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Abstract: Considering the essential expansion of agricultural production, current research primarily
focuses on static factors, such as the distribution of fine-grained arable land, omitting an in-depth
analysis of its developmental dynamics and key drivers. Addressing this knowledge gap is crucial
for enhancing the scalability of agricultural production. This research utilizes landscape ecology
techniques, correlation analysis, random forest algorithms, and structural equation modeling to explore
spatial pattern trends of arable land in the Beijing–Tianjin–Hebei region. Its objective is to clarify how
the expansion of agricultural production scale affects food production through changes in arable land
patterns and to determine the impact of socio-economic factors on these configurations. The results
show that: (1) the landscape pattern of arable land is transitioning to a more fragmented arrangement
with complex contours, (2) grain yield per unit area correlates positively with the landscape pattern
index in Beijing, negatively in Hebei, and exhibits no significant correlation in Tianjin, and (3) land
ownership plays a crucial role in land fragmentation, alterations in land morphology, and influences
other socio-economic variables. Analyzing the spatial pattern of arable land in conjunction with
socio-economic factors is essential for developing holistic land management approaches, improving
resource efficiency, minimizing external inputs, and mitigating food security challenges.

Keywords: scaled agriculture; social and economic factors; landscape patterns; agricultural
production; arable land; China

1. Introduction

From the early 1980s onward, the management of rural land in China has primarily
been carried out by individual families overseeing small areas of cropland, following the
adoption of the “Household Responsibility System of Contracting Land” policy [1,2]. This
policy was tailored to address China’s sizable agricultural population and constrained
arable land, significantly enhancing agricultural production efficiency through intensified
cultivation on smaller plots [3]. Therefore, up until recently, there has been a consistent rise
in crop production and farmers’ income in China [4]. Concurrently, there has been a rise in
the expenses related to agricultural inputs, farmers’ livelihoods, and other merchandise.
As a result, farmers have increasingly opted to become migrant workers in urban areas,
seeking greater job opportunities, higher incomes, and improved access to medical services,
rather than predominantly engaging in agricultural activities in rural areas with limited
social services [5]. Due to this extensive migration, traditional farmers moved away from
agriculture, which generated an array of adverse effects on production efficiency, as well
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as farmland degradation and abandonment, in many areas [6]. The decline in production
efficiency and arable acreage posed significant challenges to crop production in China [7].
In response to these challenges, the Chinese government launched a range of policies and
programs aimed at encouraging individual families to expand the scale of their agricultural
production [8].

Scaled agricultural production is generally achieved through the adoption of cutting-
edge cultivation technologies, such as mechanized operations, high-yielding seeds, and
agrochemical inputs across extensive areas of cropland [9]. However, in China, scaling
up agricultural production is not straightforward due to the combined influences of socio-
economic factors and the inherent characteristics of China’s existing agricultural system.
The initial requirement for increasing the production scale is that farmers (traditional
individual families, agricultural corporations, and cooperative groups) who are willing
to continue agricultural production must be able to oversee the cultivation of sizable
croplands. Accordingly, such farmers should be able to acquire the usage rights for vast
tracts of land. However, the land transfer market is still in its infancy and falls short of the
expected efficiency [10,11]. Even if a fully operational market is established, it is crucial to
motivate farmers to engage in agricultural production by ensuring sufficient profits from
cultivation activities [12]. Earning adequate profits hinges not just on farmers’ proficiency
in orchestrating production processes through meticulous coordination of cultivation
operations, judicious allocation of production inputs, and efficient management of expenses
and risks, but also relies on favorable policies and robust agricultural markets for selling.
The ramifications of these socio-economic parameters are intricate and intertwined, and
their effects on agricultural production pathways are highly dynamic.

In addition to the social and economic aspects already discussed, the expansion of
agricultural production depends on the fertility and productivity of the land, as well as
the spatial distribution of croplands. The productivity of the land can influence land rent,
as it directly impacts agricultural revenue and may necessitate additional investments to
enhance fertility, especially for marginal lands [13]. Land fertility in China exhibits signifi-
cant heterogeneity due to diverse soil and topographical conditions, as well as the range
of management strategies adopted by individual households. Consequently, extensive
research has been conducted to comprehend the spatial distribution, either by measuring
actual crop yields on different land parcels or by directly assessing soil fertility [14]. Further-
more, several approaches have been suggested to enhance or preserve land fertility. These
include using chemical fertilizers or manure to address nutrient deficiencies, incorporating
legume crops into crop rotations to boost nitrogen levels and prevent problems associated
with continuous crops, implementing deep plowing to improve soil structure, employing
different irrigation techniques to address arid conditions, and installing drainage facilities
to regulate the water table [15–17]. Besides soil fertility considerations, the spatial layout of
croplands also impacts the scalability of agricultural production by influencing machinery
operations, transportation distances, and associated challenges [18,19]. The spatial pattern
of croplands encompasses their areas, configurations, and the distances between different
parcels of cropland [20]. The influence of spatial patterns on scaling up has received limited
attention in existing research, with a predominant focus on fragmented aspects [21]. The
outcomes regarding the effects of arable land spatial patterns are unclear, impeding a
comprehensive understanding of the evolution of the agricultural sector.

