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Abstract: Carbon emission issues are becoming increasingly severe, and the carbon emissions in
shrinking cities, primarily characterized by population loss, are often overlooked and insufficiently
studied. This paper focuses on the carbon emissions from county-level administrative units in China’s
three northeastern provinces from 2001 to 2017. The study scientifically identified shrinking cities
and measured the differences in carbon emission characteristics between growing and shrinking
cities using the Theil index. Ultimately, the paper constructs a panel spatial econometric model
to analyze the factors influencing them and explore their spatial effects. (1) The total carbon emis-
sions in the Three Northeastern Provinces exhibited an inverted U-shaped trend, increasing from
734.21 million tons in 2001 to 1731.73 million tons in 2017, with the Mann–Kendall trend test showing
a significant increase; spatially, this manifests as a significant positive spatial autocorrelation. (2) The
region has 138 shrinking cities, accounting for over 50%; regarding carbon emission characteristics,
the Theil index has consistently remained above 0.18, indicating significant differences between the
carbon emissions of growing and shrinking cities. (3) The panel spatial econometric model results
show that the influencing factors of carbon emissions in shrinking cities have unique directions,
intensities, and spatial effects. In shrinking cities, aside from localized GDP effects and per-capita
GDP acting as a suppressant, the population size has a pronounced inhibitory effect on local and
surrounding carbon emissions. The analysis reveals significant differences in the carbon emission
patterns and mechanisms between growing and shrinking cities; based on these results, the paper
proposes differentiated carbon control strategies.

Keywords: shrinking cities; county-level administrative units; disparities; spatial panel regression;
three northeastern provinces

1. Introduction

Since the Industrial Revolution, human production and life activities have produced
vast amounts of carbon emissions, which have had profound negative impacts on the
global climate [1]. As the largest developing country globally, China’s carbon emissions
have increased annually, making it the world’s largest carbon emitter [2]. In response to
this challenge, Chinese President Xi Jinping announced at the 75th United Nations General
Assembly in 2020 China’s ambitious goal of reaching a carbon peak by 2030 and achieving
carbon neutrality by 2060. This goal is being progressively broken down and implemented
across various administrative levels in China, including county-level administrative units.

Regarding total carbon emissions, developed countries generally exhibit higher lev-
els [3]. However, the study by Liu et al. [4] noted a downward trend in Japan’s carbon
emissions following the COVID-19 pandemic, contrasting sharply with the situation in
Europe and America. This discrepancy highlights variations within developed countries
themselves [5]. In developing countries, carbon emission characteristics also vary, as ev-
idenced in the empirical study by Zhang X P et al. [6], which showed that only some
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developing countries follow the Kuznets environmental curve. Consequently, there are
evident differences in carbon emissions among countries or regions at different stages or
types [7]. Moreover, research into the factors affecting carbon emissions has garnered con-
siderable scholarly interest. Economic growth, urbanization, and population expansion are
widely believed to exacerbate energy demand, thereby increasing carbon emissions [8,9].
For instance, based on data analysis from over 130 countries, York et al. [10] found that
urbanization significantly boosts carbon emissions. Chen et al. [11] noted that population
agglomeration significantly drives an increase in carbon emissions. Additionally, some
scholars hold opposing views [12,13]. The diversity of these research findings has further
piqued the academic community’s interest [14,15].

The diversity of carbon emission studies highlights the need for in-depth research
on specific areas, such as shrinking cities. Since the 1950s, there has been a worldwide
trend of shrinking cities, mainly defined by decreasing populations [16,17]. Shrinking cities
often face economic declines, demographic imbalances, and reduced levels of public ser-
vices [18], which hinder urban development and significantly impact carbon emissions [19].
Schilling J et al. [20] observed that population declines might result in decreased energy
use and lower carbon emissions, with shrinking cities benefiting from land reallocation
and industrial shifts. However, a reduced population can lead to a looser urban structure
and lower efficiency, which are detrimental to environmental protection [21]. Additionally,
shrinking cities face declining demand, reducing supply capacity and causing inefficiency
in public services like transit, pipelines, and central heating, thereby increasing household
carbon emissions [22]. Thus, the relationship between shrinking cities and carbon emissions
remains unclear. To explore this issue, a few scholars have attempted to conduct studies
by comparing growing and shrinking cities. Xiao HJ et al. [23] concluded that rapidly
shrinking cities have the lowest carbon emissions after comprehensively comparing the
characteristics of carbon emissions between growing and shrinking cities. An empirical
analysis by Tong XH et al. [19] indicates that the carbon emissions of rapidly shrinking cities
follow a “U-shaped” curve. However, their studies, along with those of Zeng TY et al. [24],
focused too broadly on prefecture-level cities, which do not accurately reflect the actual
characteristics of carbon emissions or the implementation of reduction measures. There-
fore, there is room for a further empirical assessment of carbon emissions in growing and
shrinking cities.

There is a notable scarcity of literature addressing the typical and specific features of
carbon emissions in shrinking cities within existing studies. Although existing research has
explored carbon emissions between growing and shrinking cities, it is primarily based on
broad regional data. It requires detailed analysis, making it easier to implement specific
reduction measures. Additionally, few studies have scientifically validated and effectively
quantified the differences and extents of carbon emissions between growing and shrinking
cities. Crucially, despite the increasing number of studies focusing on carbon emissions in
growing and shrinking cities, few have addressed the spatial impacts of these emissions.

To compensate for the existing research deficiencies, this study thoroughly investigated
the extent of differences and the characteristics of influencing factors of carbon emissions
between growing and shrinking cities. The innovation of this paper manifests in three
aspects: Firstly, the paper focuses on the detailed scale of county-level administrative units
for carbon emission analysis. The paper uses descriptive statistics and the Mann–Kendall
method for a long-term trend analysis of emissions in China’s three northeastern provinces.
Secondly, this paper accurately reveals the degree and characteristics of carbon emission
differences between growing and shrinking cities by employing quantitative methods
such as inter-group differences and the Theil index. Lastly, the paper uses panel spatial
econometric models to differentiate the factors influencing carbon emissions in growing
and shrinking cities, employing the spatial Durbin model to measure the spatial effects of
these factors. This paper proposes differentiated carbon reduction strategies for growing
and shrinking cities based on its findings.
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2. Materials and Methods
2.1. Scope and Duration of the Study

This study selected the three northeastern provinces of China, where shrinking cities
are relatively common [23], as its research area. This region includes the Heilongjiang,
Jilin, and Liaoning provinces (Figure 1). Referencing the administrative divisions listed
by the Ministry of Civil Affairs of the People’s Republic of China and considering the
data distribution characteristics, the study selected 272 cities (county-level administrative
units) to analyze the spatiotemporal evolution characteristics of urban carbon emissions.
To ensure the accuracy and continuity of the research, 206 of these units were retained to
explore differentiated influencing factors.
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Regarding the timeline, this research considered crucial junctures such as the 2003
policy to revitalize the northeast’s old industrial bases and the 2016 initiation of a new
revitalization strategy for the region. Given the availability of carbon emission data, the
study period was set from 2001 to 2017.

