
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Figure 8 follows the same initial steps in the CNN cell, with convolution, ReLU
activation, and max pooling. Instead of passing the features to an LSTM, they are input
into a GRU model.
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As shown in Figure 9, the STA-LSTM model’s architecture integrates spatial and
temporal attention mechanisms with a traditional LSTM network to enhance predictive
accuracy. The spatial attention mechanism, shown at the top, employs a Fully Connected
(FC) layer followed by a tanh activation function and a softmax layer to compute the
attention weights (α1), which prioritizes the input features spatially. The lower part of
the diagram illustrates the temporal attention mechanism, which assigns importance
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weights (βt) to different time steps after concatenating the hidden states and processing
them through an FC layer, a tanh activation function, and a softmax layer. These weights
inform the main LSTM component of the model about the significance of each time step’s
information. The output from both attention mechanisms is then integrated into the LSTM
layers (h1 to ht) to generate the final prediction.
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To enhance the accuracy and computational efficiency of predictive models for stream-
flow prediction, our research proposes the integration of a GRU in place of LSTM units
within the framework of an STA-LSTM model, thereby formulating an STA-GRU model.
The rationale behind this substitution stems from the inherent advantages of GRUs over
LSTMs, particularly in terms of computational simplicity and efficiency. GRUs simplify
the recurrent unit architecture by merging the forget and input gates into a single update
gate and eliminating the separate cell state, thereby reducing the model’s parameter count
and, consequently, its computational overhead. This reduction in parameters not only
accelerates the training process but also diminishes the computational resources required,
making the model particularly advantageous for handling large datasets and facilitat-
ing rapid model iteration. Moreover, integrating spatial–temporal attention mechanisms
within the GRU framework enables the STA-GRU model to more effectively identify and
leverage critical temporal sequences and spatial locations that are pivotal for accurate
streamflow forecasting.

2.2.1. STA-GRU Models

Figure 10 portrays a schematic representation of an advanced GRU network aug-
mented with spatial and temporal attention mechanisms. This architecture is designed to
enhance the model’s predictive capabilities by allowing it to focus on the most relevant
features in the data.

Before feeding into the main GRU, the input x1 (referring to the input at the first
timestamp in a sequence being processed by the neural network) passes through a spatial
attention mechanism, where it is first transformed by a Fully Connected (FC) layer. The
output is then put through a tanh activation function, which normalizes the values between
−1 and 1. The softmax function subsequently converts these values into a probability
distribution α1, weighting the importance of each feature in the spatial domain. In the
temporal attention part, it aims to assign different discharges of importance to different
time steps of the GRU’s hidden states h1 to ht. The hidden states are concatenated and
processed through another FC layer, followed by a ReLU activation function. The softmax
function then generates a set of weights βt, which are used to create a context vector that
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emphasizes the most informative time steps. The GRU layers are designed to remember
long-term dependencies and mitigate the vanishing gradient problem that can occur with
standard recurrent neural networks. The network processes the input sequence xt through
time steps, updating its hidden state ht. The weighted hidden states from spatial and
temporal attention mechanisms are combined to form a context vector z, which captures
spatially and temporal relevant information. This vector is then passed through another
FC layer and a Leaky ReLU activation function to predict the output Y.

Water 2024, 16, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 10. STA-GRU model’s structure. 

Before feeding into the main GRU, the input x  (referring to the input at the first 
timestamp in a sequence being processed by the neural network) passes through a spatial 
attention mechanism, where it is first transformed by a Fully Connected (FC) layer. The 
output is then put through a tanh activation function, which normalizes the values be-
tween −1 and 1. The softmax function subsequently converts these values into a probabil-
ity distribution α , weighting the importance of each feature in the spatial domain. In the 
temporal attention part, it aims to assign different discharges of importance to different 
time steps of the GRU’s hidden states h  to h . The hidden states are concatenated and 
processed through another FC layer, followed by a ReLU activation function. The softmax 
function then generates a set of weights β , which are used to create a context vector that 
emphasizes the most informative time steps. The GRU layers are designed to remember 
long-term dependencies and mitigate the vanishing gradient problem that can occur with 
standard recurrent neural networks. The network processes the input sequence x  
through time steps, updating its hidden state h . The weighted hidden states from spatial 
and temporal attention mechanisms are combined to form a context vector z, which cap-
tures spatially and temporal relevant information. This vector is then passed through an-
other FC layer and a Leaky ReLU activation function to predict the output Y. 