Therefore, this study aims to advance our comprehension of the factors affecting the
expansion of the agricultural production scale. This will be achieved by analyzing and
quantifying the trends and factors contributing to the evolution of the spatial pattern of
croplands in the Beijing–Tianjin–Hebei (B-T-H) region in China. Specific objectives include:
(1) quantifying the trend in the spatial pattern of croplands in the B-T-H region using
landscape indices, (2) assessing the impacts of agricultural production scale expansion on
the total production of two major field crops (wheat and corn), as well as their yields per
unit area, and (3) identifying the role of socio-economic factors on the trends observed in
the spatial pattern of croplands.
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2. Materials and Methods
2.1. Study Area

The Beijing–Tianjin–Hebei (B-T-H) region, which comprises the two municipalities
of Beijing and Tianjin, in addition to eleven prefectures and cities of Hebei Province, is
situated in northern China (Figure 1). The region comprises 199 counties (districts). This
region is a major hub for agricultural production in China due to its plain topography and
warm, temperate climate. In 2022, grain production in the B-T-H region reached 38 million
tons, constituting 6.3% of the country’s total production.
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Figure 1. Location and land use composition of the B-T-H region.

Between 1985 and 2022, the agricultural lands in Beijing, Tianjin, and Hebei experi-
enced decreases of 37.2%, 25.07%, and 16.05%, respectively (Figure 2). The primary factor
contributing to this decline was rapid urbanization (Figure S1), which not only absorbed a
significant portion of the agricultural labor force but also had a profound impact on the
spatial distribution of agricultural land. These transformations exerted substantial pressure
on agricultural production, necessitating a shift toward scaled agricultural production.
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As the capital of China, Beijing undertakes political and cultural functions, so its
agricultural development is gradually decreasing. Despite the improvement of agricultural
infrastructure, Tianjin also undertakes important industrial and trade functions. Therefore,
agricultural development is moving toward the direction of high-quality agricultural prod-
ucts and agricultural modernization, rather than focusing primarily on the production of
field crops. Hebei Province is responsible for the majority of grain production in the B-T-H
region. However, its infrastructure and level of agricultural development do not match
the critical importance of its agricultural functions. Urbanization in Hebei Province has
been slow, and in recent years, there has been a phenomenon of ‘professional new farmers’
returning from cities to rural areas. The B-T-H region exhibits significant disparities in
infrastructure development, urban growth rates, and regional roles, serving as a represen-
tative example. Consequently, this study focused on this region to explore the effects of
spatial patterns on agricultural production.

2.2. Spatial Pattern of Cropland Parcels

The successful implementation of scaled agricultural production relies on both con-
solidating land in specific regions and organizing it into suitable configurations to enable
large-scale mechanized operations. Thus, this investigation opted for two landscape indices
to illustrate the alterations in the spatial pattern of agricultural land parcels. The Euclidean
Nearest-Neighbor Distance (ENN) was chosen to describe the spatial dispersion and ag-
gregation of land parcels. The ENN index serves as a measure of the shortest distance
between different components within a landscape (e.g., forests, grasslands, agricultural
lands, etc.). Smaller ENN values signify denser or more concentrated elements in the
landscape, whereas larger ENN values indicate greater dispersion. The formula for ENN is
usually expressed as:

ENN = hij

where, hij = distance (m) from patch ij to its nearest neighboring patch of the same type
(class), based on patch edge-to-edge distance, computed from the center of one cell to the
center of another.

The Shape Index (SHI) was employed to characterize the complexity of cropland
parcel shapes. This index is determined by assessing the relationship between the length
and area of an element’s boundary. A higher SHI value indicates a more intricate shape of
the element. The SHI was calculated using the following formula:

SHI =
∑m

K=1 e*
ik√

A

where, e*
ik denotes the total length (m) of edges in the landscape between patch types

(classes) i and k, in which the range encompasses the entire landscape boundary and some
or possibly all background edge segments related to class i, and A represents the total
landscape area (m2).

These indices were computed using the Landscape Ecology Toolbox (accessible at:
https://dse.rcees.cas.cn/kyzy/stmx/, accessed on 29 April 2024). Land use data with
a resolution of 30 m, spanning from 1985 to 2020, served as input data for calculating
the annual values of these two indices in each county [18]. The dataset included annual
land cover information at a 30 m resolution and its dynamics in China from 1990 to 2020
(accessible at: http://www.ncdc.ac.cn/portal/, accessed on 29 April 2024).

2.3. Impacts of Spatial Pattern on Agricultural Production

To ascertain the relationship between agricultural production and the spatial pattern
of cropland parcels, a Spearman correlation analysis was performed to determine the
direction and strength of the relationship between the two landscape indices and grain
productivity. Two indices were utilized to represent grain productivity, considering the
substantial difference in agricultural area between the cities of Beijing and Tianjin, and

https://dse.rcees.cas.cn/kyzy/stmx/
http://www.ncdc.ac.cn/portal/
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Hebei Province in the B-T-H region, where food production is not a primary function of
urban areas. One index was the total grain productivity at the provincial level, while the
other was wheat and corn yield at the county level. These data were sourced from the
Agricultural Statistics Yearbook for Beijing, Tianjin, and Hebei, respectively. First, the data
were cleaned by eliminating missing values and, subsequently, skewness and kurtosis tests
were applied to evaluate the normality of the samples. Since the data did not follow a
normal distribution, the Spearman correlation analysis was chosen (Table 1). The Spearman
correlation analysis was based on the hierarchy of the statistical data. The above data was
calculated by spss28.0 software.