2.2. Research Methods and Empirical Models
2.2.1. Mann–Kendall Trend Analysis

Mann–Kendall trend analysis is a non-parametric test method primarily advantageous
due to its independence from specific data distributions and its high resistance to missing
and outlier values. This method is suitable for trend testing in long-time series data,
and it is often used with the Theil–Sen estimator. In conducting the Mann–Kendall test,
the null hypothesis posits that the data sequence is random, with no significant trend.
Subsequently, statistical measures such as S and the sign function (sgn) are constructed to
conduct hypothesis testing, with the specific formulas as follows:

S =
n
∑

i=1

n
∑

j=i+1
sgn(xj − xi)

sgn(xj − xi) =


1 xj − xi > 0
0 xj − xi = 0
−1 xj − xi < 0

(1)
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In the above equation, S represents the test statistic, sgn is the sign function, n is the
number of data points in the series, and xj and xi are the attributes of the j-th and i-th
elements. Subsequent trend analysis utilizes the Z statistic and Var formula as follows:

Z =


S√

Var(S)
S > 0

0 S = 0
S+1√
Var(S)

S < 0
,

Var(S) = n(n−1)(2n+5)
18

(2)

The meanings of the variables are the same as those in Formula (1). From this, one
can determine the confidence intervals for the absolute value of Z based on the confidence
level, thereby concluding whether there is a significant change.

2.2.2. Difference Identification Methods

This study utilized the Stata command ttable3, developed by Professor Lian Yujun
(see: http://www.lianxh.cn), to test for significant differences in the mean or median total
carbon emissions between growing and shrinking cities. The command primarily employs
the T-test to compare differences in means or medians, effectively assessing the statistical
significance of differences between groups.

Concurrently, this study employs the Theil index as the primary method for quanti-
fying group differences. As a particular form of the generalized entropy index, the Theil
index was first introduced by Theil and Henri [25], and it is extensively used to measure
inequality among individuals or regions. In the context of this paper, the overall differences
can be decomposed into intergroup and intragroup disparities within growing and shrink-
ing cities. A more considerable index value indicates a more significant regional disparity.
The specific formula is as follows:

T =
N

∑
i=1

yi log
yi
pi

(3)

In this formula, N represents the number of groups, yi denotes the proportion of
the i-th group’s corresponding indicator to the entire population, and pi represents the
proportion of the i-th group’s weighted index to the total.

2.2.3. Analysis Method for Influencing Factors

This research incorporated a range of methods to analyze factors influencing carbon
emissions, selecting the best regression model based on comparison across multiple models,
as shown in Table 1.

According to Table 1 above, the panel spatial econometric model is undoubtedly the
best solution for analyzing carbon emissions at the county level for the following reasons:
Carbon dioxide, as the primary carrier of carbon emissions, has strong regional diffu-
sion and easily affects neighboring areas. Furthermore, spatial econometric models can
adequately handle the spatial autocorrelation characteristics of carbon emissions and scien-
tifically measure relationships between cities. Moreover, panel data have a rich structure
that can appropriately analyze phenomena’s dynamic changes and causal relationships.
Therefore, this paper’s analysis uses the panel form of spatial econometric models—panel
spatial econometric models—and it uses the results from ordinary panel regression models
as a comparative baseline.

This study employed ordinary panel regression models and panel spatial econometric
models that consider nested spatial effects to analyze influencing factors.

Commonly used panel regression models include mixed, random, and fixed-effects
regression. Model selection can be determined through hypothesis testing, such as the
Hausman test, the robust Hausman test accounting for heteroskedasticity, or information
criteria like the Akaike Information Criterion (AIC) and the Schwartz Criterion. This

http://www.lianxh.cn
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paper provides an example by explaining the two-way fixed-effects model using the
following formula:

yit = αi + λt + βxit + εit (4)

In this equation, yit represents the dependent variable, xit is the explanatory variable,
εit signifies the error term, β is the coefficient to be estimated, primarily indicating the
marginal impact of x on y, αi represents individual effects, and λit signifies time effects.

Table 1. Comparison of analysis methods.

Method Advantages Disadvantages Application in Carbon Emission
Field

Linear regression model

Understandable and straightforward:
easy to comprehend and explain.

High computational efficiency: fast
model training and prediction with a

low demand on
computational resources.

Model assumption limitations: it
assumes linear relationships, is

sensitive to outliers, and is unsuitable
for nonlinear relationships.

Fundamental in regression
analysis. Scholars widely use this

model as an initial model to
analyze factors affecting carbon
emissions and for comparisons

with other models [26,27].

Random forest
regression model

Handles non-linearity: effectively
manages non-linear relationships and

high-dimensional interactions.
Robust: insensitive to outliers and

noise but has strong
generalization capability.

Feature importance assessment:
provides importance scores for

variables, aiding in understanding
their contributions to the model.

High computational complexity:
requires substantial computing

resources, especially with
large datasets.

Poor interpretability: as a black-box
model, its decision-making process is

difficult to explain.

It is commonly used for the time
series prediction of carbon
emissions or to identify the
importance of influencing

factors [28,29].

Shapley additive
explanations

High interpretability: detailed
explanation of each feature’s

contribution to model predictions
through SHAP values.

Model universality: Applicable to any
machine learning model, enhancing

transparency and credibility.

High computational cost: particularly
with many features, computing SHAP

values can be very time-consuming.
Complex implementation: Requires
high technical proficiency for correct
implementation and interpretation.

It is relatively new, with details
and uses still under discussion.
However, it allows for a better
assessment of the contributions

and thresholds of factors
influencing carbon emissions [30].

Geographically weighted
regression

Models spatial heterogeneity: can
model and explain spatial variability

in data.
Enhances local prediction accuracy:
improves local fitting accuracy in

spatial data analysis.

High data demand: requires sufficient
spatial data for local estimation.

Potential for overfitting: prone to
overfitting in areas with dense data

points or small regions.

It is often used to characterize the
spatial heterogeneity features of

carbon emissions from industries,
households, and other spatial

elements [31,32].

Geographic detector

Detects interactions: Effectively
identifies interactions between

different factors and their impact on
the target variable.

No model assumptions: these are not
based on prior statistical model
assumptions and are suitable for

various data types.

Limited interpretability: only
determines whether a significant

relationship exists between factors
and cannot identify precise

relationship forms.
Sensitive to data quality: the results

depend on data completeness
and quality.

It is commonly used in areas with
significant stratified heterogeneity

for carbon emission
analysis [33,34].

Spatial econometric
model

Handles spatial dependencies:
effectively manages spatial

autocorrelation and heterogeneity,
improving estimation accuracy.

Solid theoretical foundation: provides
rich theoretical support for

understanding and analyzing the
complex dynamics of spatial

data structures.

Complex model setup: the selection of
a spatial weight matrix and parameter

setting require expertise.
High computational demands: a large
computational load on large datasets,
which may need specialized software

and hardware.

It is frequently used in urban
carbon emission studies to

scientifically measure spatial
dependencies and effects [35,36].

In studying spatial units as samples, the spatial effects between the models cannot
be disregarded [37]. This aligns with the first law of geography, as Tobler [38] articulated,
which states, “Everything is related to everything else, but near things are more related to
each other.” The spatial panel econometric model effectively leverages the advantages of
panel data and incorporates spatial effects into the model framework, providing a robust
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tool for analyzing spatial phenomena. Furthermore, it includes spatial lagged dependent
variables, error terms, or explanatory variables, thus accounting for spatial dependence.
The spatial relationships are defined using a spatial weight matrix, enhancing the model’s
versatility and practicality. The most commonly used model is the spatial Durbin model. In
this paper, the spatial implication of the spatial Durbin model is that local carbon emissions
are influenced not only by local factors but also by neighboring regions’ carbon emissions
and other factors. This paper primarily focuses on elucidating the spatial Durbin model
(SDM) as follows:

yit = αi + λt + ρ
N

∑
j=1

ωijyit + βxit +
N

∑
j=1

ωijxijtθ + εit (5)

Furthermore, the model can be expressed in vector form:

yt = ρWyt + βxt + Wθxt + α + λtln + εt (6)

Here, εt∽N(0,δ2
εIn); a = [a1, a2, . . ., an]; ln is a column vector of dimension (n × 1), with

each element being 1; and the other symbols are explained as follows:

yt =


y1t
y2t
...

ynt

, xt =


1 x21t · · · xk1t
1 x22t · · · xk2t
...

