
Citation: Yang, F.; Men, X.; Liu, Y.;

Mao, H.; Wang, Y.; Wang, L.; Zhou,

X.; Niu, C.; Xie, X. Estimation of

Landslide and Mudslide

Susceptibility with Multi-Modal

Remote Sensing Data and Semantics:

The Case of Yunnan Mountain Area.

Land 2023, 12, 1949. https://

doi.org/10.3390/land12101949

Academic Editors: Jingcheng Zhang,

Juhua Luo and Rongyuan Liu

Received: 22 September 2023

Revised: 10 October 2023

Accepted: 13 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Estimation of Landslide and Mudslide Susceptibility with
Multi-Modal Remote Sensing Data and Semantics: The Case of
Yunnan Mountain Area
Fan Yang 1, Xiaozhi Men 1, Yangsheng Liu 1, Huigeng Mao 1, Yingnan Wang 2, Li Wang 3, Xiran Zhou 4 ,
Chong Niu 1,* and Xiao Xie 5

1 Shandong GEO-Surveying & Mapping Institute, Jinan 250002, China; yangfan@sddzch.com (F.Y.);
menxiaozhi@sddzch.com (X.M.); liuyangsheng@sddzch.com (Y.L.); maohuigeng@sddzch.com (H.M.)

2 No.8 Institute of Geology and Mineral Resources Exploration of Shandong Province, Rizhao 276826, China;
wangyingnan@sddzch.com

3 No.1 Institute of Geology and Mineral Resource Exploration of Shandong Province, Jinan 250010, China;
wangli@sddzch.com

4 School of Environment Science and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China

5 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; xiexiao@iae.ac.cn
* Correspondence: niuchong@sddzch.com

Abstract: Landslide and mudslide susceptibility predictions play a crucial role in environmental
monitoring, ecological protection, settlement planning, etc. Currently, multi-modal remote sensing
data have been used for precise landslide and mudslide disaster prediction with spatial details,
spectral information, or terrain attributes. However, features regarding landslide and mudslide
susceptibility are often hidden in multi-modal remote sensing images, beyond the features extracted
and learnt by deep learning approaches. This paper reports our efforts to conduct landslide and
mudslide susceptibility prediction with multi-modal remote sensing data involving digital elevation
models, optical remote sensing, and an SAR dataset. Moreover, based on the results generated
by multi-modal remote sensing data, we further conducted landslide and mudslide susceptibility
prediction with semantic knowledge. Through the comparisons with the ground truth datasets created
by field investigation, experimental results have proved that remote sensing data can only enhance
deep learning techniques to detect the landslide and mudslide, rather than the landslide and mudslide
susceptibility. Knowledge regarding the potential clues about landslide and mudslide, which would
be critical for estimating landslide and mudslide susceptibility, have not been comprehensively
investigated yet.

Keywords: landslide and mudslide susceptibility; deep learning; multi-modal remote sensing;
geospatial semantic interpretation

1. Introduction

Landslide and mudslide susceptibility predictions play a crucial role in environmental
monitoring, ecological protection, settlement planning, etc. [1,2]. Previous researchers
have reported that such prediction could be enhanced by abundant data sources and
computational tools from remote sensing techniques and geospatial information [3–5]. Thus,
a number of approaches have been developed, including optical remote sensing image-
based approaches [6,7], multispectral remote sensing-based approaches [7], digital elevation
models (DEM)-based approaches [8], and GIS-auxiliary analyzed approaches [4,5].

However, single-modal remote sensing data might not be sufficient for accurate land-
slide and mudslide susceptibility prediction [7,9]. Multispectral remote sensing data, while
providing ample waveband information to assess potential land changes, often have a
medium spatial resolution (20–50 m), limiting the representation of spatial details. In
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addition, optical remote sensing image can capture land surface information but cannot
directly depict landform distributions. DEM and SAR datasets can, respectively, repre-
sent the distribution and changes of landform, but they have limitations in describing
the visual representations of land surface. Thus, the information derived from multi-
modal remote sensing is essential for investigating landslide and mudslide detection and
susceptibility prediction.