Table 1. Skewness and kurtosis tests on grain production data and spatial pattern data.

K-S Shapiro

Statistics DF Significance Statistics DF Significance

Beijing_ENN / / / 0.845 31 0.000
Beijing_SHI / / / 0.876 31 0.002
Beijing_Total
Production / / / 0.885 31 0.003

Tianjin_ENN / / / 0.848 31 0.000
Tianjin_SHI / / / 0.950 31 0.160
Tianjin_Total
Production / / / 0.932 31 0.050

Hebei_ENN / / / 0.0% 31 100.0%
Hebei_SHI / / / 0.0% 31 100.0%
Hebei_Total
Production / / / 0.0% 31 100.0%

B-T-H Region_ENN 0.155 3132 0.000 / / /
B-T-H Region_SHI 0.067 3132 0.000 / / /
Wheat_Unit Yield 0.069 3132 0.000 / / /
Corn_Unit Yield 0.031 2804 0.000 / / /

2.4. Socio-Economic Factors Affecting Relationships between Spatial Patterns and Agricultural
Production

The aim of scaled agricultural production was to enhance the efficiency of agricultural
operations by utilizing agricultural machinery over extensive croplands, all the while
ensuring continued agricultural productivity. Nevertheless, the execution of this approach
can encounter numerous social and economic factors that could alter the spatial patterns
of land parcels. Utilizing pertinent data from the Agricultural Statistical Yearbook and
considering their significance to the adoption of scaled agricultural production, a total of
16 socio-economic variables were chosen (Table 2). These variables reflected six facets of
agricultural activities in China, including pesticide and fertilizer usage, agricultural ma-
chinery utilization, population density, income levels, agricultural irrigation, and cultivated
land area. In order to discern the connections between these variables and the spatial pat-
terns of cropland parcels, the Random Forest algorithm was initially employed to rank the
importance of these variables in shaping spatial patterns of cropland parcels. Subsequently,
a Structural Equation Model (SEM) was constructed to explore the relationship between
the most influential socio-economic factors and the ENN and SHI indices.

The Random Forest algorithm commenced by utilizing the Bootstrap resampling
technique and randomly picked m observations from the pool of n observations and k
independent variables, supposing that a dependent variable Y had n observations and was
associated with k independent variables. Then, a classification tree was constructed by
identifying nodes based on the relationship between the m observations and k indepen-
dent variables. Through numerous iterations, the algorithm generated a large number of
classification trees, and the one with the highest reappearance rate was selected as the final
classification result [22]. In the present study, the ENN and SHI indices were designated



Land 2024, 13, 607 6 of 19

as dependent variables, while the socio-economic factors were chosen as independent
variables. The Random Forest algorithm was run in Pycharm.

Table 2. List of the socio-economic factors considered.

Categories Indicator Unit

Pesticides and Fertilizers
Pesticide mL/acre

Compound Fertilizers kg/acre
Pure Fertilizers kg/acre

Agricultural Machinery

Agricultural Machine Power kw
Agricultural Electricity %

Machine Plow Area acre
Total Sowing Area acre

Population

Total Population ten thousand people
Agricultural Population ten thousand people

Agricultural Labor Number ten thousand people
Total House Number /

Income
Agricultural Income Chinese yuan

Total Income 10,000 Chinese yuan

Agricultural Irrigation Irrigation Power kw
Irrigation Area acre

Agricultural Area Planting Area acre

According to the outcomes of the Random Forest algorithm, mechanization, irrigation
power, property rights, and planting area emerged as the most significant variables associated
with the ENN and SHI indices. Consequently, utilizing the base model depicted in Figure 3,
an SEM was built, incorporating presumed connections with these variables and the spatial
patterns of cropland parcels. The SEM was calculated with the AMOS 28 software.
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3. Results
3.1. Trends in the Spatial Pattern of Croplands

The fitting results of the annual average indices for ENN and SHI over the years using
a general regression model are illustrated in Figure 4 and Table 3. Figure 4 illustrates the
trends of the ENN and SHI indices (y-axis) over time (x-axis). Additionally, as shown in
Table 3, with an R-squared value greater than 0.5 and a p-value less than 0.05, it is evident
that in the B-T-H region, both ENN and SHI demonstrated a generally rising trend that was
statistically significant. Initially, they underwent a period of increase before stabilizing. In
terms of the ENN index, Tianjin saw the most pronounced increase, indicating a significant
improvement. Beijing and Hebei exhibited a slower, but similar upward trend, with a
smaller fluctuation in the ENN compared to Tianjin. However, Hebei’s overall ENN index
remained lower than Beijing’s. As for the SHI index, Beijing and Hebei demonstrated
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faster rates of increase compared to Tianjin, which experienced a slower growth rate.
Tianjin exhibited the highest level of fluctuation, followed by Beijing. Conversely, Hebei’s
SHI index consistently rose steadily over the years. Overall, in the B-T-H region, the
spatial separation of arable lands continued to expand, transitioning from simpler to more
intricate patterns.
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Table 3. Trends in the spatial pattern indices in the B-T-H region.