...
. . .

...
1 x2nt · · · xknt

 (7)

β =
[
β1, β2, · · · βk

]′, θ =
[
θ1, θ2, · · · θk

]′ (8)

The parameters have the same interpretation as those in the panel regression model,
with ρ representing the spatial regression coefficient and W denoting the spatial weight
matrix. The spatial relationships are defined using wij, indicating the spatial weight
relationship between individuals i and j. The abovementioned model can be transformed
into a spatial lag model (SLM) or spatial error model (SEM) based on parameter variations.

The spatial lag model (SLM) includes the influence of local emissions on adjacent areas’
emissions within the model, known as spatial spillover effects [39], and it is expressed
as follows:

yit = ρ
N

∑
j=1

Wijyit + βxit + µi + εit, εi ∼ N(0, δ2 I) (9)

In the formula, the variables are the same as those in the previous formula, X-X, where
µi denotes the individual fixed effects.

In prevalent spatial regression models, there is potential for spatial autocorrelation
in the independent error terms, leading to the development of the SEM, presented as
follows [37]:

yit = βxit + µi + µit,

µit = λ
N
∑

j=1
wijµjt + εit

(10)

Generally, the best panel spatial econometric model selection can be determined using
the Lagrange Multiplier test or evaluated through post-regression information criteria [40].

2.3. Construction of Influencing Factors

The data used in this study were categorized into three types: total carbon emissions
data, population data to identify shrinking cities, and socioeconomic data to analyze factors
affecting carbon emissions. The carbon emission data came from the Carbon Emission Ac-
counts and Datasets (CEADs) [41], which provided county-level carbon emissions data for
China from 1997 to 2017 (https://www.ceads.net/data/county/; accessed on 29 January

https://www.ceads.net/data/county/
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2024). The CEADs have been harmonized using Particle Swarm Optimization-Back Prop-
agation (PSO-BP) algorithms applied to DMSP/OLS and NPP/VIIRS satellite images to
estimate the carbon emissions of county-level administrative units in China, thereby filling
gaps in research at this level. Furthermore, population data were obtained from the World-
Pop database (https://hub.worldpop.org). These data, primarily based on population
censuses, nighttime lights, terrain, and proximity to critical elements, are spatialized using
random forest algorithms, offering a better spatiotemporal resolution than other population
datasets [42]. Lastly, data on influencing factors for carbon emissions primarily came from
the “China County Statistical Yearbook” (2000–2018) published by the National Bureau of
Statistics of China (https://www.stats.gov.cn/); additional land use data were from the
China Land Cover Dataset database [43], noted for its high spatiotemporal consistency and
superior accuracy.

The data were normalized to a standard normal distribution to mitigate the effects of
scale and magnitude differences.

For the construction of influencing factors for carbon emissions, the impacts of eco-
nomic development, population size, industrial structure, and policy regulations within
county-level administrative units were considered, with relevant data from Table 2 analyzed.

Table 2. Data descriptions.

Influencing Factors Abbreviation

Gross domestic product GDP, x1
Population scale PS, x2

General public budget revenue GPBR, x3
General public budget expenditure GPBE, x4

Construction land area CLA, x5
Output value of secondary industries SSI, x6

Output value of tertiary industries STI, x7
Gross domestic product per capita GDPPC, x8

Fixed asset investment FAI, x9

China’s rapid urbanization has been driven by heavy industries such as cement, steel,
and power generation [44]. However, constrained by relatively inefficient production
processes and energy utilization, industries like cement exhibit higher carbon emission
intensities than the global average [45], leading to significant carbon emissions. Nonetheless,
it is worth noting that optimizing the structure of urbanization can enhance efficiency
and reduce carbon emissions [46]. Furthermore, during this process, factors such as
general public budget revenue and expenditure play pivotal roles in evaluating China’s
fiscal capacity, particularly in infrastructure development and ensuring citizens’ well-
being [47,48]. Thus, construction land area, general public budget revenue, and expenditure
were selected as factors influencing carbon emissions for analysis.

The expansion of an economic scale is achieved through the consumption of resources,
including energy. In China, the growth of carbon emissions is closely tied to the rapid
development of the economic scale, a scenario unlikely to be avoided in the short term [49].
As a responsible global actor, China must optimize its economic structure to achieve
high-quality development [50]. This necessitates a shift from resource-intensive industries
towards low-carbon industries to increase the proportion of clean energy and improve
carbon emission efficiency, ultimately achieving emission reduction goals. However, more
than just transitioning the secondary sector to high-end services and high-tech industries is
not advisable, as this approach may inadvertently become a new source of carbon emis-
sions [51,52]. Moreover, considering the significance of the Environmental Kuznets Curve
hypothesis on the inverted “U” shape of per-capita income, this study comprehensively
selected factors including the gross domestic product (GDP), output value of secondary
industries, output value of tertiary industries, and per-capita GDP as influencing factors.

https://hub.worldpop.org
https://www.stats.gov.cn/
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Extensive interactions exist between population and carbon emissions, and the relation-
ship is often generated indirectly through consumption, production, and trade pathways.
Previous research has confirmed that, under constant conditions, changes in the population
scale influence energy demand, the construction land scale, and the consumption scale,
subsequently affecting carbon emissions [53]. The relationship between the population
scale and carbon emissions is not a simple, linear one; it is influenced by regional character-
istics, urban types, and even consumption habits [54]. Therefore, this study selected the
population scale as one of the factors for subsequent analysis.

2.4. Principles and Methods for Identifying Shrinking Cities

Shrinking cities are characterized by population losses, economic declines, social
unrest, or vacant land [55]. Although there is still a debate over the specific methods for
identifying shrinking cities, a decline in the population size is commonly accepted as a core
characteristic [56]. For instance, considering the low population of small towns in Europe
and America, the Shrinking Cities International Research Network defines cities of over
10,000 that have been experiencing a population decline and a structural economic crisis
for over two years as shrinking cities [57]. Wirchmann T [58] considers two consecutive
years of population decline to indicate a shrinking city. However, some scholars regard
cities with population growth rates below the average as shrinking cities [59].

In summary, to enhance the stability and continuity of identification, this study con-
sidered the number of years of population losses and the extent of cumulative declines as
critical factors. Drawing on related studies [60], this paper first calculated the cumulative
count of population decreases (Count, c, measured in pieces) and the rate of population size
changes (Rate, r, in percentage) for each county-level administrative unit. It then established
classification thresholds based on data trends and constructed a matrix to categorize cities
into growing and shrinking groups (Table 3).

Table 3. The judgment matrix for shrinking cities.

Cumulative Count of Population
Decreases/c Rate of Population Size Change/r Type

9 ≤ c
r < 0 Shrinking cities
0 ≤ r

0 ≤ c < 9
r < 0 Shrinking cities
0 ≤ r Growing cities

3. Results
3.1. Spatiotemporal Evolution of Carbon Emissions

The initial step involved describing and analyzing the temporal variation charac-
teristics of carbon emissions in the three northeastern provinces, utilizing mathematical
statistics and the MK trend test method (Table 4).