Since multi-modal remote sensing data might be complex in content, heterogenous
structures and hyperdimensional features, as well as a variety of deep learning-integrated
methodologies have been proposed to conduct landslide and mudslide disaster predic-
tion [9–13]. However, the implementation of deep learning techniques raises concerns
about explainable feature learning [14,15]. The feature learning of deep learning, such as
CNNs and vision transformer (ViT), are often regarded as “black boxes” that lack human
interpretability. Meanwhile, features regarding landslide and mudslide susceptibility are
often hidden in multi-modal remote sensing images, making it challenging for deep learn-
ing models to extract them from labeled datasets. Consequently, developing explainable
features becomes crucial for predicting landslide and mudslide susceptibility [16].

Considering that the clues about landslide and mudslide susceptibility might be
invisible on remote sensing data, we developed a geospatial domain ontology to create
a semantic-enhanced approach. Semantic modeling focuses on organizing and explicitly
describing these features, allowing for the discovery of inherent meanings of landslide
and mudslide that are not directly derivable from remote sensing images. Thus, this
paper reports our efforts to develop an integrated framework for landslide and mudslide
susceptibility prediction that combines optical remote sensing, DEM, a SAR dataset, and
geospatial semantics.

The remainder of this manuscript is organized as follows. Section 2 describes the study
area and dataset. Section 3 presents the details of each part of the methodological frame-
work. Section 4 illustrates the experimental results and discussion. Section 5 summarizes
the highlights of our efforts and outlines future prospects.

2. Study Area and Dataset
2.1. Study Area

Figure 1 illustrates the study area that the datasets cover, which includes Yunlong
County, Yongping County, Longyang County, and Jianchuang County in Yunnan Province,
China. The spatial coverage of these four counties has potentially suffered from the
influence of landslides and mudslides. The area measures 14,247.81 km2.

2.1.1. Longyang County

Longyang County is located in the western part of Yunnan Province, under the juris-
diction of Yunnan’s Baoshan City. Its geographic coordinates are between east longitude
98◦42′ to 99◦32′ and north latitude 24◦45′ to 25◦41′. It is situated within the Nujiang
Mountain Range and the Gaoligong Mountain Range, between the Lancang River and the
Nujiang River. The terrain is characterized by mountain ranges, with a maximum elevation
of 3655.9 m (Daoren Mountain) and a minimum elevation of 648 m (Nujiang). There are
numerous rivers and abundant water resources, with large drop in altitude. Landslides
and mudslides are the most severe geological disasters in Longyang County. In 2015, a
total of 373 geological disasters of various sizes had occurred in the district, resulting in a
direct economic loss of CNY 54.201 million. Landslides caused 55.3% of the losses, while
mudslides caused 44.3%.

2.1.2. Jianchuang County

Jianchuang County is located in the northwest of Yunnan Province and the north of
Dali Bai Autonomous Prefecture. It is under the jurisdiction of Dali and situated in the
middle section of the northwest Yunnan Hengduan Mountains, and spans from 26◦12′

to 26◦42′ north latitude and from 99◦33′ to 100◦33′ east longitude. The county is 58 km2
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wide from east to west and 55 km long from north to south, with a total area of 2250 km2.
The mountainous area accounts for over 90% of the county’s area, while the basin area
accounts for 7%, and the rest comprises lakes and rivers. Landslides and mudslides are the
main geological disasters in Jianchuang County. In 2015, a total of 74 small-scale landslides
occurred, which destroyed 102 houses, caused 4 deaths, and resulted in a direct economic
loss of CNY 723,200.
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Figure 1. Illustration of the study area.

2.1.3. Yongpin County

Yongpin County is located on the east bank of the Lancang River, in the western part
of Dali Bai Autonomous Prefecture, known as the “western gateway” of Dali. It is situated
between the Bonan Mountain and the Yuntai Mountain, two branches of the Yunnan–
Guizhou Plateau, with higher terrain in the northwest and lower in the southeast. Its
geographical coordinates are 99◦17′–99◦56′ east longitude and 25◦03′–25◦45′ north latitude.
Its maximum horizontal span from east to west is 64.5 km, and the maximum vertical span
from north to south is 77.0 km. Yongpin County has complex geological structures and
significant terrain differences, including over 100 rivers, of which 31 are perennial rivers
with a length of over 5 km. In 2015, landslide was the most severe geological disaster in
Yongpin County, causing a direct economic loss of CNY 36.30 million, and accounting for
65.4% of the entire losses of geological disasters. Mudslides caused a direct economic loss
of CNY 17.55 million, accounting for 31.6% of the entire losses of geological disasters.

