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Abstract: Intensive economic and human activities present challenges to the carbon storage capacity
of terrestrial ecosystems, particularly in arid regions that are sensitive to climate change and eco-
logically fragile. Therefore, accurately estimating and simulating future changes in carbon stocks
on the northern slope economic belt of Tianshan Mountains (NSEBTM) holds great significance
for maintaining ecosystem stability, achieving high-quality development of the economic belt, and
realizing the goal of “carbon neutrality” by 2050. This study examines the spatiotemporal evolution
characteristics of the NSEBTM carbon stocks in arid regions from 1990 to 2050, utilizing a combination
of multi-source data and integrating the Patch-generating Land use Simulation (PLUS) and Integrated
Valuation of Ecosystem Services and Trade-offs (InVEST) models. Additionally, an attribution analysis
of carbon stock changes is conducted by leveraging land use data. The findings demonstrate that
(1) the NSEBTM predominantly consists of underutilized land, accounting for more than 60% of the
total land area in the NSEBTM. Unused land, grassland, and water bodies exhibit a declining trend
over time, while other forms of land use demonstrate an increasing trend. (2) Grassland serves as the
primary reservoir for carbon storage in the NSEBTM, with grassland degradation being the leading
cause of carbon loss amounting to 102.35 t over the past three decades. (3) Under the ecological
conservation scenario for 2050 compared to the natural development scenario, there was a net increase
in carbon storage by 12.34 t; however, under the economic development scenario compared to the
natural development scenario, there was a decrease in carbon storage by 25.88 t. By quantitatively
evaluating the land use change in the NSEBTM and its impact on carbon storage in the past and
projected for the next 30 years, this paper provides scientific references and precise data support for
the territorial and spatial decision making of the NSEBTM, thereby facilitating the achievement of
“carbon neutrality” goals.

Keywords: scenario simulation; carbon storage; spatiotemporal evolution; InVEST model; northern
slope economic belt of Tianshan mountains

1. Introduction

Globally, nations have set a goal of achieving “net zero carbon emissions” in 2021.
Enhancing carbon storage in terrestrial ecosystems represents a pivotal approach to miti-
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gating carbon dioxide emissions, thus constituting one of the foremost strategies [1]. The
United Nations report on the 2030 Agenda for sustainable development underscores the
imperative of safeguarding, rehabilitating, and sustainably harnessing ecosystems in order
to advance sustainable development goals. Human activities and the process of economic
development lead to modifications in land cover, resulting in consequential alterations to
factors such as the land, climate, and environment. These changes subsequently impact
global terrestrial carbon storage ecosystem processes [2]. Given the escalating concerns
regarding land use, urban expansion, and climate change in the foreseeable future, they
pose persistent threats to the sustainable development of terrestrial ecosystems and have
garnered global attention [3,4]. Carbon stocks in terrestrial ecosystems are primarily af-
fected by climate change and human-induced alterations in land use and cover, which is
widely recognized [5]. On one hand, human activities and LUCC changes are substantial
contributors to the rise in global temperatures through carbon emissions [6,7]. Controlling
the global carbon cycle and climate change requires carbon storage, a key measure of the
health of terrestrial ecosystems [8,9]. LUCC is the second major factor contributing to the
significant rise in global carbon emissions, as multiple studies have demonstrated that they
have a direct impact on terrestrial ecosystems’ ability to store carbon [10,11]. On the other
hand, human activities play a constructive role in carbon sequestration within arid regions
through their influence on land use and vegetation cover dynamics. Purposeful human
intervention and the implementation of ecological restoration policies have the potential to
augment vegetation coverage and enhance greenery [12]. Hence, it is evident that land use
change not only represents a prominent aspect of global surface environmental alterations
but also serves as a focal point for investigating variations in carbon storage within terres-
trial ecosystems. Consequently, accurately evaluating the impact of land use change on
carbon storage and establishing harmonious, sustainable, and high-quality human–land
relationships are imperative to accomplish the mission and objectives of achieving global
“carbon neutrality” by 2050.

At present, there are three main approaches to studying carbon storage in terrestrial
ecosystems: conducting field surveys, utilizing remote sensing technology, and employing
model simulations. For instance, utilizing data from various carbon pools along with
spatial–temporal visualization capabilities enables the effective calculation of carbon stor-
age using models like InVEST [13]. The model is simple to operate, flexible in terms of
parameters, and yields accurate results [14]. The InVEST model, when combined with GIS
technology, has successfully addressed the limitations of traditional methods for estimating
carbon storage. These limitations include extended sampling periods and intensive labor.
In addition, the InVEST model offers the benefits of simplified parameter acquisition and vi-
sually presented results. As a result, it is extensively utilized in various applications [15–18].
Research has shown that the InVEST model, combined with geographic information map-
ping, was used to simulate carbon storage in the Poyang Lake basin [19]. In addition,
some scholars have also used land use types in conjunction with the InVEST model to
quantitatively assess the impact of LUCC conversion on ecosystem carbon storage [20].
Many researchers use models such as SD, FLUS, CA-Markov, ANN-CA, and logistic-CA
to predict LUCC changes and have coupled these models with the InVEST model to re-
veal the spatial distribution characteristics of carbon storage under different future LUCC
scenarios. The utilization of the Flus model and the InVEST model has yielded favor-
able validation outcomes in simulating carbon storage in the arid regions of northwest
China [21]. Additionally, the CA-Markov model has demonstrated strong applicability in
the Sariska Tiger Reserve in India. The utilization of the future land use prediction models
can effectively explore the dynamic changes in carbon storage within the research area,
thereby providing valuable support for informed decision making on land management
by local departments and governments [22]. Among the abovementioned models used
for future LUCC predictions, the PLUS model effectively elucidates the underlying causes
of the diverse LUCC changes and accurately simulates spatial transformations in various
small-scale regions. It facilitates the incorporation of prospective spatial policy elements
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and enables a more scientifically rigorous simulation of the future LUCC alterations under
distinct policy scenarios [23,24].