Beijing Tianjin Hebei

R2 p R2 p R2 p

ENN 0.718 0.000 0.844 0.000 0.749 0.000
SHI 0.850 0.000 0.817 0.000 0.999 0.000

3.2. Impact of Spatial Patterns on Agricultural Production

Table 4 depicts the correlation analysis between the annual average spatial pattern
indices of Beijing, Tianjin, and Hebei and the annual total grain production. Both Beijing
and Hebei displayed a significant correlation with grain production. More precisely, in
Beijing, both ENN and SHI exhibited a significant negative correlation with the total annual
grain production at the 0.01 significance level. Conversely, in Hebei, both ENN and SHI
demonstrated a significant positive correlation with grain production at the 0.01 significance
level. In contrast, in Tianjin, neither ENN nor SHI showed any significant correlation with
the total grain production.
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Table 4. Spearman correlation analysis between yearly average ENN and SHI in the B-T-H region
and yearly average total grain production.

Spearman Beijing Tianjin Hebei

ENN
correlation −0.830 ** −0.097 0.813 **

Sig. 0.000 0.604 0.000
N 31 31 31

SHI
correlation −0.843 ** 0.131 0.894 **

Sig. 0.000 0.481 0.000
N 31 31 31

** Significant correlation at the 0.01 level (two-tailed).

Additional investigation was carried out to explore the relationship between land
pattern indices and total grain production, focusing specifically on the yield of key field
crops, such as wheat and corn, in the region. Reliable data pertaining to patch-level
spatial pattern indices and county grain production from 1985 to 2019 were utilized for the
calculations. Considering the higher degree of urbanization in Beijing and Tianjin, where
agricultural land was restricted and agricultural development levels were comparable,
calculations were performed at the provincial level.

Table 5 indicates that the wheat yield per unit in Beijing demonstrated a relatively weak
negative correlation with the ENN index while showing a stronger negative correlation with
the SHI. As both the ENN and SHI indices increased, reflecting greater patch distances and
a higher degree of shape complexity, there was a notable decline in wheat yield (Figure 5a,c).
Similarly, the corn yield per unit in Beijing displayed a weak negative correlation with
the ENN index (Figure 5b), but a stronger negative correlation with the SHI (Figure 5d).
The rising trends of the ENN and SHI indices, indicating increased patch distances and
shape complexity, coincided with a decrease in corn yield. Comparatively, in Beijing, the
relationship between the ENN index and the yields of both crops was weaker and exhibited
greater fluctuations compared to the relationship between the SHI index and the yields of
these two crops.

Table 5. Spearman correlation analysis between ENN and SHI in Beijing and wheat and corn yield
per unit.

Beijing_Spearman Wheat Corn

ENN
correlation −0.208 ** −0.149 *

Sig. 0.001 0.026
N 245 224

SHI
correlation −0.448 ** −0.338 **

Sig. 0.000 0.000
N 245 224

** Significant correlation at the 0.01 level (two-tailed). * Significant correlation at the 0.05 level (two-tailed).

In Tianjin, there were no significant correlations observed between wheat and corn
yields with either the ENN or SHI indices (Table 6). The ENN index in Tianjin displayed a
relatively weak negative correlation with wheat yield and a weak positive correlation with
corn yield.

In Hebei Province, the relationship between the two indices and crop yield was
examined at the county level due to the extensive agricultural land area, which is notably
larger compared to Beijing and Tianjin. Regarding wheat yield, out of the 150 counties
with available statistical data, 75 counties demonstrated significant correlations, at both the
0.01 and 0.05 significance levels, between the ENN index and grain yield. Among these,
71 counties exhibited a positive correlation, while 4 counties showed a negative correlation.
As for the SHI, 82 counties showed a significant correlation with wheat yield. Among
these, 80 counties showed a positive relationship, while 2 counties displayed a negative
relationship. In the case of corn cultivation, out of the 139 counties with valid survey data,
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63 counties displayed a significant correlation between the ENN index and corn yield.
Within this group, 60 counties showed a positive correlation, and 3 counties displayed a
negative correlation. Furthermore, 69 counties exhibited a significant correlation between
the SHI index and corn yield. Among these, 60 counties indicated a positive relationship,
while 9 counties showed a negative relationship (Table S1).

Table 6. Correlation analysis between ENN and SHI in Tianjin and wheat and corn yield per unit.