2.1.4. Yunlong County

Yunlong County is in the south of the Hengduan Mountains and the Lancang River
valley, in the northwest of Dali Bai Autonomous Prefecture. Its geographical coordinates are
98◦52′~99◦46′ east longitude and 25◦28′~26◦23′ north latitude. The county has a maximum
horizontal span of 91.8 km from east to west and a maximum vertical span of 109.0 km from
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north to south. Yunlong County is a mountainous area with a fragmented and complex
landscape of high mountains and canyons, with the mountainous area accounting for 90%
of its total area. The highest elevation is 3663 m, and the lowest elevation is 730 m. In 2015,
landslide was the most severe geological disaster in Yunlong County, followed by mudslide.
Landslides caused 80 deaths, resulting in a direct economic loss of CNY 61.92 million,
and accounting for 61.5% of the entire losses of geological disasters. Mudslides caused
a direct economic loss of CNY 38.09 million, accounting for 37.9% of the entire losses of
geological disasters.

2.2. Dataset

The study dataset includes four types of modal remote sensing data: DEM, optical
remote sensing image, the SAR dataset, and selected samples from each dataset.

(1) DEM. We used DEM data to conduct terrain analysis and extraction of geological struc-
tures. The spatial resolution of DEM is 12.5 m, which is derived from an ALOS sensor.

(2) Optical remote sensing image. Optical remote sensing images were utilized for detect-
ing human activities, recognizing land cover, and capturing landscape characteristics.
The optical remote sensing images used in this study are Gaofen-6 satellite images,
with a resolution of 0.8 m. The cloud and snow coverage in the remote sensing data
did not exceed 5%.

The optical remote sensing images were captured between 9 November 2020 and
22 March 2022, when the broadleaf forests had shed their leaves, leaving only coniferous
forests; relatively sparse vegetation and a few crops were in the image, allowing for a clear
reflection of the fine details of geological hazards.

(3) SAR dataset. SAR dataset data has strong penetration, reducing atmospheric distur-
bance, and making it useful for analyzing the terrain and topographical features in
cloudy weather, abundant rainfall, and vegetation coverage. We used L-band ALOS-2
(Advanced Land Observing Satellite-2) satellite data, with a spatial resolution of 1 m.
For the critical area, we conducted hazard monitoring using TerraSAR-X data with a
spatial resolution of better than 10 m. These datasets were accessed from 1 January
2019 to 31 December 2020, and contained no less than six issues of data each year.

2.3. Labeled Dataset

The labeled dataset included two categories, landslide and mudslide. All samples
were generated by optical remote sensing images that were of reliable quality and free of
cloud covering. The selected samples are shown in Figure 2.

Table 1 shows the statistics for the labeled dataset. The number of geological hazard
samples produced in Longyang County was 277, while 230 geological hazard samples were
produced in Yongping County, 303 geological hazard samples were produced in Yunlong
County, and 69 geological hazard samples were produced in Jianchuang County.

Table 1. Statistics for the landslide and mudslide recognition.

County Landslide
Sample Number

Mudslide
Sample Number

Total
Sample Number

Longyang 255 22 277
Yongpin 167 63 230
Yunlong 225 78 303

Jianchuang 55 14 69
All 702 177 879
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3. Methodology
3.1. Optical Remote Sensing and DEM-Based Interpretation
3.1.1. Data Processing and Enhancement

The workflow of remote sensing data processing includes image preprocessing, image
equalization, orthorectification, image fusion, image mosaic, and image enhancement [17].

First, we fused the panchromatic and multispectral images into optical remote sensing
images using PANSHARP. For the optical remote sensing images, we conducted image pre-
processing involving geometric transformation, image normalization, and image smoothing.
Then, we performed image equalization to maintain color consistency among different
remote sensing images. Finally, we mosaiced the adjacent optical remote sensing images
with the same resolution, to avoid cracks, misalignments, blurs, distortions, and fringes.

3.1.2. Landslide/Mudslide Feature Recognition with an Integrated Deep
Learning Approach

We employed a large-scale model of CNN-enhanced semantic segmentation [18] to
detect landslide and mudslide morphology including back edge, front edge, wall, boundary,
terrace, bulge, depression, tongue, and fissure, based on visual features and auxiliary
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features including terrain, hydrology, and vegetation. More details regarding landslide and
mudslide morphology detection can be found in Reference [11].