The north slope economic belt of Tianshan Mountains (NSEBTM) is located in a strip-
shaped oasis at the foot of the northern slope of Tianshan Mountains, on the northwest
border of China [25]. Due to its inland location, distance from the sea, and scarce pre-
cipitation, it belongs to China’s arid region with fragile ecosystems and harsh climatic
conditions [12]. The NSEBTM, endowed with abundant energy resources and strategi-
cally located, functions as a convergence zone propelled by the China–Central Asia–West
Asia economic Corridor, the China–Russia–Mongolia economic Corridor, and the China–
Pakistan economic Corridor. It assumes a pivotal role as an important strategic support
point along the Silk Road economic belt and serves as a crucial bridge for China’s west-
ern opening-up endeavors. In line with China’s comprehensive opening-up strategy and
modernization efforts, the NSEBTM holds significant strategic importance. In this scenario,
the NSEBTM has emerged as the region with the highest level of urbanization and pop-
ulation density in Xinjiang [26]. However, in this resource-constrained and economically
active arid region, the inherent contradiction between fragile ecosystems and high-quality
economic and social development has persistently plagued the area. On one hand, there
is an urgent imperative to achieve global “carbon neutrality” by 2050; on the other hand,
compared to other regions in China, this particular region is situated within an arid zone
where its environmental vulnerability exhibits heightened sensitivity to fluctuations in
human–environment interactions [27]. As the pivotal region of the Belt and Road Initiative,
the economic development and establishment of the NSEBTM as a free trade experimental
zone will inevitably induce land use transformations, which in turn will have profound
implications for carbon storage ecosystems [28]. Therefore, it is imperative to address
these scientific inquiries. Presently, domestic and international research on the NSEBTM
primarily concentrates on urbanization, urban spatial structure morphology, and land-
scape remote sensing monitoring, among other facets. However, further investigations
are warranted to elucidate the underlying mechanisms governing the historical and fu-
ture variations in carbon storage within the NSEBTM against the backdrop of achieving
“carbon neutrality” by 2050. The mechanisms underlying the spatiotemporal variations in
carbon storage within the NSEBTM region remain uncertain in the context of ecological
engineering and urbanization.

In light of this, leveraging long-term time series remote sensing data products, this
study employs the InVEST model to quantitatively analyze the spatiotemporal dynamics of
carbon storage in the NSEBTM amidst land use change from 1990 to 2050. Additionally, the
PLUS model is employed to construct multiple scenario simulations for natural, sustainable,
and economic development by 2050. The objective is to investigate the future trends in
carbon storage evolution and underlying impact mechanisms, thereby providing a decision-
making foundation for well-organized urbanization and territorial spatial planning in the
NSEBTM. Therefore, this study aimed to accomplish the following: (1) use LUCC data from
1990 to 2020 as well as LUCC data predicted using the PLUS model for disparate scenarios
in 2050 and couple them with the InVEST model to analyze the spatiotemporal changes
in LUCC and carbon storage in the NSEBTM from 1990 to 2050, (2) quantitatively assess
the impact of LUCC changes on carbon storage in the NSEBTM by coupling LUCC data
with the InVEST model, and (3) quantitatively assess the impact of ecological engineering
construction and economic development strategies on LUCC change types, and their
consequent effects on carbon storage dynamics in the NSEBTM. These studies will provide
reliable data support for the NSEBTM LUCC management and decision making, filling the
gap in research on the spatial and temporal changes in carbon storage under the background
of LUCC change in the NSEBTM region, and providing a reference for achieving “carbon
neutrality” goals in the NSEBTM and even China as a whole.
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2. Materials and Methods
2.1. Study Area

The NSEBTM (40◦52′ N∼47◦14′ N, 79◦53′ E∼96◦23′ E) is situated in the Eurasian hin-
terland, deep within the inland region of northwest China (Figure 1). This region exhibits
significant spatial heterogeneity in its natural conditions [25]. Encompassing an area of
approximately 3.96 × 105 km2, it constitutes 23.8% of Xinjiang’s total landmass. Being
distant from the ocean, this area experiences a typical temperate continental climate influ-
enced by the westerly circulation and moisture from the Arctic Ocean, resulting in limited
precipitation but high evaporation rates accompanied by ample sunshine. The elevation
in this region varies from −153 to 4814 m, with the Tianshan Mountain range exhibiting
relatively higher altitudes while the surrounding basins display lower elevations [29]. The
natural vegetation is sparsely distributed, predominantly comprising grasslands and desert
flora. As a result of the “warm-wet transformation” of climate and the implementation of
ecological restoration projects, Xinjiang’s vegetation has gradually exhibited a discernible
trend towards increased greening. Over the past decade, there has been an incremental
rise in the Normalized Difference Vegetation Index (NDVI) at a rate of 0.005/10a [12].
According to previous research, the NSEBTM range mainly includes cities such as the
Urumqi City, Karamay City, Turpan City, Hami City, Changji City, Fukang City, Kuitun City,
Wusu City, Tacheng City, Bole City, Alashankou City, Shihezi City, Wujiaqu City, Huyanghe
City, Shuanghe City, and Xinxing City [25]. In the past few years, with the progress of
China’s economy and the advancement of urbanization towards a phase of superior quality
expansion, constructive human endeavors and initiatives for ecological restoration have
had a notable impact on the field of ecological engineering in this particular area [12,30,31].
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2.2. Data and Methods
2.2.1. Data Source

The data utilized in this study encompassed provincial administrative boundaries,
land use and land cover change (LUCC), socioeconomic factors, climate factors, and terrain
data (Table 1). Among them, the provincial administrative boundary data are in vector
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format. The LUCC data were obtained from the first Landsat-derived annual China land
cover dataset (CLCD); these datasets were derived from Landsat images available on Google
Earth Engine [32]. The team first collected training samples through visual interpretation,
combining China’s land-use/cover datasets (CLUDs), satellite time series data, and samples
extracted from Google Earth and Google Maps. They then constructed multiple temporal
dimensions using Landsat images on GEE and applied a random forest classifier to obtain
classification results. Finally, a spatiotemporal post-processing method was proposed to
further improve the consistency of the spatiotemporal CLCD. The overall accuracy of CLCD
reached 79.31%. To ensure consistency with other studies, we reclassified these LUCC types
into six categories: farmland, forest, grassland, water, built-up land, and unused land. We
selected LUCC data for 1990, 2000, 2010, and 2020 primarily to analyze changes in LUCC
patterns as well as simulate carbon storage under different LUCC scenarios.

Table 1. Data types and sources.