This architecture is compelling for tasks that require understanding the importance 
of different input features at each time step (spatial attention) and the importance of dif-
ferent time steps in the input sequence (temporal attention). Combining these attention 
mechanisms with a GRU allows the network to make more informed predictions by effec-
tively focusing on the most relevant information in both spatial and temporal dimensions. 
Replacing the LSTM layer with a GRU layer can enhance the overall computational effi-
ciency of the model. 

2.2.2. Evaluation Measures 
In evaluating streamflow prediction models, accuracy and reliability are paramount 

metrics. To thoroughly assess model performance, researchers often employ various sta-
tistical measures [66]. The root mean square error (RMSE) and mean absolute error (MAE) 
are commonly used metrics that measure the mean of the squares and the absolute values 
of the deviations between predicted and actual values, respectively. The RMSE is more 
sensitive to larger errors, offering a more pronounced indication when model predictions 
are significantly off. In contrast, the MAE provides a linear error assessment, assigning 
equal weight to all deviations, which makes it more robust, particularly in the presence of 
outliers. R-square (𝑅 ) gives insight into the overall effectiveness of the model in explaining 
the variance observed in the actual data. Then, the mean absolute percentage error 

Figure 10. STA-GRU model’s structure.

This architecture is compelling for tasks that require understanding the importance of
different input features at each time step (spatial attention) and the importance of different
time steps in the input sequence (temporal attention). Combining these attention mecha-
nisms with a GRU allows the network to make more informed predictions by effectively
focusing on the most relevant information in both spatial and temporal dimensions. Re-
placing the LSTM layer with a GRU layer can enhance the overall computational efficiency
of the model.

2.2.2. Evaluation Measures

In evaluating streamflow prediction models, accuracy and reliability are paramount
metrics. To thoroughly assess model performance, researchers often employ various
statistical measures [66]. The root mean square error (RMSE) and mean absolute error
(MAE) are commonly used metrics that measure the mean of the squares and the absolute
values of the deviations between predicted and actual values, respectively. The RMSE
is more sensitive to larger errors, offering a more pronounced indication when model
predictions are significantly off. In contrast, the MAE provides a linear error assessment,
assigning equal weight to all deviations, which makes it more robust, particularly in the
presence of outliers. R-square (R2) gives insight into the overall effectiveness of the model
in explaining the variance observed in the actual data. Then, the mean absolute percentage
error (MAPE) is a relative error metric that considers the magnitude of prediction errors
about actual observations. These are particularly crucial in streamflow forecasting as they
convey the percentage of prediction error relative to the actual measurements, providing
decision makers with an intuitive understanding of the error magnitude [67].
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1. The RMSE quantifies the average of the squares of the differences between predicted
and actual observed values. It serves as a widely used metric for evaluating the
accuracy of predictions.

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (1)

where n is the number of observations, Oi is the actual observed value, and Pi is the
predicted value.

2. The MAE represents the average absolute deviation between predicted values and
actual observations, offering an intuitive gauge of predictive accuracy.

MAE =
∑n

i=1|Oi − Pi|
n

(2)

3. The MAPE is a measure that expresses the accuracy of a predictive model as a percent-
age. It calculates the average absolute deviation between the observed values and the
predictions relative to the actual values, thereby providing a clear and interpretable
indication of the model’s prediction error in terms of proportionate accuracy.

MAPE = (
1
n

n

∑
i=1

∣∣∣∣Oi − Pi
Oi

∣∣∣∣)× 100% (3)

4. R2 is a measure that expresses the accuracy of a predictive model as a percentage.
It calculates the average absolute deviation between the observed values and the
predictions relative to the actual values, thereby providing a clear and interpretable
indication of the model’s prediction error in terms of proportionate accuracy.

R2 = 1 −

n
∑

i=1
(Oi − Pi)

2

n
∑

i=1
(Oi − Õi)

2
(4)

Together, these statistical error metrics—RMSE, MAE, R-square, and MAPE—deliver
a comprehensive analysis from diverse perspectives. The RMSE and MAE zero in on the
magnitude of errors and mean accuracy, R-square sheds light on the model’s explanatory
power, and MAPE assesses average absolute percentage errors. This integrated approach
ensures a holistic evaluation, enhancing the ability to measure and optimize the efficacy of
streamflow prediction models precisely.