Tianjin_Spearman Wheat Corn

ENN
correlation −0.111 ** 0.251 **

Sig. 0.000 0.003
N 2758 135

SHI
correlation 0.038 * −0.034

Sig. 0.044 0.695
N 2758 135

** Significant correlation at the 0.01 level (two-tailed). * Significant correlation at the 0.05 level (two-tailed).
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3.3. Influence of Socio-Economic Factors on Spatial Patterns of Cropland Parcels

In order to investigate the relationship between socio-economic factors and spatial
patterns, it is crucial to initially examine the importance of various factors in shaping these
spatial patterns. The verification of their importance can be realized through the utilization
of the Random Forest algorithm. The Random Forest algorithm was employed to ascertain
the correlation between the selected 16 socio-economic factors and both the ENN index
(Figure 6a) and the SHI (Figure 6b). For the ENN index, machine plow area, irrigation
power, and total house numbers emerged as the top three indicators exhibiting the strongest
association. Conversely, for the SHI, planting area, irrigation power, and machine plow
area were identified as the three primary factors displaying the highest correlation.
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between ENN and socio-economic factors (mean of squared residuals: 0.009353789%, and Var.
explained: 78.94). (b) Correlation between SHI and socio-economic factors (mean of squared residuals:
0.01377446%, and Var. explained: 68.77).

Based on the findings of the correlation analysis, an SEM was built to explore the
influence of the selected socio-economic factors on the spatial patterns of cropland parcels.
Initially, we hypothesized that the total number of households (representing land tenure)
would lead to alterations in the physical characteristics of the land, particularly by increas-
ing the ENN index. Additionally, we posited that the distance between patches would
impact the complexity of the shapes of cropland parcels, subsequently affecting irrigation
capacity and levels of mechanization. Concurrently, land tenure was expected to have a di-
rect influence on irrigation capacity and mechanization to some degree. These assumptions
were subsequently tested and confirmed through the SEM analysis (Figure 7).
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According to findings from the SEM analysis, the total number of houses displayed a
strong positive influence on the ENN index, while the ENN index exhibited a significant
positive impact on the SHI. Moreover, the SHI exerted a negative influence on irrigation power,
machine plow area, and planting area. Both the SHI and ENN indices had similar effects
on socio-economic indicators in terms of direction and magnitude. Besides their indirect
effects through these landscape indices, the total house number directly affected irrigation
power, machine plow area, and planting area positively. Additionally, there was a positive
relationship between irrigation power and planting area with machine plow area.

4. Discussion
4.1. Trends in the Evolution of Cropland Spatial Patterns and Their Influence on Grain Production

The evolution of cropland spatial patterns and their impact on grain production varies
within the B-T-H urban agglomeration, comprising Beijing, Tianjin, and Hebei, despite their
geographic proximity and similar climates. Overall, the advances in seed quality, fertilizers,
mechanization, and irrigation resulting from large-scale operations contribute positively
to total grain yield [23]. Additionally, factors such as production and living conditions,
as well as socio-economic development (Figure 8), exert varying degrees of influence on
the physical characteristics resulting from the scaling of arable land to different degrees.
Existing research primarily concentrates on the spatial alterations resulting from different
types of land use conversions [24,25], yet there is limited analysis regarding the evolving
internal spatial pattern of arable land. As for the relationship between the spatial pattern of
arable land and grain yield, existing studies predominantly examine the indirect impacts of
land policies on fertilizer application [26], the influence of diverse cropland management
methods [27], and other agricultural practices on grain yield. Conversely, fewer studies
investigate the direct effects of the physical characteristics of arable land on grain yield.
Consistent with the studies centered on land fragmentation, this study also observed
that the ENN and SHI indices of arable land patches increased with the enforcement of
the scaling policy, reflecting a progressive rise in their fragmentation levels from year to
year [28]. Although the spatial pattern of arable land is influenced by external factors, such
as urban expansion encroaching on arable land and the transition between productive and
ecological land use, the primary drivers of these changes are the combined effects of natural
resource conditions and human activities. Therefore, rather than emphasizing integrated
land use transfer, as previous studies have, this research concentrated on analyzing changes
in arable land spatial patterns from an internal perspective, particularly at the patch level
using landscape ecology. It prioritized analyzing these patterns over investigating the
impacts of external influences on food production.

4.1.1. Correlation between the Spatial Bureau of Arable Land and Grain Yields in Beijing

The principal influences on Beijing’s agricultural economy and ecological environ-
ment include the degree of urbanization, agricultural acreage, and water resources [29].
Although Beijing has well-developed infrastructure (Figure 8), the extensive land manage-
ment associated with large-scale development has, nonetheless, had a detrimental impact
on grain production efficiency.

The rapid urbanization of Beijing has drastically altered the distribution of arable land,
leading to a gradual decline in the agricultural sector’s contribution, particularly in field
crops (Figure 9), consequently reducing food production. This transformation has been
accompanied by an increase in the ENN and SHI indices (Figure 4, Beijing), indicating the
encroachment of urbanization, fragmentation of farmland, and increased distance between
farmland patches. These changes have complicated planting and harvesting operations,
leading to a decline in the input–output ratio [30]. As part of efforts toward sustainable
agriculture, Beijing has, in recent years, increasingly promoted rainwater and recycled
water irrigation, reducing the reliance on furrow irrigation [31]. The ENN index, reflecting
the width of field roads and canals, partly indicates the effective irrigation area. When



Land 2024, 13, 607 12 of 19

irrigation conditions are met, wider field roads require greater mechanical power, hence
the negative correlation between landscape pattern indices and grain yield.
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Figure 9. The proportion of field crop cultivation in Beijing shows a declining trend.