3.1.3. Terrain Interpretation

We employed the Geomorphons [19] and spatial-contextual approach [20] to extract
the ridgelines and valleylines from DEM. Then, we performed orthorectification to correct
the results generated from DEM and optical remote sensing image, based on specified
spatial and elevation control points. The fusion of ridgeline and valleyline extraction
and landslide/mudslide feature recognition were used to map the watershed, based on
hydrological rules.

3.2. SAR-Based Interpretation
3.2.1. SAR Processing and DEM Matching

To process the original SAR dataset, a master image was used to form a sequence of
interferometric pairs, which included selecting stable target points with high backscattering
over a significant period to analyze and eliminate atmospheric phase, terrain errors, and
other noise factors, ensuring accurate deformation information.

In this study, we used the Permanent Scatters InSAR (PS-InSAR) approach [21], SBAS-
InSAR (Small Baseline Subset InSAR) approach [22], and Interferometric Point Target
Analysis (IPTA) approach [23], respectively, to geocode the deformation and generate three
deformation maps.

Moreover, for significant nonlinear deformation processes, the residual phase needs to
be filtered in the spatial and temporal domains. Thus, the singular value decomposition
method was used to solve the nonlinear deformation sequence and calculate the deforma-
tion sequence of each coherent target, completing the estimation of deformation parameters.

3.2.2. InSAR Interpretation

We utilized ascending and descending SAR data to conduct deformation monitoring
using SBAS-InSAR, PS-InSAR, and IPTA-InSAR approaches, thereby obtaining deformation
amounts and rates for each period. Subsequently, we performed time series analysis to
generate a series of interferometric pairs based on different master images by combining
image pairs within a certain range of temporal and spatial baselines. For each pair of
interferometric results, we selected stable points as ground control points to refine orbit
attributes, remove the orbit phase, and filter the atmospheric phase. This enabled us to
obtain deformation rate and cumulative deformation results.

By fusing the results of optical remote sensing feature recognition and the regional
deformation rates and cumulative deformation values, we detected the areas of concen-
trated surface deformation based on geological structures, visual features, and terrain
slope and aspect. Additionally, we extracted parameters including the area, maximum
deformation amount, minimum deformation amount, and average deformation rate for
each deformation area.

The process of SAR feature recognition is represented in Figure 3.

3.3. Semantics-Enhanced Interpretation with Visual and Terrain Features

For landslide and mudslide susceptibility areas, many features are not visually
recognizable. Thus, besides the conventional approaches that identify possible land-
slide/mudslide areas based on DEM, optical remote sensing images and a SAR dataset,
we developed an ontology to organize the information regarding landslide/mudslide
susceptibility into geospatial semantics, and employed the semantics to further identify
landslide and mudslide susceptibility areas based on the result. The geospatial information
for landslides and mudslides is listed in Table 2.
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Table 2. Geospatial information for landslides and mudslides.

Landslide

Category Individual Description

Composition Soil landslide Landslides occurring in loose layers such as alluvial, flood, colluvial, rock fall, and
residual soils.

Rock landslide Landslides occurring in rock layers.

Time
New landslide Historically recorded landslides, or landslides with well-preserved.
Old landslide Non-recorded landslides, or landslides with no traces.

Size

Small <1 × 104 m3

Medium 1 × 104 m3–10 × 104 m3

Big 10 × 104 m3–100 × 104 m3

Grand 100 × 104 m3–1000 × 104 m3

Mudslide

Category Individual Description

Position
Hill mudslide Canyon terrain.

Piedmont mudslide Wide valley terrain.

Morphology Valley-shaped basin The basin has a fan shape or elongated shape.
Ridge-shaped basin The basin has a bucket shape, with no obvious drainage area.

Stage

Growth stage The slope is fragmented and unstable, and small scale.
Peak stage The gully is extremely unstable, and large scale.

Decaying stage The gully tends to be stable, with erosion and deposition on the river bed.
Dead stage The gully and channel are stable, with the restoration of vegetation coverage.

Size

Small <1000 m3

Medium 1000 m3–10,000 m3

Big 10,000 m3–100,000 m3

Grand >100,000 m3
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Then, we converted the information listed in Table 2 into various triples based on the
W3C Semantics Standards [24]. The triples are expressed as follows, subject-property-object,
where subject and object denotes two independent individuals, and property denotes the rela-
tionship between these two individuals. For sample, landslide-hasComposition-soil landslide.