Table 4. MK trend test.

Province Sen’s Slope z-Value p-Value

Jilin 19.96 *** 4.33 1.52 × 10−5

Liaoning 9.46 *** 4.41 1.05 × 10−5

Heilongjiang 10.61 *** 4.74 2.17 × 10−6

Total 38.91 *** 4.90 9.49 × 10−7

*** indicates significant performance at a 1% confidence level.

A stacked bar chart was plotted to analyze the temporal development characteristics
of carbon emissions in the three northeastern provinces (Figure 2). As shown in Figure 2,
the total carbon emissions in the three northeastern provinces increased from 734.21 million
tons in 2001 to 1731.73 million tons in 2017 at an average annual growth rate of 5.51%. In
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terms of the growth rate, it shows a fluctuating decline trend. Before 2006, the growth rate
fluctuated but remained above 10%. After 2007, the growth rate briefly accelerated and
rapidly declined, maintaining positive growth of about 5%. After 2015, it directly dipped to
around −5%. Although progress has fluctuated, total carbon emissions gradually increased
and stabilized to approximately 1750 million tons after 2015. Next, the paper used the MK
trend test method to verify the growth trends in carbon emissions for the entire region
and each province (Table 4). As shown in Table 4, the total carbon emissions and carbon
emissions from each province in the study area exhibited a stable growth trend at a 95%
confidence level, and the differences in Sen’s slope values among provinces indicated
regional disparities.
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Combining the analysis from Figure 2 and the above information, we observed that
the carbon emissions in the region followed an “M-shaped” curve. There was a period
of rapid growth from 2001 to 2006, followed by a slowdown influenced by the “Revitaliz-
ing the Old Industrial Bases in Northeast China” policy and fluctuations in the domestic
and international economic situation. After 2010, the carbon emissions peaked at around
1830.11 million tons due to population outflows and technological improvements. Subse-
quently, emissions transitioned from growth to decline, and they have gradually stabilized.

When comparing the provinces, Liaoning Province, known for its abundant resources
and energy industries, contributes to nearly half of the region’s total carbon emissions,
partly explaining the relatively lower proportion of shrinking cities in the province. Both
the Heilongjiang and Jilin provinces have a roughly equal share of carbon emissions, each
accounting for about one-fourth of the total. The stability of these proportions across
the three provinces indicates a steady development in Northeast China. It suggests that
there has yet to be a clear trend in localized technological progress or overall expansion in
carbon emissions.

Then, Moran’s I index was used to measure the spatial evolution characteristics of
carbon emissions in the three northeastern provinces.

As shown in Figure 3, Moran’s I index, which measures the overall spatial autocorrela-
tion, was significant at a 1% confidence level and consistently stayed above 0.30. Moran’s I
index indicates that the county-level carbon emissions in the region had a positive spatial
dependence over the years. Additionally, Moran’s I index shows three stages of evolution:
a stable fluctuation, a linear increase, and a sharp decline, with the main turning point
occurring around 2011–2012.

To explore the clustering relationship of carbon emissions in local areas, we conducted
an analysis of local indicators of spatial association based on the cross-sectional data in 2017.
The results in Figure 4 reveal robust local spatial autocorrelation patterns in the Northeast
China region. The clustering is primarily divided at the border between the Heilongjiang
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and Jilin provinces. The northern part of Heilongjiang Province exhibits stable and low–low
clustering, while the “Changchun-Shenyang-Dalian” urban axis in the southern part shows
stable and high–high clustering characteristics. Over the years, the low–low clustering
area in the north consisted of three main spatial clusters: Qiqihar, Yichun, and Mudanjiang.
The high–high clustering of the “spatial club” phenomenon was observed in cities like
Changchun, Shenyang, Dalian, and Panjin.
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3.2. Results of Identification of Shrinking Cities

This study employed a Two-Step Identification Approach to classify cities within the
region, aiming to identify different types of shrinking cities and understand their spatial
and temporal distribution patterns. Firstly, based on provinces, a bidirectional table of city
types (Table 5) was constructed to identify the distribution of different types of cities.

Table 5. Bidirectional statistics of city types.

Province Growing
Cities

Proportion
(%)

Shrinking
Cities

Proportion
(%) Total

Jilin 25 43.10 33 56.90 58
Liaoning 51 52.04 47 47.96 98

Heilongjiang 58 50.00 58 50.00 116
Total 134 49.27 138 50.74 272

Table 5 shows that even with relatively strict identification criteria, we identified
138 shrinking cities within the region, accounting for over 50%. Jilin Province has the
highest proportion of shrinking cities, reaching 56.9% among the provinces. Liaoning
Province has slightly more growing cities than shrinking ones, which is better. Heilongjiang
Province has the second-highest proportion of shrinking cities, exactly reaching the 50%
mark, making it the province with the highest number of shrinking cities among the three.
The amount indicates that shrinking cities have essentially taken up a significant portion of
the three northeastern provinces, becoming widespread.

The spatial distribution maps of shrinking and growing cities are generated to compre-
hensively express the spatial distribution characteristics of shrinking cities (Figure 5). As
shown in Figure 5, cities of different types tend to cluster together in specific spatial patterns.
Growing cities are primarily concentrated around the central cities and their surrounding
areas. There are three main spatial clusters: the Harbin urban agglomeration, the cluster
of Changchun and its surrounding cities, and the crowd of Dalian and its surrounding
cities. In contrast, shrinking cities were divided into three regions: the northern border area,
the central region with resource depletion, and the southwestern province. This spatial
distribution pattern highlights the significant role of major or large cities in driving the
development of their surrounding cities. It provides strong evidence supporting China’s
urban agglomeration or metropolitan development strategies.

This paper used ttable3 and related commands in Stata to conduct between-group
difference tests in order to assess the difference in carbon emissions between growing and
shrinking cities.

The intergroup mean and median differences between different types of cities were
measured using the t-table command, as shown in Table 6. The table above shows that
the mean and median tests for carbon emissions between growing and shrinking cities are
significant at the 1% confidence level.

To further test the difference in carbon emissions between shrinking and growing
cities, the Theil index was used to measure the degree of differentiation between the types
(Figure 6). As shown in Figure 6, the Theil index has consistently remained above 0.18, with
a mean of 0.19 and a peak of 0.210 in 2011. The analysis of Theil coefficient results reveals
significant intergroup differences in carbon emissions between different types of cities, and
these differences have increased over the years. These findings confirm the robustness of
intergroup differences. Over time, the development of the Theil coefficient can be divided
into three stages: 2001–2007 as the “V-shaped” development period, with the coefficient
declining from 0.19 in 2001 to a minimum in 2004, followed by a steady rise to around 0.21
in 2011. With the previous Moran index analysis, it can be inferred that significant changes
occurred in the spatial characteristics and intergroup relationships of carbon emissions in
the region during 2011–2012, warranting further exploration.
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Table 6. Difference test for total carbon emissions between growing and shrinking cities.

Test Method Shrinking Cities Growing Cities Difference Value

Mean test 3.10 2.11 0.99 ***
Median test 2.37 1.66 115.90 ***

*** indicates significant performance at a 1% confidence level.

Land 2024, 13, x FOR PEER REVIEW 13 of 25 
 

(Figure 6). As shown in Figure 6, the Theil index has consistently remained above 0.18, 
with a mean of 0.19 and a peak of 0.210 in 2011. The analysis of Theil coefficient results 
reveals significant intergroup differences in carbon emissions between different types of 
cities, and these differences have increased over the years. These findings confirm the ro-
bustness of intergroup differences. Over time, the development of the Theil coefficient can 
be divided into three stages: 2001–2007 as the “V-shaped” development period, with the 
coefficient declining from 0.19 in 2001 to a minimum in 2004, followed by a steady rise to 
around 0.21 in 2011. With the previous Moran index analysis, it can be inferred that sig-
nificant changes occurred in the spatial characteristics and intergroup relationships of car-
bon emissions in the region during 2011–2012, warranting further exploration.  