Type Data Resolution Data Source

Provincial administrative
boundaries Research area boundaries Vector data Chinese Academy of Sciences Resource and

Environmental Science and Data Center

LUCC CLCD 30 m Wuhan University

Socioeconomic factors

GDP 1 km Chinese Academy of Sciences Resource and
Environmental Science and Data CenterPopulation 1 km

Distance from the city Vector data

OpenStreetMapDistance from the road Vector data
Distance from the water Vector data

Distance from the train station Vector data

Nighttime lighting data 1 km National Oceanic and Atmospheric
Administration of the United States

Climate and
environmental factors

Annual precipitation 1 km
Chinese Academy of Sciences Resource and

Environment Science and Data Center
Annual temperature 1 km

Soil type 1 km

NDVI 1 km National Aeronautics and Space Administration

Topographic data
DEM 30 m Geospatial data cloud

Slope 30 m
Based on ArcGISAspect 30 m

The driving factor data include socioeconomic factors and terrain data. The socioeco-
nomic factors include the Gross Domestic Product (GDP), population data, and distance
data to cities, roads, water bodies, and stations. The terrain data include digital elevation
model (DEM) data, slope, and aspect data obtained through surface analysis using DEM
data in ArcGIS 10.8.1 software with a resolution of 30 m. The nighttime light data are used
to characterize the urbanization process in the study area, while other driving factor data
are mainly used for simulating future LUCC changes.

The climate and environmental factors include annual precipitation, temperature data,
the number of soil types, and Normalized Difference Vegetation Index (NDVI) data. The
NDVI data are used to represent the progress achieved in ecological restoration projects in
the study area, while other climate and environmental factor data are used to adjust carbon
density. The soil type data will also be involved in predicting the future LUCC data.

Considering the inconsistent spatial resolutions of the above data and the size of the
study area, we standardized all the data to a spatial resolution of 500 m.

2.2.2. Human Activity Data Processing

Because of the different sensors used for the 2000 and 2020 nighttime light data, it
was necessary to perform a data uniformity correction. First, the relative invariant target
area method was used to perform relative correction on the 1992–2013 NSEBTM DMSP-
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OLS images, combined with saturation and continuity correction after the radiometric
calibration of the reference images. Simultaneously, noise processing and logarithmic
transformation were used to correct the NPP-VIIRS images from 2012 to 2020. A significant
correlation was found between the DN values of the DMSP-OLS images and the radiance
values of the NPP-VIIRS images after index transformation. The BiDoseResp function
model was then selected to perform a consistency correction on the DMSP-OLS and NPP-
VIIRS images [33], ultimately obtaining a long-term time series of the nighttime light image
datasets for the NSEBTM from 1997 to 2020.

Furthermore, because of the inconsistency in the DMSP-OLS data from different
sensors for the same year, to fully utilize the image data obtained by different sensors,
continuity correction was performed on the images after mutual and saturation correction.
The continuity correction is divided into sensor and time-series continuity corrections. In
this study, Equation (1) was used to perform sensor correction on the DMSP-OLS data,
while Equation (2) was used to perform time-series continuity correction on both the
DMSP-OLS andNPP-VIIRS data [34].

DN(i,j) =

{
0, DNa

(i,j) = 0 and DNb
(i,j) = 0

(DNa
(i,j) + DNb

(i,j))/2, other
(1)

DN(i,j) is the DN value of the jth pixel in the corrected image in the ith year; DHa
(i,j) and

DHb
(i,j) represents the DN value of the jth pixel in the images obtained from two different

sensors before correction.

DN(i,j) =

{
DN(i−1,j), DN(i−1,j) > DN(i,j)
DN(i,j), other

(2)

DN(i,j) and DN(i−1,j) represent the DN values of the jth pixel in the images corrected for
saturation and multi-sensor continuity in the ith and i-1th year, respectively.

2.2.3. Carbon Storage Estimation Method

This study utilized the carbon storage sub-module of the InVEST model to calculate
the carbon storage changes corresponding to LUCC changes over time for each remote
sensing pixel. It simulates ecosystem carbon storage and carbon source/sink changes
under different LUCC types and future land development scenarios [35]. To calculate
ecosystem carbon storage, we used the carbon stock method to simulate carbon storage,
which involves using carbon density data for aboveground, belowground, soil, and dead
litter, multiplying the corresponding area by the carbon density data to calculate the storage
data for each carbon pool, and then adding them together to obtain the total ecosystem
carbon storage for a certain area [17]. The formula for calculation is presented below:

Cz = Cz−above + Cz−below + Cz−soil + Cz−dead (3)

Ct =
n

∑
i=1

Cz × Sz (4)

Cz is the total carbon density (t·hm−2) of land-use type; Cz-above, Cz-below, Cz-soil, and
Cz-dead represent the aboveground carbon density, belowground carbon density, soil carbon
density, and dead organic matter carbon density of LUCC type, respectively(t·hm−2). Ct
is the total carbon stock of the ecosystem (t); Sz is the area (hm2) of LUCC type; n is the
number of LUCC types (in this study, n is 6).

2.2.4. Selection and Correction of Carbon Density

The carbon density data for different LUCC types were obtained from the National
Ecological Data Center’s Resource Sharing Service Platform (http://www.nesdc.org.cn/,
accessed on 10 February 2024), supplemented with relevant information from related re-
search studies. Initially, we focused on selecting pertinent studies in the NSEBTM and

http://www.nesdc.org.cn/
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then expanded our search to include studies conducted in the arid and semi-arid regions
of Xinjiang. Previous investigations have demonstrated that regional climate and soil
type factors can significantly influence carbon density. Temperature exhibited a positive
correlation with biomass, soil organic carbon density, and precipitation, while it displayed
a negative correlation with them as well. To address this issue, we applied a correction
method proposed by Alam et al. [36] to adjust the relationships between annual precipita-
tion, biomass, and soil carbon density. The relationship between annual temperature and
biomass carbon density was corrected using methods described by Giardina and Ryan [37]
and Chen et al. [38]. Therefore, this approach was employed to rectify the carbon density
data for various LUCC change categories within the study area, thereby obtaining localized
carbon density data for the investigation region (Table 2). The specific approach is outlined
as follows:

CSP = 3.3968 × MAP + 3996.1 (5)

CBP = 6.798 × e0.0054×MAP (6)

CBT = 28 × MAT + 398 (7)

CSP represents the soil carbon density corrected for annual precipitation; CBP represents
the biomass carbon density corrected for annual precipitation; CBT represents the biomass
carbon density corrected for annual temperature; MAP represents the mean annual precipi-
tation (mm); MAT represents the mean annual temperature (◦C).