3. Results and Discussion

Hyperparameter optimization plays a pivotal role in enhancing the performance of
deep learning models. It involves the meticulous adjustment of parameters that dictate
the training process of machine learning models. Such parameters include the learning
rate, batch size, number of epochs, and the neural network’s architecture specifics, such
as the number of layers and neurons per layer. Therefore, based on our dataset, the initial
learning rate of the model is set at 0.0001, with a callback to adjust the learning rate during
training. Given the complexity of our spatiotemporal forecasting model and the extensive
number of features, we implemented regularization through the application of a dropout
rate of 0.1 to mitigate the risk of overfitting. The models were trained with a batch size of
30 across 200 epochs to balance computational efficiency with the opportunity for adequate
learning through iterative exposure to the training data.
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3.1. Results and Analysis

Figure 11 displays seven loss plots for different neural network models used in a
machine learning context. These plots are a standard way to visualize the performance of a
model during training and validation.

In Figure 11, the vertical axis represents the loss, which measures how well the model’s
predictions match the actual data. The horizontal axis represents the training epochs, with
full iterations over the entire dataset. An analysis of the loss plots for each model reveals a
consistent pattern of rapid declines in training loss, indicative of practical learning phases,
followed by stabilization, suggesting an adeptness at capturing data patterns without
significant overfitting.

The LSTM model (a) demonstrates a swift decrease in training loss, with validation loss
closely mirroring this trend, suggesting a robust pattern recognition capability. Similarly,
the GRU model (b) exhibits a sharp reduction in training and validation loss, with the latter
showing a smooth trend that signifies consistent validation performance. The CNNLSTM (c)
and CNNGRU (d) models both show steep initial declines in training loss, with subsequent
stabilization, albeit the CNNLSTM model presents more fluctuation in validation loss. This
pattern suggests effective learning while maintaining an excellent fit to the data.
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The STA-LSTM model depicted in the STA-LSTM Loss Plot (e) shows good learning
behavior with a steady decrease in training and validation loss, suggesting that the model
captures the underlying patterns without overfitting the training data. According to the
STA-GRU loss plot (f), the STA-GRU model drastically reduces loss. The model performs
well in both the convergence of training and validation loss, with no apparent signs of
underfitting or overfitting, suggesting that the model effectively captures meaningful
temporal relationships and has good generalization. The ConvLSTM loss plot (g) displays
both the training and validation losses dropping sharply at the beginning, which is when
the model learns from the data. As the epochs increase, both losses continue to decrease,
but at a much slower rate, indicating that the model is gradually improving and learning
from the training data. The overall loss plot trend shows a good fit.

All models seem to learn effectively, as indicated by the decrease in training loss. Most
models also generalize well to the validation set, except for the ConvLSTM, which shows
some instability in the validation loss. This could suggest that the ConvLSTM model might
be overfitting to the training data or require further tuning or more data to achieve stable
performance. Moreover, these models that manifest the lowest validation loss and demon-
strate convergence with the training loss indicate superior generalization capabilities.

3.2. Discussions

In evaluating forecasting models over 1 and 7 day horizons, the performance metrics
of the testing set and training set considered were the RMSE, MAE, MAPE, and R2, as
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shown in Table 3. A comparative analysis between the training and testing datasets reveals
insights into model generalizability and the propensity for overfitting. The STA-GRU model
consistently exhibited superior performance across all metrics and forecasting horizons,
suggesting robustness and accuracy in its predictive capabilities. Notably, with a 7-day
horizon, the STA-GRU model achieved the lowest RMSE (6.591 and 6.727), indicating
minimal deviation from actual values, and a low MAE (3.450 and 3.653), reflecting the
smallest average magnitude of error per prediction. Moreover, the model sustained the
lowest MAPE (32.0% and 35.6%) and the highest R2 (37.7% and 31.2%), demonstrating
the highest precision in terms of percentage error relative to the actual values. Then, the
STA-GRU model shows consistent performance between training and testing with closely
aligned RMSE and MAE values, suggesting reduced overfitting compared to other models
that exhibit significant performance drops on the test set.

Table 3. The evaluation measures for the seven prediction models.