 
Figure 6. Descriptive statistics of Theil index based on total carbon emissions. 

The contributions of the two types of cities to the overall differences have shown an 
alternating upward trend. The contribution of growing cities started below 50% in 2001, 
fluctuated and slowly rose to 47% in 2010, and then experienced a rapid surge, followed 
by a tendency to decline, and finally, a steady increase, stabilizing at a contribution rate 
of 52%. On the contrary, the contribution of shrinking cities was the opposite. 

The above analysis methods from different perspectives confirm the differences in 
carbon emissions between different types of cities. Similarly, the differences were at-
tributed to structural characteristics such as different stages of urban development, the 
economic scale, the total population, industrial structures, and government expenditure 
preferences. Do the factors influencing carbon emissions in shrinking cities differ from 
those in growing cities? Are there variations in low-carbon planning strategies or starting 
points? These aspects warranted further investigation to explore the heterogeneity caused 
by urban type differences. To achieve this, sample segmentation was employed to exam-
ine the differentiated characteristics and influencing factors of carbon emissions in differ-
ent types of cities. 

3.3. Panel Analysis of Influencing Factors of Growing and Shrinking Cities 
Given the substantial differences in carbon emissions between growing and shrink-

ing cities in the three northeastern provinces, and considering the spatiotemporal charac-
teristics and current status of various city types, this study adopted a classification-ori-
ented approach. Using panel regression and panel spatial econometric models, it sought 
to analyze the differentiated characteristics of factors influencing carbon emissions among 
three groups of samples: the entirety of the three northeastern provinces, shrinking cities, 
and growing cities. The objective was to explore each city type’s distinctiveness of influ-
encing factors and elucidate their unique impact mechanisms. 

The study selected 206 complete and coherent cities for regression analysis. Based on 
theoretical deductions, the variables underwent tests for correlation, white noise, and the 

Figure 6. Descriptive statistics of Theil index based on total carbon emissions.

The contributions of the two types of cities to the overall differences have shown an
alternating upward trend. The contribution of growing cities started below 50% in 2001,
fluctuated and slowly rose to 47% in 2010, and then experienced a rapid surge, followed
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by a tendency to decline, and finally, a steady increase, stabilizing at a contribution rate of
52%. On the contrary, the contribution of shrinking cities was the opposite.

The above analysis methods from different perspectives confirm the differences in
carbon emissions between different types of cities. Similarly, the differences were attributed
to structural characteristics such as different stages of urban development, the economic
scale, the total population, industrial structures, and government expenditure preferences.
Do the factors influencing carbon emissions in shrinking cities differ from those in growing
cities? Are there variations in low-carbon planning strategies or starting points? These
aspects warranted further investigation to explore the heterogeneity caused by urban
type differences. To achieve this, sample segmentation was employed to examine the
differentiated characteristics and influencing factors of carbon emissions in different types
of cities.

3.3. Panel Analysis of Influencing Factors of Growing and Shrinking Cities

Given the substantial differences in carbon emissions between growing and shrinking
cities in the three northeastern provinces, and considering the spatiotemporal characteris-
tics and current status of various city types, this study adopted a classification-oriented
approach. Using panel regression and panel spatial econometric models, it sought to ana-
lyze the differentiated characteristics of factors influencing carbon emissions among three
groups of samples: the entirety of the three northeastern provinces, shrinking cities, and
growing cities. The objective was to explore each city type’s distinctiveness of influencing
factors and elucidate their unique impact mechanisms.

The study selected 206 complete and coherent cities for regression analysis. Based on
theoretical deductions, the variables underwent tests for correlation, white noise, and the
short panel unit root to verify the model’s stability, and a collinearity test was conducted.
The test results demonstrate that all the sample groups exhibited stable data without het-
eroscedasticity and showed a significant correlation between the explanatory and explained
variables, validating the use of panel regression models. Subsequently, the xttest0 and
xtoverid commands were employed to test the suitability of random and mixed regression,
as well as random and fixed effects, and to examine time and the individual impact. The
results of these tests indicated that the individual–time two-way fixed effects model was
more appropriate for the analysis in this study.

This study employed the Stata 17 software to conduct bi-directional fixed effects
regression analysis on three groups of samples, including the overall cities (1), growing
cities (2), and shrinking cities (3), based on the inverse distance-squared spatial weight
matrix. It obtained the regression results of models (1), (2), and (3) (Table 7).

In general, there were significant differences in the significance, direction, and strength
of variables in models (1), (2), and (3). Only GDP, SSI, and STI exhibited significance across
all sample groups.

Upon reviewing the regression results for GDP and GDPPC, it was observed that GDP
consistently exerted a significant, favorable influence on carbon emissions across all the
models. Conversely, GDPPC showed a promoting effect in model (2) and an inhibiting
effect in model (3). When considering the Environmental Kuznets Curve and the relatively
diminished economic scale of shrinking cities, it is evident that GDP, as a critical indicator
of regional economic development, still presents varying degrees of a promoting effect
on carbon emissions in the region. However, the level of regional development based on
GDPPC remains on the left side of the “turning point,” especially pronounced for shrinking
cities (an elasticity coefficient of 0.27, more significant than the overall and growing cities).
Moreover, the direction of GDPPC’s effect significantly diverged from the results aligning
with the Environmental Kuznets Curve, which assumes an inverse “U” shape for per-capita
income. Hence, it is necessary to refine city types based on regional conditions, economic
quantities, and structured characteristics. The abovementioned result provided further
insights into cities’ carbon emission compositions at different development levels.
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Table 7. Panel regression estimations and test results.

Factors
(1) (2) (3)

Total Growing Cities Shrinking Cities

GDP, x1
0.25 *** 0.20 *** 0.27 ***
(0.04) (0.05) (0.06)

PS, x2
0.04 0.41 −1.41 ***

(0.29) (0.46) (−0.47)

GPBR, x3
0.02 0.02 0.02 *

(0.02) (0.02) (0.01)

GPBE, x4
−0.04 *** −0.01 −0.05 **
(−0.02) (−0.02) (−0.02)

CLA, x5
0.37 ** 0.58 ** 0.11
(0.18) (0.29) (0.09)

SSI, x6
−0.09 *** −0.08 ** −0.10 ***
(−0.03) (−0.04) (−0.04)

STI, x7
−0.26 *** −0.29 *** −0.07 **
(−0.06) (−0.06) (−0.04)

GDPPC, x8
0.01 0.05 ** −0.07 **

(0.02) (0.02) (−0.05)

FAI, x9
0.04 * 0.05 * 0
(0.02) (0.02) (0.02)

N 3417 1802 1615
AIC −1243.70 −56.11 −1938.30
BIC −1090.30 81.31 −1803.60

The parentheses indicate the corresponding standard error; *, ** and *** indicate significance at confidence levels
of 10%, 5%, and 1%, respectively.