KBP =
C′

BP
C′′

BP
KBT =

C′
BT

C′′
BT

(8)

KB =
KBP
KBT

Ks =
C′

SP
C′′

SP
(9)

KBP is the precipitation correction factor for biomass carbon density; KBT is the temperature
correction factor for biomass carbon density; KB is the correction factor for biomass carbon
density; KS represents the correction factor for soil carbon density; C′ and C′′ are the carbon
density data for the NSEBTM and the whole country, respectively.

Table 2. Carbon density variation among different LUCC types in NSEBTM.

LUCC Cabove Cbelow Csoil Cdead References

Farmland 4.18 3.38 80.22 0 [20,21,39]
Forest 44.51 3.37 137.12 0 [20,21,39]

Grassland 8.49 2.61 73.93 0 [20,21,39]
Water 0.92 0 0 0 [20,21,39]

Built-up 3.26 2.09 0 0 [20,21,39]
Unused 0.65 1.25 15.99 0 [20,21,39]

2.2.5. Scenario Simulation

When simulating the future LUCC map, three scenarios were set: natural growth, eco-
logical protection, and economic development. (1) Natural growth scenario: this scenario
is considered the baseline scenario, maintaining the historical trend of LUCC development
and simulating future LUCC based on this trend. (2) Ecological protection scenario: in
this scenario, ecological protection is strengthened, economic growth is slowed down, and
the conversion of forests and grasslands into other land types is restricted. (3) Economic
development scenario: This scenario focuses mainly on economic growth and neglects
the protection of resources and the environment. Therefore, it restricts the conversion of
built-up land to other land types, while increasing the probability of the other LUCC types
being converted to built-up land.

The PLUS model was initially used to convert the LUCC data formats for 2010 and
2020. The LEAS module incorporated various driving factors to extract the expansion of
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initial LUCC to final land use. To assess the development potential of the different LUCC
types and investigate the relationship between these driving factors and LUCC expansion,
we employed the random forest classification algorithm, which determined the contribution
of each driving factor to LUCC expansion [40]; among them, the sampling rate of random
forest was set to 0.01, and the running parameter was set to 5. The Markov chain method
was used to predict future LUCC demand, and simulated patches were generated in the
CARS module to obtain a simulated future LUCC map, among them, the default value
within the domain range was set to 3, with 5 parallel threads, a decay coefficient of 0.9 for
the decrement threshold, and a diffusion coefficient of 0.1. Based on adherence to the actual
development situation in the research area and the transfer matrix law of land use area,
three typical scenarios were set for each type of land’s cost matrix (Table 3), where a value
of “1” represented allowed conversion and a value of “0” represented otherwise [41–43].
The domain weights are shown in Table 4.

Table 3. Transition cost matrix for three land use scenarios.

Land Use Scenarios Land Use Types Farmland Forest Grassland Water Built-up Unused

Natural growth scenario

Farmland 1 0 1 0 0 0
Forest 1 1 0 0 0 0

Grassland 1 1 1 1 1 1
Water 1 0 1 1 1 1

Built-up 0 0 0 1 1 0
Unused 1 0 1 1 1 1

Ecological protection scenario

Farmland 1 1 1 1 0 1
Forest 0 1 1 0 0 0

Grassland 0 1 1 0 0 0
Water 1 1 1 1 0 1

Built-up 1 1 1 1 1 1
Unused 1 1 1 1 0 1

Economic development scenario

Farmland 1 0 0 0 1 0
Forest 0 1 0 0 1 0

Grassland 0 0 1 0 1 0
Water 0 0 0 1 1 1

Built-up 0 0 0 0 1 0
Unused 0 0 0 0 1 1

Table 4. Neighborhood weight settings.

Land Use Type Farmland Forest Grassland Water Built-up Unused

Neighborhood Weight 0.27 0.03 0.39 0.11 0.06 0.14

The evaluation of the PLUS model’s simulation performance was conducted by mea-
suring two metrics: overall accuracy (OA) and Kappa coefficient. The Kappa coefficient
was computed according to the following formula:

Kappa =
po − pc

pp − pc
(10)

where Kappa is the simulation accuracy index, Po is the actual simulation accuracy,
Pc is the expected simulation accuracy under random conditions, and Pp is the simu-
lation accuracy under ideal conditions. Generally, when the Kappa value is greater than
0.75, the simulation accuracy is high; a value between 0.4 and 0.75 means that the simula-
tion accuracy is moderate; and when it is less than 0.4, the simulation accuracy is poor. The
Kappa coefficient of the simulation accuracy in this study was 0.86, the OA was 0.93, and
the simulation results met the research requirements.

This research was conducted in three stages: (a) historical LUCC data from 2010
and 2020 were utilized along with the PLUS model to forecast LUCC data for 2050, with
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separate predictions made for three scenarios; (b) carbon density data were adjusted based
on temperature and precipitation information; and (c) the InVEST model was employed
to estimate carbon storage by combining historical and projected LUCC data with carbon
density data from 1990 to 2050. The methodological process is illustrated in Figure 2.
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3. Results
3.1. LUCC Dynamics in NSEBTM from 1990 to 2050
3.1.1. LUCC Dynamics from 1990 to 2020

In terms of spatial arrangement, owing to differences in terrain, landforms, and
climatic conditions, the LUCC distribution characteristics of the NSEBTM show obvious
spatial heterogeneity. As shown in Figure 3, arable land is mainly distributed in the
southeastern part of the Tacheng region, Huyanghe City, and Karamay City. There are
also scattered distributions in the central part of Hami City and the western part of the
Turpan City. Forest land is relatively dispersed, mainly found in the sporadic areas of the
Tianshan Mountains. Grassland is primarily distributed in the northwestern and southern
parts of the Tacheng region, Shuanghe City, Urumqi City, as well as the central regions of
the Hami City and Turpan City. Water bodies are mainly located in the western region of
the Ili Kazakh Autonomous Prefecture. Construction land is predominantly distributed
within urban clusters and their surrounding areas. Unused land is mostly found in large
portions of the Hami City, Turpan City, and Changji Prefecture.
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The unused land area in the NSEBTM accounted for 63.59%, 63.25%, 62.12%, and
63.02% of the total area in 1990, 2000, 2010, and 2020, respectively, and was the most
important LUCC type in the NSEBTM (Figure 3), with a much higher proportion than
the national average (27.9%) [44]. Grassland and farmland were the next most important,
accounting for 26.55–29.59% and 4.76–7.24%, respectively, with the proportion of farmland
being much lower than that of the national average (14.3%) [44]. Water bodies, forest
land, and built-up land had the smallest area, accounting for 1.13–1.25%, 0.84–1.40%, and
0.09–0.55% of the total area, respectively, with the proportion of built-up land being lower
than the national average (4%) [44].