Forecast Algorithm RMSE
(Train)

RMSE
(Test)

MAE
(Train)

MAE
(Test)

MAPE
(Train)

MAPE
(Test)

R2

(Train)
R2

(Test)

1 LSTM 7.225 7.448 3.502 3.817 46.7% 47.5% 30.1% 21.2%
1 GRU 7.101 7.198 3.473 3.775 43.6% 46.7% 32.9% 22.8%
1 CNNLSTM 6.796 7.742 3.211 3.879 37.4% 48.0% 40.6% 14.9%
1 CNNGRU 6.678 6.896 2.284 2.490 37.0% 47.5% 39.8% 22.6%
1 ConvLSTM 4.026 4.575 1.965 1.993 19.6% 23.0% 74.3% 68.5%
1 STA-LSTM 4.263 4.939 2.196 2.439 23.1% 25.1% 78.6% 71.6%
1 STA-GRU 3.731 4.214 2.016 2.362 19.2% 21.5% 80.2% 74.4%

7 LSTM 7.578 7.755 3.789 3.905 49.1% 52.8% 20.2% 14.5%
7 GRU 7.531 7.703 3.699 3.871 47.3% 51.3% 24.2% 17.8%
7 CNNLSTM 7.796 7.935 3.481 4.117 40.9% 53.1% 28.9% 10.1%
7 CNNGRU 7.351 7.636 3.459 3.679 39.6% 41.9% 29.1% 16.7%
7 ConvLSTM 7.081 7.453 3.437 3.744 41.5% 46.9% 32.9% 20.9%
7 STA-LSTM 6.749 6.899 3.401 3.533 38.6% 40.6% 36.0% 28.3%
7 STA-GRU 6.591 6.727 3.450 3.653 32.0% 35.6% 37.7% 31.2%

While the STA-LSTM model showed commendable performance, particularly with
the lowest MAE (3.401 and 3.533) with a 7-day horizon, it did not consistently outperform
across all metrics. This suggests that while STA-LSTM may be sensitive to certain error
types, it may not capture the time-series dynamics as effectively as STA-GRU. Other models,
including LSTM and the GRU, demonstrated competitive metrics in isolated instances
but lacked consistent leadership. The convolutional models (CNNLSTM and CNNGRU)
appeared to underperform in this task, especially in long-term forecasting.

The ConvLSTM model stands out for its average percentage error in short-term
forecasting, but its long-term performance declines. Moreover, the STA-LSTM and STA-
GRU models, which incorporate an attention mechanism, outperform the other hybrid
LSTM and GRU models, suggesting that the attention mechanism may enhance forecast-
ing performance.

Furthermore, when comparing our results presented in Table 3 with the results of
other recent publications, presented in Table 1, the STA-GRU model manifests a notably
enhanced predictive performance in a one-day-ahead temporal framework, as evidenced
by its lower RMSE, MAE, and MAPE values, coupled with a superior R-square. This
indicates that the STA-GRU model exhibits exceptional precision and reliability within the
confines of a short-term forecasting horizon, outstripping the reference models listed in the
table. Extending the prediction interval to 7 days ahead, the STA-GRU model consistently
maintains commendable RMSE, MAE, MAPE, and R-square figures. This consistency in
performance underscores the robustness of the STA-GRU model in both short-term and
long-term hydrological predictions.
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Figure 12 illustrates the model’s predictive proficiency for 1 day and 7 days ahead.
It evidences the model’s commendable capacity to mirror the observed discharge trends
closely, as indicated by the congruence between the observed data (blue line) and the
predicted data (red line and black line), especially the low discharge. Notwithstanding, the
model exhibits some discrepancies in capturing the extremities of the discharge spectrum,
particularly the peak values. Despite these deviations, the model’s performance remains
robust for short-term forecasting. For 7 days ahead, the model’s predictive trajectory, while
still preserving the general discharge pattern, reveals a discernible divergence from the
observed values, especially in peak flow periods. Nonetheless, this anticipated decrement
in predictive accuracy over a longer forecasting horizon does not substantially diminish
the model’s utility. The STA-GRU model maintains substantial reliability, capturing the
overarching discharge trends despite the increased prediction uncertainty over an extended
temporal scale.
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Figure 13 presents the uncertainty analysis of the Spatial–Temporal Attention-Gated
Recurrent Unit (STA-GRU) model. Firstly, it is evident that as the forecast horizon extends
from one to seven days, the uncertainty escalates, as indicated by the widening of the 95%
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confidence intervals. In other words, as the forecasting horizon lengthens, the uncertainty
of the prediction model correspondingly increases.
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Moreover, the presence of outliers appears to have a substantial impact on the model’s
uncertainty. This is particularly noticeable where the confidence intervals significantly
broaden at points where there is a considerable divergence between the predictions and the
actual observations. Although the STA-GRU model is expected to capture most patterns
accurately, its uncertainty increased when dealing with peak flows.