Table 3 lists the features utilized for deformation interpretation from SAR, visual
interpretation from optical remote sensing, and terrain interpretation from DEM. We also
converted these features into various triples.

Table 3. Features used for visual and terrain feature interpretation.

Category Features Description

Deformation
Size Spatial area

Shape Ratio of length and width
Phenomena Creep, collapse, cracks, etc.

Visual Landform Gap, mineral crater, etc.

Terrain
Geomorphology Slope, aspect, curvature, etc.

Structure Fault, cliff, etc.
Vegetation Normalized difference vegetation index

Based on the triples generated from Tables 2 and 3, we developed a domain ontology
according to the method used by Protégé [25] to organize these triples into the semantics of
landslide and mudslide morphology. The semantics of landslide and mudslide morphology
include back edge, wall, boundary, terrace, body, and fissure. More details of this landslide
and mudslide morphology are shown in Figure 4.
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Features of the back edge of landslide/mudslide (a): abnormal color and texture that
can be observed due to the original natural landscape being destroyed. These features
typically exhibit an abnormal boundary between a darker and a lighter color, with the
darker color representing the original vegetation coverage and the lighter color indicating
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exposed soil or rock. Moreover, the back edge of the landslide generally has an abnormal
shape, including straight, arc-shaped, or curved lines.

Features of the landslide/mudslide wall (b): The landslide wall refers to the wall-
like boundary surface exposed between the landslide body and the original hill. As
landslide walls primarily consist of fresh mud or bedrock, they tend to exhibit a light color,
underdeveloped shadow textures, and abnormal features of various shapes.

Features of the landslide/mudslide boundary and terrace (c,d): The landslide bound-
ary and terrace refer to the line between the landslide body and the surrounding rock and
soil. The boundary or terrace with the gully generally shows a dark-colored, abnormal
feature, which is reflected as a straight, broken or arc-shaped line due to the vegetation
coverage. The slope-shaped boundary or terrace generally shows an abnormal feature of
the boundary line between two distinct colors.

Features of the landslide/mudslide body (e): The landslide body refers to the entire
sliding part of the landslide. It displays a funnel-shaped abnormality, with dark green
blocks denoting densely vegetated areas, light green blocks indicating sparsely vegetated
areas, and light-colored blocks representing soil or bedrock areas.

Features of the landslide/mudslide fissure (f): The arrows in two sides of f denotes the
positions of two fissures. A landslide fissure refers to the cracks generated during landslide
activity on the sliding body and its edges. Since landslide fissures always form a gully, the
humidity in the gully is relatively high, and the vegetation is relatively developed. The
fissures are mostly reflected as straight or arc-shaped dark-colored abnormal features on
the image.

Based on the above descriptions of features, we organized every sentence into triples,
and organized the triples into the semantics for conducting manual interpretation by logic
reasoning and query with SPARQL techniques.

4. Experimental Results

The experimental framework included three groups. The first group followed the
workflow detailed in Section 3.1, conducting a semantic segmentation based on a state-
of-the-art CNN to extract landslide and mudslide susceptibility, and performing geomor-
phological analysis to extract ridgelines and valleylines. The second group followed the
workflow detailed in Section 3.2 to perform ascending and descending InSAR deformation
analysis, to detect the deformation anomaly areas and fuse the results generated from the
first group. Based on the results generated by the first and the second group, the third
group validated the landslide and mudslide susceptibility with interpretation enhanced by
the semantics developed in Section 3.3.

4.1. Results

The positions of landslide and mudslide susceptibility areas in Longyang County,
Jianchuang County, Yongpin County, and Yunlong County are shown in Figure 5, re-
spectively. In the four figures, green, red and yellow points, respectively, denotes the
landslide susceptibility points, mudslide susceptibility points, and landslide and mudslide
susceptibility points.

After verification and correction by field investigation, Longyang County included
255 landslide susceptibility points and 22 mudslide susceptibility points, along with
23 landslide and mudslide susceptibility points. Jianchuang County included 167 land-
slide susceptibility points and 63 mudslide susceptibility points, along with 14 landslide
and mudslide susceptibility points. Yongpin County included 225 landslide susceptibility
points and 78 mudslide susceptibility points, along with 63 landslide and mudslide suscep-
tibility points. Yunlong County included 55 landslide susceptibility points and 14 mudslide
susceptibility points, along with 79 landslide and mudslide susceptibility points.