To clearly describe the changes in LUCC in the NSEBTM, we quantitatively expressed
the conversion relationships between the different LUCC types using a Sankey diagram.
The findings indicate that there have been diverse transformations in the LUCC categories
in the NSEBTM during the last three decades (Figure 4). The area of unused land, which
had the highest proportion, experienced an annual decrease. Specifically, 7394.17 km2,
3744.89 km2, 717.61 km2, 9 km2, and 718 km2 were transformed into grassland, farmland,
built-up land, forest land, and water bodies, respectively. Grassland also showed a de-
creasing trend every year, with 9558.73 km2, 643.08 km2, 2201.26 km2, 342.45 km2, and
9479.47 km2 being converted to farmland, built-up land, forest land, water bodies, and
unused land, respectively. However, it is worth noting that the area of farmland increased
every year, with 2718.41 km2, 463 km2, 11 km2, 98 km2, and 100 km2 being converted
from grassland, built-up land, forest land, water bodies, and unused land, respectively.
However, over the past 30 years, the areas converted from grassland, forest land, water
bodies, and unused land to farmland were 9558.73 km2, 8 km2, 38 km2, and 3744.89 km2,
and conversion into farmland far exceeded conversion from farmland. Forest land also
showed an increasing trend, mainly being converted from grassland, farmland, water
bodies, and unused land with areas of 2201.26 km2, 11 km2, 26 km2, and 9 km2, respectively.
The main factor contributing to alterations in all types of LUCC was the unused land. The
area of water bodies has remained stable over the past 30 years, with areas of 12,584.20 km2

and 10,315.19 km2 being converted from and to, respectively.
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3.1.2. LUCC Dynamics from 2020 to 2050

The validated PLUS model was employed to forecast the spatial distribution of LUCC
change in 2050 under various scenarios, based on the LUCC data for the study area in
2020 (Figure 3e–g). Under the natural change scenario, the predominant LUCC type in
2050 is still unused land, accounting for 63.25% of the total area (Figure 3e), followed by
grassland and farmland, accounting for 24.79% and 8.62%, respectively. Water bodies,
forests, and built-up areas accounted for smaller proportions of the area (0.95%, 1.64%, and
0.76%, respectively). Grassland and water bodies continued to show decreasing trends,
with cumulative areas decreasing by 6940.98 km2 and 1010.38 km2, respectively. Farmland,
forests, built-up, and unused land are areas that showed cumulative increases in area
of 5324.29 km2, 942.03 km2, 32.08 km2, and 975.75 km2, respectively. In terms of LUCC
change direction (Figure 5a), all LUCC types showed trends of mutual transformation, with
unused land being the main contributor to conversion to other LUCC types (8300.19 km2,
1167.21 km2, 378.43 km2, 19 km2, and 814.44 km2 were converted to grassland, farmland,
built-up areas, forests, and water bodies, respectively). Unused land remained the main
contributor to LUCC change for the next 30 years.
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Under the ecological protection scenario, the proportions of unused land, grassland,
farmland, water bodies, forests, and built-up areas in the NSEBTM for 2050 were 63.17%,
27.15%, 6.70%, 0.98%, 1.65%, and 0.35%, respectively (Figure 3f). Compared to 2020,
farmland, water bodies, and built-up land showed decreasing trends, with decreases of
2257.17 km2, 874.93 km2, and 792.40 km2, respectively. Forests, grassland, and unused
land showed increasing trends, with increases of 991.43 km2, 2402.6 km2, and 653.26 km2,
respectively. In terms of LUCC change direction (Figure 5b), all LUCC types showed similar
trends of mutual transformation, with the increase in forest land mainly coming from the
conversion of farmland to forests, and the increase in grassland mainly coming from the
conversion of farmland, built-up land, and unused land. Overall, compared to the natural
development scenario, the proportion of grassland increased from 24.79% to 27.15%, while
the proportion of forests remained relatively stable, mainly because of the conversion
of forests to grassland covering a larger area of 2669.87 km2. There was relatively less
conversion to other LUCC types.

In the context of economic development, it is projected that by 2050, the NSEBTM will
have a distribution of unused land (63.16%), grassland (26.25%), farmland (6.89%), water
bodies (0.98%), forest land (1.43%) and built-up land (1.30%) (Figure 3g). Compared with 2020,
farmland, grassland, and water bodies showed significant decreases in area of 1509.66 km2,
1151.62 km2, and 865.42 km2, respectively. The extent of built-up and unused land exhibited
substantial increases, measuring 2938.08 km2 and 611.74 km2, respectively. However, there
was a slight decline in the forested area. In terms of LUCC conversion (Figure 5c), all LUCC
types showed a trend of mutual conversion, with conversion to built-up land being the most
significant. Specifically, the areas of grassland, farmland, forest land, water bodies, and unused
land that converted to built-up land were 1312.47 km2, 1902.76 km2, 8 km2, 513.78 km2, and
393.43 km2, respectively. The primary driver of LUCC change in the economic development
scenario was an increase in built-up land. In comparison to the natural development scenario,
all other LUCC types experienced significant decreases, except for the proportion of built-up
land which increased from 0.76% to 1.30%.

3.2. Dynamics of Carbon Storage in NSEBTM from 1990 to 2050

The InVEST model was employed to compute carbon storage in the NSEBTM from
1990 to 2050. However, the spatial distribution of carbon storage in the NSEBTM exhibited
no significant changes (Figure 6). In general, high carbon reserves are mainly distributed in
the central regions of the Tacheng City, Shuanghe City, Huyanghe City, Shihezi City, and
Urumqi City. The highest values are found in scattered areas of the Tianshan Mountains.
It is worth noting that the desert areas surrounding Hami City, Turpan City, and Changji
Prefecture also store carbon reserves.