The significant effect of PS was only observed in model (3), and it appeared as an
inhibiting factor. However, despite being characterized by population shrinkage and
economic contraction, shrinking cities exhibited a rising trend in carbon emissions with
continuous population losses. This conclusion aligns with similar findings by some schol-
ars [61]. Considering China’s relatively low carbon emission efficiency, phenomena such
as population outflows and economic contraction may further reduce energy efficiency,
increasing total carbon emissions to some extent.

GPBR and GPBE only exhibited a promoting effect in model (3), and the strength of
their effects was relatively weak. The regression results suggest that the direct impact of
these variables on carbon emissions is insignificant.

CLA, which supports the main productive and living activities of the region, demon-
strated a significant promoting effect in models (1) and (2) but not in model (3). This
disparity may be attributed to expanding land use in growing and shrinking cities and
the mixed usage in gradually “hollowed-out” developed areas, diluting CLA’s significant
influence on carbon emissions.

Well-acknowledged carbon emission heavyweights SSI and STI consistently exhibited
a significant inhibiting effect across all models. The three northeastern provinces, renowned
as “old industrial bases,” have faced internal and external structural and systemic issues,
such as resource depletion, economic transitions, and financial crises. These factors have
contributed to the declining development dynamics of output value of secondary industries,
resulting in insufficient vitality and enduring significant impacts. Despite undergoing
“growing pains” through scale reductions, these provinces have gradually shifted towards
an inhibitory effect. On the other hand, the optimization and enhancement of output
value of tertiary industries often entail “high added value,” “high technology,” and “green”
attributes, enabling productivity enhancements and energy optimization and, consequently,
effectively reducing carbon emissions [62].

A reference to the relevant literature indicates that FAI can lead to prolonged and
substantial carbon emissions under the amplification of multiplier effects. Given the persis-
tently high growth levels of fixed asset investments, including construction projects and
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significant infrastructure, within the three northeastern provinces during the study period,
combined with the alignment of FAI with economic development and the lag effect on
economic stimulus, FAI demonstrated a significant promoting effect in models (1) and (2).

3.4. Spatial Panel Analysis of Influencing Factors for Growing and Shrinking Cities

Based on the significant positive spatial autocorrelation features of carbon emissions
indicated in the previous Moran’s I index, the panel spatial econometric model with spatial
effects was employed for analysis.

The selection of the model form is essential and fundamental in applying spatial
econometric models. In terms of model selection, a comprehensive analysis was conducted
using the spatial error model (SEM), spatial lag model (SLM), and spatial Durbin model
(SDM). Subsequently, the Wald-test and lr-test were performed to determine whether the
SDM model needed to be degenerated. The results indicated that the SDM model was the
most suitable for analyzing all samples. Therefore, regression analysis was conducted, and
the estimation results are shown in Table 8, where “W*” represents the lag term.

Table 8. Estimation results of panel spatial Dubin model.

Factors
(4) (5) (6)

Total Growing Cities Shrinking Cities

GDP, x1
0.19 *** 0.11 *** 0.43 ***
(0.01) (0.02) (0.02)

PS, x2
0.42 *** 0.59 *** 0.80 ***
(0.08) (0.14) (0.14)

GPBR, x3
0.02 *** 0.02 *** 0.02 ***

(0) (0.01) (0.01)

GPBE, x4
0.01 * 0.03 ** 0
(0.01) (0.01) (0.01)

CLA, x5
0.62 *** 0.97 *** 0.21 ***
(0.04) (0.07) (0.03)

SSI, x6
−0.08 *** −0.07 *** −0.13 ***
(−0.01) (−0.01) (−0.02)

STI, x7
−0.23 *** −0.24 *** −0.08 ***
(−0.01) (−0.01) (−0.02)

GDPPC, x8
0.01 0.04 *** −0.15 ***

(0.01) (0.01) (−0.02)

FAI, x9
0.06 *** 0.06 *** 0.01
(0.01) (0.01) (0.01)

W×GDP, W×x1
0.03 0.08 ** −0.05

(0.02) (0.03) (−0.04)

W×PS, W×x2
−0.60 *** −0.84 *** −0.40 *
(−0.16) (−0.29) (−0.23)

W×GPBR, W×x3
0 0.02 −0.01

(0.01) (0.01) (−0.01)

W×GPBE, W×x4
−0.13 *** −0.17 *** −0.03 **
(−0.02) (−0.03) (−0.01)

W×CLA, W×x5
−0.98 *** −1.12 *** −0.58 ***
(−0.09) (−0.14) (−0.08)

W×SSI, W×x6
0.06 *** 0.05 ** 0.26 ***
(0.02) (0.03) (0.04)

W×STI, W×x7
0.02 −0.01 0.10 ***

(0.02) (−0.03) (0.03)

W×GDPPC, W×x8
−0.02 −0.03 −0.10 ***

(−0.02) (−0.02) (−0.03)

W×FAI, W×x9
−0.02 * −0.02 −0.05 **
(−0.01) (−0.02) (−0.02)

rho
0.29 *** 0.27 *** 0.26 ***
(0.03) (0.04) (0.03)

N 3417 1802 1615
AIC −1714.20 −271.38 −2179.76
BIC −1481.01 −62.51 −1975.05

The parentheses indicate the corresponding standard error; *, ** and *** indicate significance at confidence levels
of 10%, 5%, and 1%, respectively.
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By comparing Tables 7 and 8, it can be observed that the information criteria of the
panel spatial Durbin model were significantly better than those of other models for the same
sample. Although there were some differences in the direction and strength of regression
coefficients, they were consistent, indicating the stability and specialization of the panel
spatial Durbin model in capturing spatial characteristics. The spatial interaction coefficient
rho was significantly positive, suggesting that an increase in local carbon emissions led to a
rise in neighboring areas, indicating a positive spatial relationship.

Since the SDM suffers from the limitation of difficult-to-interpret regression coefficients
and the inability to capture nonlinear features, we employed LeSage and Pace’s method [63]
to decompose the effects of models (4), (5), and (6) into direct effects (DEs), which represent
effects on the local region, and indirect effects (IEs), which represent effects on neighboring
areas. The results are presented in Table 9.

Table 9. Effect decomposition of panel spatial Dubin model.

Factors
(4) (5) (6)

Total Growing Cities Shrinking Cities

Direct effects

GDP, x1
0.20 *** 0.12 *** 0.43 ***
(0.01) (0.02) (0.02)

PS, x2
0.40 *** 0.56 *** −0.83 ***
(0.08) (0.14) (−0.14)

GPBR, x3
0.02 *** 0.02 *** 0.02 ***

(0) (0.01) (0.01)

GPBE, x4
0.01 0.03 ** 0

(0.01) (0.01) (0.01)

CLA, x5
0.58 *** 0.93 *** 0.18 ***
(0.03) (0.06) (0.03)

SSI, x6
−0.08 *** −0.07 *** −0.11 ***
(−0.01) (−0.01) (−0.02)

STI, x7
−0.24 *** −0.24 *** −0.08 ***
(−0.01) (−0.01) (−0.02)

GDPPC, x8
0.01 0.04 *** −0.15 ***

(0.01) (0.01) (−0.02)

FAI, x9
0.06 *** 0.06 *** 0
(0.01) (0.01) (0.01)

Indirect effects

GDP, x1
0.12 *** 0.15 *** 0.07
(0.03) (0.04) (0.05)

PS, x2
−0.65 *** −0.89 ** −0.78 ***

(−0.2) (−0.38) (−0.28)

GPBR, x3
0.01 0.03 * −0.01

(0.01) (0.02) (0.01)

GPBE, x4
−0.17 *** −0.21 *** −0.04 **
(−0.02) (−0.04) (−0.02)

CLA, x5
−1.10 *** −1.14 *** −0.68 ***
(−0.12) (−0.17) (−0.1)

SSI, x6
0.05 * 0.05 0.29 ***
(0.03) (0.03) (0.05)

STI, x7
−0.07 ** −0.09 ** 0.10 **
(−0.03) (−0.04) (0.04)

GDPPC, x8
−0.03 −0.03 −0.18 ***

(−0.02) (−0.03) (−0.04)

FAI, x9
0 0 −0.06 **

(0.02) (0.02) (−0.03)
The parentheses indicate the corresponding standard error; *, ** and *** indicate significance at confidence levels
of 10%, 5%, and 1%, respectively.