In recent years, agricultural development in Beijing has mainly focused on experi-
menting with novel agricultural business models. With a significant decrease in available
arable land in the city, food production has transitioned from being the primary focus
of agricultural development to the advancement of multifunctional urban agriculture
and innovative farming approaches [32]. This shift was evident in the increasing SHI
(Figure 5c,d), indicating the intensified development of novel sustainable agricultural
industries, such as picking gardens, resulting in a more intricate field landscape due to
diverse development initiatives. Notably, the construction of high-standard farmland in
Beijing has overly emphasized the standardization of plot shapes, tree rows, connecting
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roads, adjacent watercourses, and drainage systems [33]. However, this trend toward more
dispersed patterns and complex shapes has instead resulted in escalating costs, potentially
leading to suboptimal agricultural outcomes.

4.1.2. Correlation between the Spatial Bureau of Cultivated Land and Grain Production in
Tianjin City

Tianjin is characterized by urban agriculture, but despite possessing good infras-
tructure (Figure 8), its complex geographic terrain results in limited advantages in food
production, and there is no obvious correlation between spatial patterns and food pro-
duction. Being a coastal city, Tianjin’s complex natural topography leads to messy land
divisions, large distances between plots, complex shapes of arable land, and high ENN and
SHI indices (Figure 4, Tianjin). Initially, Tianjin benefited from a high level of mechaniza-
tion due to early industrialization. However, as infrastructure in other regions improves,
Tianjin’s original advantages can no longer offset the severe disadvantages of land frag-
mentation. Despite still maintaining a relatively advanced level of agricultural production
nationally, the intricate spatial distribution of arable land patches diminishes the advantage
of cultivating field crops. This disadvantage was exacerbated in the 1990s when restruc-
turing in grain cultivation aimed at boosting feed grain production resulted in a notable
increase in the maize cultivation area [34]. Due to the larger size of machines required for
maize cultivation, the planting of densely cultivated land led to a proliferation of distances
between farm plots, further fragmenting the land and diminishing the advantages of crops
other than maize. As a result, there is no significant correlation between land patterns and
total grain production. In recent times (from 2016), Tianjin has shifted toward agricultural
sectors with greater comparative advantages, such as vegetable cultivation (Figure 10).
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4.1.3. Correlation between the Spatial Bureau of Arable Land and Grain Yield per Unit in
Hebei Province

In tandem with infrastructure development, cultivated land patches in Hebei Province
have undergone a shift toward an increase in distance and complexity of shape, resulting
in increased grain production and unit yield (Figure 4, Hebei). Despite its vast expanse
of arable land, Hebei Province, as a largely agricultural province in China, has struggled
with inadequate infrastructure (Figure 8). The grain planting area in Hebei Province is
several tens of times larger than that in Beijing and Tianjin. However, the agricultural
mechanization levels in Hebei indicate that its infrastructure development is far from suffi-
cient. However, enhancements in irrigation systems and the rise in mechanization coverage
have contributed to the widening of irrigation ditches and field roads, as evidenced by the
increase in the ENN and SHI indices (Figure 4, Hebei). These infrastructure improvements
have heightened the input–output ratio, thereby boosting food production. Concurrently,
with the return of agricultural populations, and considering that farming operations remain
at a moderate scale, there has been a shift toward more intensive cultivation under the
“family farm” model. The increased maize yields are likely attributed to intercropping
practices [35], which require fine management and a certain level of mechanization. A no-
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table aspect of the “family farm” model is its moderate scale, which prioritizes large-scale,
intensive production over traditional small-scale farming methods. Moreover, it empha-
sizes joint family operations and relies predominantly on farm income, particularly from
production, as the primary source of revenue, as opposed to relying on hired agricultural
capital enterprises [36].

4.1.4. Comparison of Spatial Patterns and Food Production in the B-T-H Region

A comparison of research findings within the B-T-H region revealed that the influ-
ence of alterations in the ENN and SHI indices on food production largely hinges on the
state of agricultural infrastructure development and the extent of land cultivation. The
fundamental principle underlying large-scale farming, which emerged from the household
contract responsibility system, is moderation. According to Barrett [37], there exists an in-
verse relationship between productivity and farm size—small farms tend to exhibit higher
productivity in comparison to larger ones. In areas where irrigation and mechanization
infrastructure are deficient and agricultural advancement is skewed toward small-scale
precision farming, field patterns indicate improvements in food production due to this
factors. In areas where irrigation and mechanization infrastructure are inadequate and agri-
cultural development is biased toward small-scale intensive farming, food production and
cropland patterns are strongly positively influenced by infrastructure. However, in areas
boasting better irrigation and mechanization infrastructure, the degree of land dispersion
and shape indices directly impact the land input-output ratio, thereby influencing field
scalability [38].

Therefore, development strategies should be differentiated for Beijing, Tianjin, and
Hebei. Despite the Beijing–Tianjin–Hebei region’s achievement of a ‘coordinated develop-
ment’ policy as a city cluster, it is crucial to clarify the specific roles of each area within the
region. Based on the comparative advantages and development characteristics of different
production zones [39], respective suggestions for sustainable agricultural utilization should
be proposed. At the same time, by moderately controlling the spatial layout, the highest
input–output ratio for large-scale production can be achieved. Maintaining the grain pro-
duction advantage of the Hebei Plain, exploring characteristic agricultural development
in Tianjin and its surroundings, and achieving regional agricultural self-sufficiency and
sustainable development are all essential.

