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Abstract: In this paper, a multipoint boundary value problem for systems of integro-differential
equations with involution has been studied. To solve the studied problem, the parameterization
method is used. Based on the parametrization method, the studied problem is decomposed into
two parts, i.e., into the Cauchy problem and a system of linear equations. Necessary and sufficient
conditions for the unique solvability of the studied problem are determined.
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1. Introduction

Many applied problems describing processes with aftereffects are known to be de-
termined by integro-differential equations. For example, Volterra’s torsional oscillation
problem [1]

ω′(t) = k[ f (t)−mω(t)] +
t∫

0

K(t, s)[ f (s)−mω(s)]ds,

proctor’s problem of elastic beam equilibrium [2]

a1yIV(x) + y(x) = a2

1∫
0

K(t, s)yIV(s)ds.

The issues of solvability of initial and boundary value problems for integro-differential
equations are discussed in the works of many authors [3–10].

The main methods for studying the unique solvability of a boundary value problem for
integro-differential equations are the Green’s function method, the Nekrasov method and
its analogues. Green’s method assumes the unique solvability of a boundary value problem
for a differential equation without an integral term. This condition is very stringent, so
this method is rarely used. One of the frequently used methods is the Nekrasov method
and its analogues. The essence of the Nekrasov method is the reduction of the original
equation to an integral equation of the Fredholm type, and its unique solvability is required.
In [11], an example was given that shows that the condition of the Nekrasov method is not
always satisfied, although the problem under study has a unique solution and this solution
is easily determined by the parameterization method.

Recently, to study the problem of unique solvability, the parameterization method
proposed by Professor D. Dzhumabaev [12] has been used. In [13–18], this method was
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applied in the study of the unique solvability of boundary value problems for various
integro-differential equations.

As is known, differential and integro-differential equations with deflecting arguments
play an important role in the study of problems in medicine, biology, economics, etc.
For example, in [19], an economic model is considered that describes the relationship
between population growth and agricultural production. It is shown that if we consider the
delay model with positive dispersion, then the dynamics of the economy are determined
by a system of integro-differential equations with delay.

Some of these deviations have properties α : [0, T] → [0, T] and α2(t) = α(α(t)) = t.
Differential and integro-differential equations, which together with the desired function x(t)
include the values x(α(t)) and ẋ(α(t)), are called equations with Carleman shifts [20] or
equations with involutive transformations. On the segment [0, T], as such a transformation,
we can consider a transformation of the form α(t) = T − t.

Solvability of various differential equations with involution was considered in the
monographs of D. Przeworska-Rolewicz [21] and J. Wiener [22]. J. Wiener investigated
the existence of a solution to a partial differential equation with involution by the method
of separation of variables. The properties of such transformations were also considered
in the works of N.Karapetiants and S.Samko [23]. The work of Alberto Cabada and F.
Tojo is devoted to the construction of the Green’s function for one-dimensional differential
equations with involution [24] .

The correctness of boundary and initial-boundary value problems for differential
equations with various types of involution, qualitative properties of their solution, as well
as their spectral issues were quite well studied in [25–28]. Spectral problems for the
second-order differential operator were studied in [26,27]. In [28], the eigenfunctions and
eigenvalues of the boundary value problem for the nonlocal Laplace equation with multiple
involutions were studied.

Multipoint boundary value problems for various differential and integro-differential
equations and their applications are considered in [29–31]. It is known that multipoint
boundary conditions are important in terms of applications, as they are directly related to
the theory of splines and interpolation, and are also used in the study of problems with
multi-support beams. For example, in [32], multipoint boundary conditions are applied in
the design of bridges.

Therefore, in this paper we decided to investigate a multipoint boundary value prob-
lem for integro-differential equations with involutive properties. To determine the unique
solvability of the studied problem, the parameterization method was applied.

Consider a multipoint boundary value problem with an involutive transformation

dx(t)
dt

+ diag(a1, a2, . . . , an) ·
dx(α(t))

dt
=

T∫
0

K1(t, s)x(s)ds

+

T∫
0

K2(t, s)ẋ(s)ds + f (t), t ∈ [0, T], x ∈ Rn, (1)

m

∑
i=0

Bix(θi) = d, d ∈ Rn, (2)

0 = θ0 < θ1 < . . . < θm−1 < θm = T,

where matrices K1(t, s) and K2(t, s) are continuous on [0, T]× [0, T], and n-dimensional
vector function f (t) is continuous, respectively, on [0, T]. aj ∈ R, j = 1, n. Bi, j = 0, m are
constant matrices.

Remark 1. In Equation (1) and further, the expression dx(α(t))
dt will mean
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dx(α(t))
dt

=
dx(ξ)

dt

∣∣∣∣
ξ=α(t)

.

Note that problem (1) and (2) in the case when aj = 0, j = 1, n, K2(t, s) ≡ 0 and Bi = 0,
j = 1, m− 1 was studied in [13,14].