The direct and indirect effects of GDP in models (4) and (5) were consistent with
the results of the previous models, showing significant promoting effects. The regression
result indicates that the increase in the GDP in both the overall and growing cities signifi-
cantly stimulated carbon emissions in the local region and neighboring areas. The lack of
significance for the indirect effect of GDP in model (6) suggests that the shrinking cities,
characterized by a relatively reduced economic scale, have partially lost their influence on
neighboring cities’ carbon emissions. The inhibiting direct and indirect effects of GDPPC in
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model (6) suggest that the development stage of shrinking cities has crossed the turning
point of the Environmental Kuznets Curve. However, in reality, the shrinking of the devel-
opment scale and the regression of the level led to a leftward shift of the horizontal axis,
thus reversing the impact of per-capita income on carbon emissions.

The direct and indirect effects of PS in models (4) and (5) were significant in promoting
and inhibiting carbon emissions, respectively, with the effect strength in model (5) notably
stronger than in model (4). The regression result indicates that the continuous accumulation
of a population in growing cities exacerbates carbon emissions within the region. In model
(6), both the direct and indirect effects of PS exhibited inhibiting characteristics, which
align with the results in Section 3.2. This result further emphasizes how the dwindling
of a shrinking city due to a population outflow reverses the conventional impact pattern,
causing an increase in per-capita carbon emissions’ intensity and transforming the stimulus
to inhibition for the shrinking city itself and its surrounding areas.

The effects of GPBR and GPBE are intriguing. The direct effects of GPBR were all
promoting, with the indirect effect being significant only in model (5) as a low-level promo-
tion. In contrast, the significance of GPBE was precisely the opposite: its direct effects were
relatively weak, with only low-level advertising in model (5), and insignificant in the other
models. However, its indirect effects were consistently significant and inhibiting, indicating
a negative spatial spillover effect, leading to a restraint on carbon emissions in neighbor-
ing areas. This finding suggests that growing cities exhibit important agglomeration and
scale effects due to their robust economic and social vitality and noticeable amplification
effects on expenditures and income. It also highlights the scientific and necessary nature of
classification analysis, which helps discern individual sample characteristics and avoids
concealing results due to overall analysis.

CLA’s direct and indirect effects in each model exhibit significant promotion and
inhibition, respectively. Expanding the construction land scale implies a demand for build-
ing materials and fossil fuels and the support of primary production and daily activities,
promoting local carbon emissions during construction and usage. The enlargement of local
construction land also strengthens the “Matthew Effect” to some extent, thereby displaying
the inhibition of neighboring carbon emissions. Moreover, the effect intensity indicates that
developmental and prosperous growing cities with active factors show the most promote
impact on CLA.

SSI exhibited significant inhibitory direct and indirect effects in each model. Under
the pressure of external favorable conditions such as the rise of the “old industrial base” in
the three northeastern provinces, along with internal factors like resource depletion and
population losses, these regions actively transitioned and substituted industries, developed
circular economies, and implemented approaches “replacing older industries with newer
ones,” effectively enhancing the industrial carbon emission efficiency, leading to an in-
evitable reduction in total emissions. Simultaneously, the surrounding areas benefited from
a technology transfer and experience dissemination, i.e., the “free ride” effect, decreasing
carbon emissions.

STI exhibited significant inhibitory effects across multiple models. This result indicates
that, under the combined influence of technological innovation, infrastructure develop-
ment, and ecological civilization guidance, STI is gradually transitioning and upgrading
toward the green tertiary industry. It also exerts a positive spatial driving effect on the
STI of neighboring cities. Through synergistic effects with industries in neighboring cities,
carbon emission efficiency is improved, facilitating the achievement of regional carbon
reduction goals.

On the other hand, FAI continued to exert a strong promoting effect on local carbon
emissions, which was particularly evident in the overall growth of cities. Interestingly, this
factor’s impact on local carbon emissions was insignificant in model (6), but it inhibited
carbon emissions in surrounding areas. FAI is a crucial driver of local economic devel-
opment in China, demonstrating notable economies of scale. However, the analysis in
this study reveals that its marginal effect is not strictly linear and might have a specific
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threshold value. Only after surpassing this threshold value does the marginal impact of
FAI on carbon emissions become apparent. In cities or regions that are relatively backward
or experiencing declines, the effect of FAI on carbon emissions remains weak when it fails
to break through the bottleneck constraints.

4. Discussions and Conclusions
4.1. Analysis of Differences in Influencing Factors between Growing and Shrinking Cities

In general, shrinking cities are also a normal stage in the cyclical pattern of urban
development, representing one of the inevitable phases in urban emergence, growth,
prosperity, decline, and transformation. However, under the goals of the carbon peak
and carbon neutrality, cities, significantly shrinking cities that have experienced structural
crises face more daunting challenges in terms of transformation and emission reduction
pressures [64]. Therefore, based on the results of carbon emission evolution differences and
panel spatial econometric regression analysis, and in comparison with relevant research,
this study attempted to conduct a detailed analysis of the differences in influencing factors
between growing and shrinking cities.

The findings of this study further confirm that, in China, the GDP has a strong
promoting effect on carbon emissions. A comparison with studies from developed countries
like those in Europe and the United States [65] reveals that most cities in China are still in
relatively early stages of development, with carbon emissions per unit of GDP exceeding the
global average [66]. China still maintains a development model oriented towards economic
growth, and the inertia of development, characterized by a high scale and low efficiency,
persists. Considering the inhibitory effects of output values of secondary and tertiary
industries on carbon emissions observed in this study, we can conclude that, in the research
area, especially in shrinking cities (with the smallest absolute regression coefficient), efforts
should be directed toward optimizing these industries’ energy efficiency and cleanliness.
This phenomenon would further reduce the carbon emissions per unit of GDP and achieve
sustainable and healthy development.

For shrinking cities, although the decrease in the population scale inhibits carbon
emissions, their development patterns are unhealthy. This result contrasts with findings
based on the IPAT equation, but it aligns with the results of Xiao HJ et al. [23]. Why do
studies with similar questions yield different conclusions? Possible reasons include: first,
interactions between independent variables in the model setup might have obscured the
underlying mechanisms; second, the panel spatial econometric model used in this paper
incorporated spatial effects, providing a more accurate reflection of the mutual influences
between cities. Considering the region’s relatively low per-capita income levels and the
prevalent phenomenon of population outflows, a decrease in the population scale might
lead to a reduction in carbon emission efficiency. However, under comprehensive effects, it
is more likely to result in a reduction in total carbon emissions.

4.2. Optimization Paths for Carbon Emissions in Growing and Shrinking Cities

Based on the above analysis, this paper attempts to propose suggestions to optimize
carbon emissions for different types of cities.