4.2. Influence of Socio-Economic Factors on Spatial Patterns of Croplands

From the correlation analysis between cropland patterns and food production, it was
evident that socio-economic factors, among others, play a pivotal role (Figure 6). Both
the Random Forest algorithm and SEM revealed that land ownership impacts serve as
fundamental influencing factors, affecting land division, shape alteration, and various socio-
economic factors (Figure 7). While specific circumstances may vary from place to place,
the significant role of policies and socio-economic conditions cannot be overlooked. Many
scholars have delved into agricultural changes resulting from policies and socio-economic
conditions [39], but there remains a dearth of comprehensive understanding regarding
the interconnections among policies, spatial patterns of arable land, and socio-economic
factors, with unclear influence mechanisms among them. Hence, this study employed SEM
to elucidate the relationships among these three parameters (Figure 7).

Meanwhile, as farmers return from the B-T-H region (Figure 11), more people are
settling back in rural areas and engaging in agricultural labor. In this process, property
rights (land division) become increasingly complex. In recent years, China has vigorously
implemented a ‘one household, one housing’ policy; thus, the ‘total number of households’
has become an indicator of land ownership to some extent. A higher number indicates
more complex divisions of land ownership but also implies greater participation of labor in
agricultural activities. Therefore, an increase in the “total number of households” results in
more fragmented land ownership, leading to an elevation in both the ENN and SHI indices.
Moreover, the increased labor force implies a larger cultivated area, thereby intensifying



Land 2024, 13, 607 15 of 19

the demand for irrigation and mechanization [40]. The complex property rights system
imposes limitations on the scale of agricultural production. China has adhered to the
family contract responsibility system, which poses challenges to the transfer of land on a
larger scale. Although China’s land contract management rights allow for land transfers
under institutional design and corresponding policy and legal safeguards, implementation
remains hindered by the level of socio-economic development and the sentiments of
farmers [41]. The decline in the total arable land area and the index of large-scale farming
can reflect this constraint. Furthermore, the positive correlation observed in this study
between the total number of households and the ENN index also underscores this point.

Land 2024, 13, 607 16 of 20 
 

 

 
(a) (b) 

Figure 11. Number of households with agricultural population in the B-T-H region, 2000–2021. (a) 
Change in the number of agricultural households, 2000–2010. (b) Change in the number of agricul-
tural households, 2010–2020. 

This not only impacts the implementation of land transfer but also subsequent land 
cultivation and preservation, thereby indirectly affecting food production. Throughout 
the B-T-H region, there has been noticeable progress in infrastructure development fol-
lowing several rounds of land consolidation. The fragmentation of land, as indicated by 
indices such as the ENN and SHI, has adverse effects on socio-economic factors. As 
cropland patches became more fragmented and complex in shape, socio-economic factors, 
such as irrigation power, mechanization, and cropland area, diminished [42]. Simultane-
ously, as cropland patches become more dispersed, each one has the potential to develop 
a more intricate shape. Presently, many scholars advocate adjusting ownership relation-
ships through plot exchanges and cropland transfers to mitigate cropland fragmentation. 
This approach is deemed a crucial developmental pathway for land consolidation, aiming 
to establish conditions conducive to the realization of agricultural scale and modern agri-
cultural development [43]. 

Research confirms that alterations in cropland patterns indeed impact food production 
to a certain degree. Moreover, specific factors contributing to the formation of cropland pat-
terns in different regions have been analyzed. Therefore, adjusting ownership arrangements 
and mitigating agricultural land fragmentation via plot replacement and land transfer remain 
crucial aspects of land restructuring. These measures aim to facilitate the expansion of the scale 
of agriculture and the development of modern agriculture. 

4.3. Limitations and Further Studies 
The primary constraint arises from the quantitative approaches used to assess the 

spatial pattern of arable land. The methodologies employed for quantifying the ENN and 
SHI indices draw upon landscape ecology principles, traditionally utilized to characterize 
spatial pattern trends spanning three decades. However, arable land exhibits multifaceted 
characteristics, and a quantitative analysis focused solely on the shape of farmland 
patches and physical distances may fail to encompass all relevant attributes. In practice, 
evaluating farmland also necessitates considerations of economic efficiency, environmen-

Figure 11. Number of households with agricultural population in the B-T-H region, 2000–2021.
(a) Change in the number of agricultural households, 2000–2010. (b) Change in the number of
agricultural households, 2010–2020.

This not only impacts the implementation of land transfer but also subsequent land
cultivation and preservation, thereby indirectly affecting food production. Throughout the
B-T-H region, there has been noticeable progress in infrastructure development following
several rounds of land consolidation. The fragmentation of land, as indicated by indices
such as the ENN and SHI, has adverse effects on socio-economic factors. As cropland
patches became more fragmented and complex in shape, socio-economic factors, such as
irrigation power, mechanization, and cropland area, diminished [42]. Simultaneously, as
cropland patches become more dispersed, each one has the potential to develop a more
intricate shape. Presently, many scholars advocate adjusting ownership relationships
through plot exchanges and cropland transfers to mitigate cropland fragmentation. This
approach is deemed a crucial developmental pathway for land consolidation, aiming to es-
tablish conditions conducive to the realization of agricultural scale and modern agricultural
development [43].