2. Using Involution Properties

Let us determine the value of Equation (1) at the point t∗ = α(t)

dx(α(t))
dt

+ diag(a1, a2, . . . , an) ·
dx(t)

dt
=

T∫
0

K1(α(t), s)x(s)ds

+

T∫
0

K2(α(t), s)ẋ(s)ds + f (α(t)).

Then, we obtain the following system of equations

dx(t)
dt + diag(a1, a2, . . . , an) · dx(α(t))

dt =
T∫
0

K1(t, s)x(s)ds +
T∫
0

K2(t, s)ẋ(s)ds + f (t),

dx(α(t))
dt + diag(a1, a2, . . . , an) · dx(t)

dt =
T∫
0

K1(α(t), s)x(s)ds

+
T∫
0

K2(α(t), s)ẋ(s)ds + f (α(t)).

Multiplying the second equation by the matrix −diag(a1, a2, . . . , an) on the left side,
and adding both equations we obtain

diag(1− a2
1, 1− a2

2, . . . , 1− a2
n)

dx(t)
dt

=

T∫
0

[K1(t, s)− diag(a1, a2, . . . , an)K1(α(t), s)] x(s)ds

+

T∫
0

[K2(t, s)− diag(a1, a2, . . . , an)K2(α(t), s)] ẋ(s)ds

+[ f (t)− diag(a1, a2, . . . , an) f (α(t))].

Let ai 6= ±1, i = 1, n, then the original boundary value problem can be written as

dx
dt

=

T∫
0

K̃1(t, s)x(s)ds +
T∫

0

K̃2(t, s)ẋ(s)ds + f̃ (t), t ∈ [0, T], (3)

m

∑
i=0

Bix(θi) = d, d ∈ Rn, (4)

0 = θ0 < θ1 < . . . < θm−1 < θm = T,

where
K̃1(t, s) = diag(1/(1− a2

1), 1/(1− a2
2), . . . , 1/(1− a2

n))[K1(t, s)

−diag(a1, a2, . . . , an)K1(α(t), s)],

K̃2(t, s) = diag(1/(1− a2
1), 1/(1− a2

2), . . . , 1/(1− a2
n))[K2(t, s)
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−diag(a1, a2, . . . , an)K2(α(t), s)],

f̃ (t) = diag(1/(1− a2
1), 1/(1− a2

2), . . . , 1/(1− a2
n))[ f (t)

−diag(a1, a2, . . . , an) f (α(t))].

It is important to note that the condition ai 6= ±1, i = 1, n is significant.
Indeed, let us consider the following homogeneous boundary value problem with

involution a = 1

dx(t)
dt

+
dx(−t)

dt
=

π∫
−π

x(s)ds +
π∫
−π

ẋ(s)ds, t ∈ [−π, π],

x(−π)− x(π) = 0.

This problem has a solution x(t) = cos(kt). It turns out that the homogeneous bound-
ary value problem has a set of nonzero solutions. In the case a = −1, as a nonzero solution,
we can take the function x(t) = sin(kt). The boundary value problems (1)–(4) are equivalent
in the sense that if x(t) is a solution to the multipoint boundary value problem (3) and (4),
then it also satisfies the multipoint boundary value problem (1), (2) and vice versa.

Suppose that ai 6= ±1, i = 1, n and let x∗(t) be a solution to problem (3) and (4),
then x∗(t) also satisfies (2). As x∗(t) is the solution to (3), then substituting x∗(t) into the
right-hand side of Equation (3), we obtain:

dx∗(t)
dt

=

T∫
0

K̃1(t, s)x∗(s)ds +
T∫

0

K̃2(t, s)ẋ∗(s)ds + f̃ (t), t ∈ [0, T]. (5)

Consider the value of Equation (5) in the point t = α(t) ∈ [0, T]

dx∗(α(t))
dt

=

T∫
0

K̃1(α(t), s)x∗(s)ds +
T∫

0

K̃2(α(t), s)ẋ∗(s)ds + f̃ (α(t)), α(t) ∈ [0, T]. (6)

Multiplying Equation (6) by diag(a1, a2, . . . , an) and adding it to Equation (5)
we obtain:

dx∗(t)
dt

+ diag(a1, a2, . . . , an)
dx∗(α(t))

dt
(7)

=

T∫
0

[
K̃1(t, s) + diag(a1, a2, . . . , an)K̃1(α(t), s)

]
x∗(s)ds

+

T∫
0

[
K̃2(t, s) + diag(a1, a2, . . . , an)K̃2(α(t), s)

]
ẋ∗(s)ds

+
[

f̃ (t) + diag(a1, a2, . . . , an) f̃ (α(t))
]
, t ∈ [0, T].