Firstly, shrinking cities are prevalent and widely distributed in the three northeast-
ern province region. Differentiated emission reduction policies should address spatial
heterogeneity, inter-group differences, and distinct influencing factors between growing
and shrinking cities [67]. For shrinking cities, it is essential to leverage the scale and ag-
glomeration effects of the GDP, promoting economic development while aligning with
technological trends, accelerating energy transformation, and driving economic advance-
ment towards high-end, green, and intelligent sectors. In terms of population, efforts
should be directed toward improving livelihoods, optimizing the employment environ-
ment, supplying service-oriented consumption, and attracting people and talent to reverse
the trend in the population outflow and the simultaneous increase in carbon intensity. In
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summary, selecting key areas, focusing efforts, and achieving precise breakthroughs are
essential to achieving more with less effort.

In expanding the scope nationwide, considering the differences in developmental
stages or types of cities, and facing the dual challenges of steady economic growth and the
objectives of the “carbon peak” and “carbon neutrality,” it is crucial to identify the carbon
emission characteristics and influencing factors of specific regions or cities. Prioritizing
spatial interactions between cities, understanding internal and external effects patterns,
actively mitigating and adapting to global or local climate changes, and fostering a new
type of urbanization while promoting sustainable, high-quality development is imperative.

Secondly, emphasis should be placed on the spatial effects of various factors. Carbon
emissions and their influencing factors demonstrate significant spatial dependency within
regions. Thus, establishing low-carbon cities as pilot points could harness their leadership
role while driving the simultaneous improvement in surrounding areas. A holistic consider-
ation of adjacent regions is essential, strengthening the synergy, synchronicity, and linkage
of policy formulation and strategic implementation. Steadily advancing the development
of urban clusters or metropolitan areas will enhance carbon emission efficiency and reduce
overall carbon emissions.

In conclusion, given China’s vast territory, pronounced regional disparities, uneven
economic development, and asynchronous social progress, cities of different types should
align with their unique structural characteristics and clarify their developmental stages
and main strengths. Regions with the necessary conditions can focus on developing
carbon capture and storage technologies [68]. Moreover, multidimensional approaches
encompassing economic decarbonization, green industries, energy efficiency, and low-
consumption habitats should be adopted. Focusing on areas with the highest suitability
and compatibility for “low-carbon” practices, addressing weaknesses, bolstering strengths,
and pursuing context-based and customized “dual-carbon” pathways are crucial. At the
same time, comprehensive coordination at the provincial and regional levels is necessary to
implement a strategic plan that encompasses the whole country. This approach should pave
the way for China’s decarbonization journey by prioritizing regions with the capability to
peak emissions first and leveraging the experiences of less advanced areas.

4.3. Research Applicability and Generalizability

This study conducted an in-depth analysis of the differences in carbon emissions
among county-level administrative units in China’s three northeastern provinces, particu-
larly quantifying the differences between growing and shrinking cities, thereby revealing
characteristics and spatial effects of total carbon emissions. The methods used in this study
effectively address issues such as carbon emission development trends, the quantification
of differences between groups, and the identification of spatial effects among different
types of cities within a region.

Mann–Kendall trend analysis is highly applicable to handling outliers and missing
values in environmental data. It is particularly suited for assessing the significance of
trends in time-series data. Moreover, this method is particularly effective in analyzing the
turning points of industrial carbon emissions [69] and predicting peak regional carbon
emissions [70].

The Theil index offers a detailed perspective on analyzing intra-group inequalities,
widely applied from differences in carbon emissions in urban residential buildings [71]
to variations in emission intensities between industries [72] and comparisons of emission
efficiencies between countries [73].

Furthermore, the panel spatial econometric model leverages the dynamic analysis
of panel data while providing more accurate causal inferences about the interactions
between the spatial and temporal dimensions of carbon emissions [74]. In this paper, the
model has also accurately quantified the spatial dependency of urban carbon emissions,
aided in explaining the interaction and transmission mechanisms of carbon emissions, and
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significantly enhanced the model’s explanatory power, thereby supporting the formulation
of targeted emission reduction strategies.

In summary, the various methods guided by the research framework of this paper are
widely applicable and extensible in the field of carbon emission studies.

4.4. Research Limitations and Prospects

This paper still has certain limitations. Firstly, there needs to be more spatial entity
constraints in the scope of such research. This study analyzed the grassroots-level units
in China’s county-level administrative divisions. While this research scale contributes to
implementing emission reduction measures and control policies, it overlooks the distinc-
tion between physical cities and administrative cities, which could potentially introduce
research errors [74]. Secondly, the methodology for examining influencing factors must
consider city-level classification systems. This empirical study compared differences in
regression coefficient significance, direction, and strength between the influencing factors of
growing and shrinking cities’ carbon emissions. This method is ordinary and necessary, as
many scholars explore similar phenomena using the same approach [75]. However, some
scholars argue that comparing the regression differences of sub-sample coefficients solely
could lead to bias, and they suggest using tests like the Chow test, a seemingly unrelated
regression test, or Fisher’s permutation test to address this issue. However, these tests have
limitations in handling cross-product heteroskedasticity, and they do not apply to panel
spatial econometric models.

Consequently, future research should distinguish between the differences in the carbon
emissions of physical and administrative cities. In selecting a research scope, more detailed
regional refinement or the selection of specific cities for in-depth analysis is advisable.
Moreover, statistical methods should be employed to verify the differences in grouped
regression coefficients using a hypothesis-testing approach based on the panel spatial
econometric model. This improvement would further enhance the readability and scientific
validity of future studies.

5. Research Conclusions

The Chinese government places significant emphasis on the sustainable development
of the northeastern region, introducing a series of strategic policies to support its revi-
talization. The rise and development of the three northeastern provinces have achieved
noticeable progress and stage results. Delving into the evolution and type differences of car-
bon emissions among cities aids various regions in implementing distinctive “dual-carbon”
paths aligned with their city types and actual circumstances. The main conclusions of this
study are as follows.

(1) Numerous shrinking cities show a spatially clustered distribution pattern. They
are based on the core indicator of population size, and classified urban types within
the region; 138 shrinking cities were identified, accounting for over 50% of the total.
Their distribution among provinces is balanced, signifying the widespread and typical
nature of the shrinkage issue in the region. In contrast, growing cities outside of the
shrinking category form spatial clusters centered around Harbin, Changchun, Dalian,
and surrounding cities, demonstrating the driving role of large cities in population and
economic aspects.

(2) Carbon emissions are steadily increasing, with notable disparities among urban
types. In 2017, the overall carbon emissions in the three northeastern provinces reached
1731.73 million tons, a 2.36-fold increase from 2001. The growth trend passes the MK trend
test, and the tendency follows a “U-shaped” curve characterized by periods of accelerated
growth, deceleration, and a gradual slowdown. Additionally, a significant positive spatial
autocorrelation relationship exists. The paper employed the t-table command, confirming
substantial differences in carbon emissions’ mean and median values between shrinking
cities and growing cities. The Theil coefficient also highlights the practical disparities in
carbon emissions between growing and shrinking cities.
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(3) The panel spatial Durbin model yielded the best information criteria among the
regression models employed in this study. The regression results of this model revealed that
the main influencing mechanisms and spatial effects of carbon emissions differ significantly
between growing and shrinking cities. Regarding the direct and indirect effects of the
spatial Durbin model (SDM), factors such as GDP, CLA, SSI, and STI exhibited similar
directional tendencies in both city types but with varying intensities. Furthermore, due to
the relatively dwindling population and economic scale of shrinking cities, they tend to
move away from the carbon emission peak, suggesting their transition toward a decline.
The effect of population size further underscores the “regression” of shrinking cities.
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