In order to enhance the clarity of illustrating the spatial changes in carbon storage in
the NSEBTM, we conducted raster subtraction operations on the maps depicting carbon
storage distribution during different time periods (Figure 7). According to the actual
distribution of carbon storage, the areas were divided into carbon sink areas, balance areas,
and carbon source areas, with values of 0 values and values close to 0 (−500 to 500 tons)
being classified as balance areas [21]. From 1990 to 2000, 2000 to 2010, and 2010 to 2020,
over 95% of the area did not show obvious changes in carbon storage, indicating that
LUCC in most areas of the NSEBTM was minimally disturbed by human activities and
did not undergo significant changes (Figure 7a–c). From 1990 to 2020, more than 3.60% of
the total area showed an increase in carbon storage, indicating an enhancement in carbon
sequestration capacity due to changes in LUCC, which led to an increase in carbon sink
intensity. More than 3.18% of the area showed a decrease in carbon storage, indicating
a weakening of the carbon sequestration capacity of the underlying surface, which turned
into a carbon source area (Figure 7d). In general, the NSEBTM has maintained a relatively
stable level of carbon storage over the past three decades, with approximately 95% of the
region experiencing a balanced state between carbon storage gain and loss.
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We also simulated carbon storage scenarios for the three development scenarios
for 2050. Compared with 2020, in the natural development scenario, the areas with in-
creased carbon storage exceeded 3.89%, the areas with decreased carbon storage exceeded
4.02%, and nearly 92.09% of the areas maintained a relatively stable carbon storage status
(Figure 7e). In the ecological conservation scenario, areas with increased carbon storage
exceeded 4.26%, areas with decreased carbon storage exceeded 3.60%, and over 92.14% of
these areas maintained relatively stable carbon storage status (Figure 7f). Compared to the
scenario of natural development, the ecological conservation scenario showed an increase
in the area that absorbs carbon dioxide and a decrease in the area that emits carbon dioxide,
while maintaining a relatively stable balance area. In the economic development scenario,
areas with increased carbon storage exceeded 3.87%, areas with decreased carbon storage
exceeded 5.20%, and nearly 91.74% of the areas were in a state of carbon balance (Figure 7g).
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In the context of economic development, carbon sequestration decreases and the carbon
source area expands compared to natural development, while the area of equilibrium
remains relatively stable.

3.3. Revisions in Carbon Storage Resulting from LUCC Change

Based on the data presented in Table 5, the carbon storage contribution of various
LUCC change types to the overall carbon storage can be ranked from highest to lowest as
follows: grassland, unused land, farmland, forest land, water bodies, and built-up land.
From 1990 to 2020, despite a declining trend in grassland areas (Figure 3) and a reduction
of 102.35 t in carbon storage, it still constituted over 55% of the total carbon storage, thereby
establishing itself as the predominant carbon sink. The area and carbon storage of unused
land exhibited a declining trend, with a reduction of 4.05 t in carbon storage, constituting
over 25% of the total carbon storage and positioning it as the second largest carbon sink
within the region. The farmland area carbon storage exhibited a consistent annual increase,
contributing to approximately 15% of the overall carbon storage. Over the past three
decades, forest land witnessed a continuous growth in carbon storage, with an increment
of 41.44 t. Although the forest land area constituted a relatively small proportion of the
NSEBTM’s total area, its share of carbon storage increased from 3.66% to 6.05%. Overall, the
degradation of grasslands over the past three decades has been a significant contributing
factor to carbon loss.

Table 5. Changes in carbon storage of LUCC types in NSEBTM from 1990 to 2050.

LUCC
Carbon Storage/t

1990 2000 2010 2020 2050 S1 2050 S2 2050 S3

Farmland 165.33 183.65 239.69 252.75 299.49 232.93 239.50
Forest 61.20 81.20 93.55 102.64 120.07 120.95 104.47

Grassland 995.93 976.99 945.24 893.58 834.65 914.10 883.87
Water 0.41 0.41 0.46 0.44 0.35 0.36 0.36

Built-up 0.18 0.43 0.80 1.17 1.62 0.75 2.75
Unused 450.40 447.95 439.94 446.35 448.09 447.52 447.44

We also calculated the carbon storage of each LUCC type in 2050 under the three
development scenarios. Under the scenario of natural development, grassland and water
bodies experienced a decrease in carbon storage by 58.93 t and 0.09 t, respectively, compared
to 2020. Meanwhile, unused land, farmland, forest land, and built-up land saw an increase
in carbon storage by 1.74 t, 46.74 t, 17.43 t, and 0.45 t, respectively. Under the ecological pro-
tection scenario, grassland and forest land exhibited an increase in carbon storage by 79.45 t
and 18.31 t, respectively, compared to the levels observed in 2020. Conversely, farmland,
built-up land, and water bodies experienced a decrease in carbon storage by 19.82 t, 0.42 t,
and 0.08 t correspondingly. In the context of economic development, a significant increase
in carbon storage was observed on developed land compared to the levels recorded in 2020,
with an increment of 1.58 t, while the changes in the carbon storage of the other LUCC
types were relatively inconspicuous. Overall, in the three development scenarios for 2050,
grassland remained the most important carbon sink in the NSEBTM, and the increase or
decrease in the grassland area mainly affected the carbon balance in the NSEBTM.