The STA-GRU model exhibited the lowest RMSE and MAE, a relatively low MAPE,
and the highest R-square when predicting streamflow for the seventh day ahead. These
indicators collectively point towards the superiority of the STA-GRU model in terms of
predictive accuracy. Upon analyzing the Monte Carlo dropout uncertainty plots, the STA-
GRU model sustains low predictive uncertainty across its outputs. Therefore, the STA-GRU
model exhibits a promising predictive insight, with its efficacy being more pronounced in
short-term predictions. Although slightly attenuated, the model’s performance in long-
term forecasting retains its practical applicability, affirming its potential for integration into
hydrological forecasting systems with acceptable margins of predictive uncertainty.

4. Conclusions

The advent of deep learning algorithms has substantially advanced the field of stream-
flow forecasting, particularly in enhancing the forecasting horizon. Our investigation
delved into various deep learning architectures to refine streamflow forecasting techniques.
This array included the foundational LSTM network and its spatially aware variants, such
as CNNLSTM, ConvLSTM, and the STA-LSTM. Additionally, we explored the GRU and its
cognate models, the CNNGRU and the innovative STA-GRU, to assess their efficacy in the
complexities of hydrological datasets for streamflow prediction.

By capitalizing on spatial insights amalgamated with sequential data patterns, we
aimed to construct a more integrative model for streamflow prediction. Our findings
revealed that the spatial–temporal-attention-enabled models, such as STA-LSTM and STA-
GRU, were proficient in handling the intricacies of long-term dependencies inherent in
environmental data.
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Moreover, we enhance the performance of deep learning methodologies by incorpo-
rating groundwater level station data alongside conventional precipitation and discharge
station data. Integrating groundwater level data as a feature has notably improved the
accuracy and consistency of our model’s predictions, particularly in predicting low flow
conditions, thereby establishing a new standard for precision compared to related research
in the field.

Notably, the STA-GRU model excelled in computational expediency while sustaining
a predictive prowess comparable to that of STA-LSTM. This attribute of computational
swiftness is pivotal in streamflow forecasting contexts, empowering the system to expedi-
tiously analyze voluminous datasets, which is instrumental for prompt drought or flooding
monitoring and response actions.

The capacity for rapid analysis not only aids in the timely dissemination of warnings
but also supports the ongoing refinement of forecast models, thereby sharpening the
precision of drought/flooding alerts. The STA-GRU and STA-LSTM models demonstrate
an exceptional ability to prioritize crucial data points, yielding more precise streamflow
predictions by capturing the nuanced spatio-temporal dynamics. These models stand at
the vanguard of ongoing efforts to elevate the capabilities of streamflow forecasting for
watershed management.

However, despite the advantages demonstrated by the STA-GRU model in both short-
term and long-term forecasting scenarios, it also exhibited certain limitations. Firstly, the
model’s generalization and applicability are the primary limitations. In short-term (1 day)
forecasts, the performance gains of STA-GRU were relatively moderate compared to those of
ConvLSTM and STA-LSTM, suggesting that the benefits of the attention mechanism might
be limited when dealing with specific datasets. Then, in the context of long-term (7 day)
forecasts, although STA-GRU outperformed other models, it did not exhibit a significantly
superior lead similar to its short-term predictions, which may reflect the model’s challenges
in managing dependencies over longer time sequences. Perhaps the inclusion of additional
features could bolster the model’s capacity to elucidate the complex underpinnings of
hydrological processes. This is because the opacity inherent in the black-box nature of
machine learning models curtails the depth of interpretability.

In conclusion, our research highlights the potential of deep learning algorithms
to enhance the accuracy and scope of streamflow forecasting, particularly by adopting
spatial–temporal attention mechanisms and integrating diverse data sources. Moreover,
the profound practical implications of enhancing streamflow forecasting accuracy through
the integration of groundwater level data and the application of advanced spatial–temporal
attention models, particularly the STA-GRU model. The findings bear significant relevance
to drought management, enabling more accurate predictions that can inform effective water
allocation strategies, irrigation planning, and conservation efforts. Such advancements
are crucial for mitigating the adverse effects of drought on agriculture, ecosystems, and
water security. Furthermore, the application of these methodologies extends to improved
flood risk management, offering the potential for more accurate high-flow predictions that
are essential for emergency planning and mitigation strategies. Despite some limitations,
STA-GRU and other advanced models continue to offer significant directions for progress
in hydrological forecasting and management.
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