Research confirms that alterations in cropland patterns indeed impact food production
to a certain degree. Moreover, specific factors contributing to the formation of cropland pat-
terns in different regions have been analyzed. Therefore, adjusting ownership arrangements
and mitigating agricultural land fragmentation via plot replacement and land transfer re-
main crucial aspects of land restructuring. These measures aim to facilitate the expansion
of the scale of agriculture and the development of modern agriculture.
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4.3. Limitations and Further Studies

The primary constraint arises from the quantitative approaches used to assess the
spatial pattern of arable land. The methodologies employed for quantifying the ENN and
SHI indices draw upon landscape ecology principles, traditionally utilized to characterize
spatial pattern trends spanning three decades. However, arable land exhibits multifaceted
characteristics, and a quantitative analysis focused solely on the shape of farmland patches
and physical distances may fail to encompass all relevant attributes. In practice, eval-
uating farmland also necessitates considerations of economic efficiency, environmental
sustainability, and broader social benefits. In this research, the evolutionary mechanism of
scale changes was primarily scrutinized through temporal changes in landscape pattern
indices and rudimentary correlation analyses. In order to attain a more comprehensive
understanding of arable land evolution and establish optimal patterns for food production,
further extensive and nuanced investigations are imperative.

The second limitation pertained to the identification of socio-economic factors. The
data regarding grain production, grain yield per unit, and socio-economic indicators
utilized in this study were derived from statistical data, which inherently possess a high
degree of uncertainty. The availability of agricultural survey data was limited, posing
challenges in analyzing the evolving patterns of specific cropland utilization. Nonetheless,
following thorough validation, the reliability and validity of the data appeared relatively
robust. They offered partial insights into the relationship between land patterns and
grain production, thereby laying a foundation for promoting land consolidation through
standardized land-scaling measures. Cultivated land functions as a carrier for integrated
agricultural–ecological and socio-economic composite systems. Therefore, implementing
comprehensive management practices to enhance resource utilization and diminish external
inputs represents a crucial avenue for further research.

As part of sustainable agricultural practices, exploration within arable land should
not be limited solely to increasing grain yields [44]. Changes in the pattern of cultivated
land are also crucial topics for the protection of agricultural ecosystems and biodiversity,
soil health management, and water resource management [45]. A comprehensive consid-
eration of these agricultural ecological practices can enhance the capacity for sustainable
agricultural development and provide more comprehensive insights into the dynamics of
land use [46]. Additionally, with the implementation of China’s “Grain for Green” and
“Consolidation and Reclamation” policies, the integration and coordination between agri-
cultural production spaces and external urban and ecological spaces is an important issue
to explore and represents a significant direction for future efforts.

5. Conclusions

China continues to grapple with conventional challenges to food supply and demand,
alongside the ongoing rise in demand for biomass energy. In terms of total grain production,
the equilibrium between grain supply and demand remains precarious in both 2020 and
2030. Structurally, there is anticipated growth in grain utilization for feed, primarily driven
by corn supply, further exacerbating regional imbalances in grain supply and demand.
Enhancing the layout of arable land and achieving large-scale agricultural production are
crucial avenues for attaining China’s grain production goals. Considering the imperative
of expanding the agricultural production scale, existing research predominantly examines
static perspectives, such as fine-grained cultivated land, resulting in limited insights into
its developmental trajectory and the identification of driving factors, which is pivotal for
advancing the scale of agricultural production.

In this study, the landscape ecology method was utilized to assess the landscape
pattern, employing two key indicators, ENN and SHI, to measure the spatial pattern
and investigate its dynamic trend. Correlation analysis was conducted to examine the
relationship between landscape patterns and grain yield. The Random Forest algorithm
was used to identify socio-economic indicators with the most significant impact on spatial
patterns, while SEM was used to dissect the mechanisms through which socio-economic
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factors influence the spatial patterns of arable land. The findings revealed several key
points: (1) the landscape pattern of arable land tended toward larger patch spacing and
more complex shapes, (2) the grain yield exhibited a positive correlation with the landscape
pattern index in Beijing, a negative correlation in Hebei, and no significant correlation
in Tianjin, and (3) land ownership emerged as a fundamental factor influencing land
fragmentation, shape alteration, and other socio-economic factors. Studying the spatial
pattern of arable land in conjunction with socio-economic factors facilitates comprehensive
management, enhances resource utilization, reduces external inputs, and represents a
critical avenue for addressing the food crises.

Therefore, China should strive to maintain favorable conditions for increasing food
production and optimizing the food structure and yield. Future research efforts should
focus on refining the quantification of actual interventions, enhancing the simulation and
prediction of applied measures, and aiding policy decisions to maximize food production
in the B-T-H region. In conclusion, it is believed that examining the case of arable land
scaling in the B-T-H region of China can offer valuable insights into the development of
complex agroecological and socio-economic systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13050607/s1, Figure S1: Construction land percentage in
B-T-H region; Table S1: Correlation analysis between spatial pattern index and grain yield in
150 counties of Hebei Province.
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