Changes in LUCC type significantly affected changes in carbon storage. Based on the
changes in LUCC transformation as well as differences in soil and vegetation density from
1990 to 2050, the impact of LUCC changes on carbon storage in the NSEBTM was calculated.
As shown in Figure 8, the changes in carbon storage from 1990 to 2020 were mainly caused
by the conversion between grassland and unused land. From 1990 to 2020, the conversion
from grassland resulted in a decrease of 7.17 × 107 t in the region’s carbon storage, and there
was an increase of 2.20 × 107 t in carbon storage from conversion to forest land, a decrease
of 2.88 × 106 t from conversion to water bodies, a decrease of 5.12 × 106 t from conversion to
built-up land, and a decrease of 6.37 × 107 t from conversion to unused land. This decrease
was much greater than the increase, indicating that conversion from grassland was not
conducive to increasing regional carbon storage. The conversion of a substantial amount of
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unused land into farmland and grassland resulted in respective increases of 2.62 × 107 t and
4.97 × 107 t in carbon storage. A minor conversion between unused land and water bodies
resulted in a basic balance between the increase or decrease in carbon storage. Similarly,
the bidirectional conversion between unused land and grassland resulted in a “balance
between gains and losses“ in the regional carbon storage. In the natural progression
from 2020 to 2050, there was a net decrease of 6.15 × 107 t in carbon storage due to the
transformation of grassland into unused land. Conversely, the conversion of this unused
land into forest resulted in an increase of 3.59 × 107 t in carbon storage. Additionally, there
was a significant boost of 5.57 × 107 t in carbon storage when converting unused land back
into grassland, and a further increase of 8.16 × 106 t when transforming it into farmland. In
the context of ecological conservation, between 2020 and 2050, the transition from grassland
to forest land resulted in a carbon storage increase of 3.65 × 107 t. Similarly, converting
water bodies to grassland and unused land led to respective increments of 3.73 × 106 t and
2.02 × 106 t in carbon storage. Furthermore, transforming built-up land into farmland
and grassland contributed to an additional carbon storage of 4.29 × 106 t and 5.66 × 106 t,
respectively. Notably, there were significant increases in carbon storage by converting
unused land into farmland (6.99 × 106 t) and grassland (5.85 × 107 t). In terms of carbon
storage decrease, the conversion from farmland to unused land resulted in a reduction
of 6.53 × 106 t in carbon storage. The conversion from forest land to grassland led to
a substantial decline of 2.67×107 t in carbon storage. Similarly, the transformation from
grassland to water bodies and unused land caused significant decreases of 1.51 × 106 t and
5.91 × 107 t in carbon storage, respectively. Overall, in the ecological protection scenario,
the increase in carbon storage resulting from land type conversion was much greater than
the decrease, the main manifestation was the conversion of other LUCC types to grassland,
resulting in a stronger regional carbon storage capacity. Under the economic development
scenario, the main conversion was between grassland and unused land, and the increases
and decreases in carbon storage were generally balanced. The conversion of farmland and
grassland into built-up land resulted in reductions of 1.57 × 107 t and 1.05 × 107 t in carbon
storage, respectively. Overall, under the economic development scenario, the decrease in
carbon storage exceeded the increase, mainly due to the conversion of other LUCC types to
built-up land, leading to a net loss of approximately 1.79 × 107 t.
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4. Discussion
4.1. Implications of Human Actions on Changes in LUCC

The NSEBTM, located on the western frontier of China, has a large regional area and is
one of the most sparsely populated areas in China’s geographical space [12]. The NSEBTM
is deep inland and far from the sea with a closed terrain, which makes it difficult for marine
moisture to reach the region. It is controlled by continental air masses throughout the
year, with scarce precipitation and an arid climate [45], which pose significant challenges
to vegetation growth in the region. The main LUCC types in the NSEBTM are unused
land, grassland, and farmland. Although the forest land area is relatively sparse, it is
particularly important in LUCC planning, especially in the ecologically fragile areas of
the NSEBTM. In 1979, China planned to implement the “Three-North Shelterbelt Project”,
which has a planned duration of 73 years, is divided into eight phases, and aims to establish
large-scale artificial forestry. As an important part of northwest China, the NSEBTM
has made substantial progress in ecological engineering construction under the Three-
North Shelterbelt Policy [46]. By 2020, the fifth phase of the “Three-North Shelterbelt
Project” in China was almost completed, and the forest area in the NSEBTM increased
from 3307.17 km2 in 1990 to 5546.42 km2 in 2020 (Figure 3). NDVI data can characterize
vegetation coverage; therefore, we established a spatial correlation between the NSEBTM
NDVI data and the carbon storage data simulated using the InVEST model (Figure 9a).
The graph reveals a distinct correlation between NDVI and carbon storage, particularly
in the Huyanghe City, Karamay City, and Yili Prefecture. Taking the central region of
the Yili Prefecture as an illustrative example from 2000 to 2020, there has been a notable
augmentation in vegetation coverage within this area. Consequently, the expansion of
vegetation coverage has led to a concurrent increase in carbon storage (Figure 9b,c).
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From 1990 to 2020, the farmland area in the NSEBTM increased from 18,832.5 km2

in 1990 to 28,791.71 km2. In 2021, the Xinjiang Uygur Autonomous Region issued the
“14th Five-Year Plan for the Protection and Development of Land Resources in Xinjiang
Uygur Autonomous Region”, which mentioned the management policy for farmland:
strengthening the protection of farmland, focusing on curbing the “non-agriculturalization”
and preventing the “non-foodization” of farmland, and strictly observing the red line and
bottom line of farmland. The overall LUCC plan issued by the Xinjiang Uygur Autonomous
Region (2006–2020) also emphasized the effective protection of farmland, which plays
a very important role as the third largest carbon sink in the NSEBTM. Over the past
30 years, the grassland area in the NSEBTM has shown a decreasing trend, and under
our predicted natural development scenario for 2050, the grassland area will continue to
decrease without human intervention. Conversely, under the ecological protection scenario,
which adheres to the policy of protecting forests and grasslands, the grassland area will
continue to increase. Overall, LUCC types in the NSEBTM are strongly influenced by
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human activities, which means that in the future, it will be necessary to reasonably restrict
human activities to protect the ecological land in the NSEBTM.

4.2. Impact of Urbanization on Carbon Storage in NSEBTM

The findings of the research indicate that the process of rapid urbanization and eco-
nomic growth has significantly expedited land degradation [47]. The expansion of urban-
ized land area signifies the process of urbanization, and it is crucial not to underestimate
the conversion from non-built-up land to built-up land, as it results in a reduction in
carbon storage. Therefore, we used nighttime light remote sensing data to characterize the
changes in built-up land types in the NSEBTM. According to the statistics of the NSEBTM’s
illuminated area (Figure 10(b-3,b-4,c-3,c-4)), the illuminated area expanded four-fold from
2000 to 2020, increasing from 2.42% in 2000 to 7.20% in 2020. The spatial distribution of
nighttime light data shows that built-up land has expanded to surrounding areas based on
the original area, unlike the increase in light intensity in coastal areas. Urbanization in the
inland areas of the NSEBTM is manifested by the expansion of nighttime lighting areas.
The increase in nighttime lighting areas contributed to a reduction in carbon storage. With
the development of urbanization in the NSEBTM, three central cities will be built, driving
the joint development of the Urumqi metropolitan area, northern Xinjiang urban belt, and
southern Xinjiang urban cluster. It is evident that, under the guidance of urbanization
policies in Xinjiang, from 2000 to 2020, there has been an obvious increase in built-up land
in the NSEBTM (Figure 10b,c), corresponding to a decrease in carbon storage.
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Research has shown that the level of urbanization in China has increased obviously
from 2000 to 2019, and industrialization has accelerated obviously. Urban development
requires more built-up land, and the continuous expansion of built-up land areas means
that more energy and industrial production activities will occur, leading to a loss of carbon
storage [48]. Numerous studies have quantitatively demonstrated that an increase in urban
built-up land leads to a loss of carbon storage, such as the 8.64 Tg loss of carbon storage
in the Chang-Zhu-Tan urban agglomeration due to the urban expansion from 1995 to
2009 [49]. In addition, numerous studies have shown that an increase in urban land will
lead to a large amount of artificial greening and landscaping activities, which, although
helpful in increasing urban green coverage, will also have adverse effects on soil quality and
soil carbon storage capacity [50,51]. Furthermore, an increase in urban land will lead to an
increase in traffic and industrial pollution, which will adversely affect soil and vegetation,
further reducing carbon storage [52].
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4.3. Implications of Different Scenarios of Carbon Storage Results for Future Planning