Table 4 lists the statistics of the landslide and mudslide susceptibility estimation by
the three groups. Recognition numbers and the corresponding precisions of group 1 were
generated from DEM and optical remote sensing images. Recognition numbers and the
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corresponding precisions of group 1 were generated from optical remote sensing images
and SAR data. Recognition numbers and the corresponding precisions of group 3 were
generated by geospatial semantic interpretation based on the results of group 2.
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Table 4. Statistics for landslide and mudslide susceptibility estimation.

County Landslide
Number

Mudslide
Number

Total
Number

Longyang 255 22 277
Yongpin 167 63 230
Yunlong 225 78 303

Jianchuang 55 14 69
All 702 177 879

County Total
Number

Recognition
Number

(Group 1)
Precision

Recognition
Number

(Group 2)
Precision

Recognition
Number

(Group 3)
Precision

Longyang 277 66 0.2383 122 0.4404 220 0.7942
Yongpin 230 71 0.3087 106 0.4609 194 0.8434
Yunlong 303 86 0.2838 142 0.4686 131 0.9010

Jianchuang 69 19 0.2754 36 0.5217 26 0.8986
All 879 242 0.2753 406 0.4619 749 0.8521

From the results listed in Table 4, although optical remote sensing images have been
reported as a main data source for landslide and mudslide recognition, the results generated
from these were rather poor. This mean that the visual features derived by the-state-of-the-
art deep learning approaches from optical remote sensing images were irrelevant to the
features of landslide and mudslide susceptibility. The clues for landslide and mudslide
susceptibility might always be impossible to recognize visually.

Similarly, although the SAR dataset was a critical data source to represent the deforma-
tion of the land surface, the deformation information it was challenging to determine the
features for landslide and mudslide, let alone landslide and mudslide susceptibility. This
proved that the inner mechanism of the landform that induced a landslide or a mudslide
would be irrelevant to deformation. In addition, deformation and land surface could not
support the estimation of landslide and mudslide susceptibility.

The interpretation enhanced by semantics outperformed the results generated by
DEM, optical remote sensing image, and the SAR dataset. The results also proved that the
state-of-the-art deep learning techniques for visual features still had the ability to achieve
satisfactory results. The key to implementing AI techniques into landslide and mudslide
susceptibility estimation might be the approaches of incorporating knowledge into the
statistical learning.

4.2. Discussion

The results generated by optical remote sensing images and the SAR dataset proved
that state-of-the-art deep learning techniques might not be able to deal with landslide and
mudslide susceptibility estimation, for three reasons. First, features regarding landslide
and mudslide susceptibility were always hidden in optical remote sensing images and SAR
data. This mean that visual features could not be relevant to the clues for landslide and
mudslide susceptibility. Moreover, deformation information might not be a direct factor
for prediction, and visual features and deformation information need a semantic-based
reasoning to predict the susceptibilities. Last, the improvement obtained by semantic
interpretation proved that the mechanisms of landslide and mudslide susceptibility are
still beyond the capability of remote sensing, including spectral information, deformation
information etc. DEM, optical remote sensing images and the SAR dataset could precisely
detect the landslide and mudslide sites; however, the features derived from these datasets
were still useless for estimating landslide and mudslide susceptibility.

Figure 6 illustrates the selected recognition results in the study area. Several conclu-
sions about recognition are listed below.
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Figure 6. Illustration of the selected recognition results achieved by remote sensing, SAR and
semantics. (a) results for the detection of landslide and mudslide areas by visual features from an
optical remote sensing image. (b) results for the detection of landslide and mudslide areas by visual
features from an optical remote sensing image and the deformation of the SAR dataset. (c) results for
detection of landslide and mudslide susceptibility by deformation from SAR but no optical remote
sensing image. (d) landslide and mudslide susceptibility impossible to be detected by optical remote
sensing image and SAR datasets.

Figure 6a shows the results for the detection of landslide and mudslide areas by
visual features from an optical remote sensing image. In these three samples, the scenes of
landslide and mudslide were visually recognized on remote sensing images. This proved
that state-of-the-art deep learning models for object detection could effectively identify the
areas where landslides and mudslides occur.
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Figure 6b shows the results for the detection of landslide and mudslide areas by visual
features from an optical remote sensing image and the deformation of the SAR dataset.
In these areas, some visual features predicting landslide and mudslide were identified.
The extract deformation involving the ascending and descending directions could affirm
the identification. Moreover, the deformations were generally useful for estimating the
periodic stage of a landslide or mudslide.