Our findings demonstrate that, under the ecological protection scenario for 2050, there
was a significant increase in carbon storage by 12.34 t compared to the natural development
scenario (Table 5). Notably, grasslands emerged as the primary carbon reservoirs in the
NSEBTM, contributing over 55% of the total carbon storage (Figure 6). The degradation
of grassland in the NSEBTM has been identified as the primary factor contributing to
the loss of carbon storage, resulting in a significant decline of 102.35 t over the past three
decades. The NSEBTM has abundant grassland resources and a variety of grassland
types and species [53]; therefore, in future planning, it is necessary to strengthen the
protection and rational utilization of grassland and steppe resources to increase carbon
storage. Unused land was the main LUCC type in the NSEBTM, with deserts being the
predominant LUCC type. Deserts are an important part of terrestrial ecosystems, and their
contribution to carbon storage cannot be ignored. Gulnur et al. [54] explained that the
Gurbantunggut Desert is a carbon sink during the vegetation growing season. Similarly,
the Taklimakan Desert in southern Xinjiang is also an important carbon sink, sequestering
148.85 × 104 tons a−1 of carbon annually [55]. Our study confirms this conclusion, with
unused land accounting for over 25% of the total carbon storage in the NSEBTM, making
it the second largest carbon reservoir among the NSEBTM’s land types. Therefore, given
the NSEBTM’s unique geographical location and climatic conditions, it is important to
develop desert ecological projects that effectively increase land carbon storage. In future
plans, investments in desert ecological projects should be increased to enhance carbon
storage. Additionally, it is worth noting that forests and farmland are important sources
of carbon storage in terrestrial ecosystems. Although the forests and farmlands in the
NSEBTM occupy relatively small areas and are dispersed, their contribution to carbon
storage should not be overlooked. Studies have shown that extensive logging and grazing
activities reduce the carbon stored in shrubs, trees, roots, litter, and dead plants [56]. In
related studies on farmland carbon storage, researchers have shown through 40 years of
field cultivation data that fallow farming can increase soil organic carbon storage in the
Yellow River Delta farmland [57]. Therefore, it is necessary to plan the use of forest and
farmland resources in a rational manner to increase carbon storage.

Our study also shows that, compared to natural development scenarios, economic
development scenarios resulted in a loss of 25.88 t of carbon storage (Table 5). Urbanization
leads to an expansion of built-up land, resulting in a reduction in vegetation cover and
subsequently diminishing carbon storage capacity. Furthermore, urbanization induces
alterations in land use patterns, such as the conversion of farmland or forests into developed
areas, leading to a decline in carbon storage. In the future process of economic development,
it will be necessary to strengthen urban greening and ecological construction, protect and
restore vegetation cover around cities, and increase urban green space and forest cover to
increase urban carbon storage. In addition, it is necessary to strengthen urban planning
and management, rationally use land resources, protect farmland and forest resources, and
reduce the impact of land development on carbon storage.

In conclusion, based on the impact of LUCC changes on carbon storage in different
scenarios, our findings provide a scientific basis and reference for LUCC planning and can
help the government and relevant departments better formulate future LUCC policies and
plans, promote ecological protection and sustainable development, and achieve a virtuous
cycle of ecological environment and economic development.

4.4. Potential Applications and Limitations

The novelty of this study lies in the comprehensive analysis of the spatiotemporal
variations in the NSEBTM carbon storage under past and future 30-year land use change sce-
narios using the PLUS model and InVEST model. By combining NDVI data and nighttime
light remote sensing data, it reflects the changes in the NSEBTM carbon storage under the
background of ecological engineering and urbanization. The advantage of the PLUS model
over other land use prediction models is its application of a new analytical strategy that
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includes a new multi-seed growth mechanism coupled with multi-objective optimization
algorithms, which can better support planning policies for sustainable development. The
high accuracy of the future LUCC simulation results conforms to the development patterns
under different scenarios for the NSEBTM, thus providing an approach to simulate the
regional LUCC and carbon storage, serving as an example and reference for carbon storage
research in other regions, and promoting the sustainable development of the NSEBTM.

This study also has certain limitations. The future LUCC patterns of the NSEBTM will
change due to factors such as climate change, natural disasters, and policies. As the “warm-
wetting” trend intensifies in northwest China [58], the LUCC patterns will also undergo
changes, which will increase the uncertainty of the LUCC predictions. Additionally, carbon
density will also change over time. Future research will establish models that will capture
the relationship between carbon density and time to predict data that will align with
future periods.

5. Conclusions

We conducted an analysis using the PLUS and InVEST models to examine how LUCC
and carbon storage in the NSEBTM have changed over the past three decades, as well
as projected changes for the next 30 years. Additionally, we performed a quantitative
assessment to determine the factors contributing to variations in carbon storage under
different scenarios. Our findings indicate that between 1990 and 2020, unused land was
the primary type of LUCC change observed in the NSEBTM, followed by grassland. By
2050, different development scenarios will induce alterations in land use; nevertheless,
unused land will remain the dominant category. Over the past three decades, grasslands
have served as a crucial carbon sink in the NSEBTM with substantial carbon sequestration
capacity compared to other types of land such as unused land. Notably, the degradation of
grasslands has been identified as a key driver behind the declining carbon storage levels
within this region. Under diverse development scenarios for 2050, ecological conservation
initiatives are expected to contribute towards energy savings along with reduced emissions
while simultaneously enhancing terrestrial carbon stocks; however, urban expansion par-
ticularly under economic development scenarios may result in diminished carbon storage
capacities. Therefore, it is imperative to strategically plan future LUCC considering eco-
nomic development objectives alongside tailored management strategies for distinct LUCC
types aiming at mitigating the potential losses of carbon storage within the NSEBTM.
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