Figure 6c shows the results for detection of landslide and mudslide susceptibility by
deformation from SAR but no optical remote sensing image. In these three remote sensing
images, no apparent visual features regarding landslide and mudslide could be identified.
Meanwhile, obvious deformations were observed in the ascending and descending orbits
from these SAR datasets. The spatial distribution of maximal deformation in the ascending
or the descending orbit direction might demonstrate potential for a landslide or a mudslide.

Figure 6d shows that detection of landslide and mudslide susceptibility was impossible
by optical remote sensing image and SAR datasets. As mentioned above, visual features
were impractical for predicting landslide and mudslide susceptibility. The visual features
for these areas were also not useful to derive any clues about the potential for landslide
or mudslide. Moreover, although the deformation in the ascending and descending orbits
were apparent in the SAR datasets, the spatial distribution of this information was affected
by landform change, including humans’ activities, making it challenging to determine the
potential for landslide and mudslide. In practice, we identified these areas by a variety of
factors, including erosions (e.g., developed gully erosion, fragmented terrains), landform
type (e.g., karst block mountain), vegetation coverage, hill slope, and lithological conditions
(e.g., karstified limestone, dolomite). Apart from terrain slope and vegetation coverage,
these factors might be inaccessible from optical remote sensing images and SAR datasets.

Several conclusions are listed below, based on the identification of landslide and
mudslide susceptibility.

• There is a strong correlation between susceptibility to landslides/mudslides and the
type of landform. Landform type is unobtainable from remote sensing data including
DEM, optical remote sensing images, and SAR.

• The gradient of a slope is a crucial factor that influences terrain stability and determines
the susceptibility of landslides/mudslides. Landslides predominantly occur on slopes
with gradients ranging from 15 to 35 degrees, while mudslides are more common on
slopes within the same gradient range.

• Lithology and the structure of rocks and soil play a fundamental role in the devel-
opment of landslides/mudslides. When comparing slopes under similar conditions,
harder rock and soil formations exhibit greater resistance to deformation and improved
terrain stability, whereas softer formations are associated with poorer stability.

• The geological structure has a significant impact on the occurrence of landslides/mudslides.
On the one hand, intense tectonic movements can disrupt the integrity of rock formations,
creating favorable conditions for the development of landslides and mudslides. On the
other hand, new tectonic activity, such as earthquakes and seismic events, often increases
the likelihood of landslides and mudslides.

• Human activities, particularly engineering activities, have a significant influence on the
development of landslides and mudslides. Currently, human-induced modifications
to the environment are the primary contributing factor to the occurrence of landslides
and mudslides.

5. Conclusions

Landslide and mudslide are major geological disasters that always cause a large-scale
socio-economic loss. DEM, optical image, and SAR integrated remote sensing techniques
have been utilized to effectively detect landslide and mudslide. However, the spectral,
spatial and deformation information derived from remote sensing datasets are irrelevant to
the clues about landslide and mudslide susceptibility. In this paper, we have attempted
to develop a framework involving remote sensing, DEM, and geospatial semantic inter-
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pretation for landslide and mudslide prediction. Although this framework incorporates
state-of-the-art deep learning techniques for object detection and deformation recognition,
these deep learning techniques cannot extract and learn the features regarding landslide
and mudslide susceptibility from remote sensing datasets.

This paper reports our efforts to conduct a comprehensive investigation on landslide
and mudslide susceptibility estimation in four counties and districts. We designed three
research groups for landslide and mudslide susceptibility with multi-modal remote sensing.
The first group focused on using DEM and optical remote sensing images, the second group
focused on using DEM, optical remote sensing images, and a SAR dataset. The last group
focused on interpretation with semantics, based on the results generated by the previous
two groups.

In this manuscript, we developed the ontology to conduct the semantic reasoning,
based on the results generated by multi-modal remote sensing data. The experimental
results showed that the semantics were significant to landslide and mudslide susceptibility.
A majority of landslide and mudslide susceptibility cannot be automatically detected
by integrated remote sensing techniques. A remote sensing dataset might be able to
identify the features that are relevant to a landslide or mudslide having occurred, or
a landslide or mudslide possibly occurring. How to integrate the semantic-enhanced
deep learning framework (such as a graph neural network, and knowledge graph-based
statistical learning) is worthy of future attention.
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