Substituting

K̃1(t, s) = diag(1/(1− a2
1), 1/(1− a2

2), . . . , 1/(1− a2
n))[K1(t, s)

−diag(a1, a2, . . . , an)K1(α(t), s)],

K̃2(t, s) = diag(1/(1− a2
1), 1/(1− a2

2), . . . , 1/(1− a2
n))[K2(t, s)

−diag(a1, a2, . . . , an)K2(α(t), s)],

f̃ (t) = diag(1/(1− a2
1), 1/(1− a2

2), . . . , 1/(1− a2
n))[ f (t)

−diag(a1, a2, . . . , an) f (α(t))]
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in (7), we get

dx∗(t)
dt

+ diag(a1, a2, . . . , an)
dx∗(α(t))

dt
=

T∫
0

K1(t, s)x∗(s)ds (8)

+

T∫
0

K2(t, s)ẋ∗(s)ds + f (t), t ∈ [0, T].

Hence, it follows that x∗(t) satisfies (1).
Vice versa, let x̃(t) be a solution to Equations (1) and (2), then it is easy to show that

x̃(t) satisfies (3) and (4).

3. Parameterization Method

In [33], it was assumed that the Fredholm integral equation of the second kind

z(t) =
T∫

0

K̃2(t, s)z(s)ds + Φ(t)

has a unique solution for any function Φ(t) ∈ C([0, T], Rn).
However, it is known that the resolvent of an integral equation cannot always be

determined unambiguously.
Suppose that K2(t, s) has continuous partial derivatives with respect to s, then

T∫
0

K̃2(t, s)ẋ(s)ds = K̃2(t, s)x(s)
∣∣T
0 −

T∫
0

∂K̃2(t, s)
∂s

x(s)ds

= K̃2(t, T)x(T)− K̃2(t, 0)x(0)−
T∫

0

∂K̃2(t, s)
∂s

x(s)ds .

Hence , Equations (3) and (4) can be written as:

dx
dt

=

T∫
0

K(t, s)x(s)ds + K20(t)x(θ0) + K21(t)x(θm) + f̃ (t), (9)

m

∑
i=0

Bix(θi) = d, d ∈ Rn, (10)

0 = θ0 < θ1 < . . . < θm−1 < θm = T,

where
K20(t) = −K̃2(t, 0) ,

K21(t) = K̃2(t, T) ,

T∫
0

K(t, s)x(s)ds =
T∫

0

K̃1(t, s)x(s)ds−
T∫

0

∂K̃2(t, s)
∂s

x(s)ds .

Let us apply the parametrization method to the boundary value problem (9) and (10),
for this we take a natural number l ∈ N and make a partition with respect to this

number: [0, T) =
m(l+1)⋃

r=1
[tr−1, tr), where ti(l+1)+j = ti(l+1) +

hi+1
l , hi = θi − θi−1,

i = 0, m− 1, j = 1, l + 1. Denote h = max{h1, h1, . . . , hm}, β = max
t,s∈[0,T]

‖K(t, s)‖. Let
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us use xr(t), r = 1, m(l + 1) to denote the narrowing of the function x(t) on the intervals
[tr−1, tr), r = 1, m(l + 1). Then, the multipoint boundary value problem for systems of
loaded integro-differential Equations (9) on (10) can be written as:

dxr

dt
=

m(l+1)

∑
i=1

ti∫
ti−1

K(t, s)xi(s)ds + K20(t)x1(t0) (11)

+K21(t) lim
t→T−0

xm(l+1)(t) + f̃ (t), t ∈ [tr−1, tr), r = 1, m(l + 1),

m−1

∑
i=0

Bixj(l+1)+1

(
tj(l+1)

)
+ Bm lim

t→T−0
xm(l+1)(t) = d, d ∈ Rn, (12)

lim
t→ts−0

xs(t) = xs+1(ts), s = 1, m(l + 1)− 1, (13)

here (13) provides conditions for continuity of the solution in the points of partition. Let
us introduce the notation λr = xr(tr−1), r = 1, m(l + 1), λm(l+1)+1 = lim

t→T−0
xm(l+1)(t)

make a substitution xr(t) = ur(t) + λr, r = 1, m(l + 1) in each of the intervals t ∈ [tr−1, tr).
Then, problem (11)–(13) is reduced to the equivalent multipoint boundary value problem
with the parameter

dur

dt
=

m(l+1)

∑
i=1

ti∫
ti−1

K(t, s)[ui(s) + λi]ds + K20(t)λ1 (14)

+K21(t)λm(l+1)+1 + f̃ (t), t ∈ [tr−1, tr), r = 1, m(l + 1),

ur(tr−1) = 0, r = 1, m(l + 1), (15)
m

∑
i=0

Biλj(l+1)+1 = d, d ∈ Rn, (16)

λs + lim
t→ts−0

us(t) = λs+1, s = 1, m(l + 1). (17)

The initial conditions ur(tr−1) = 0, r = 1, m(l + 1) make it possible to determine
functions ur(t) for fixed values λ = (λ1, λ2, ..., λm(l+1)+1) from the systems of integral
equations

ur(t) =
t∫

tr−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ, s)ui(s)dsdτ +

t∫
tr−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ, s)dsdτλi (18)

+

t∫
tr−1

K20(τ)dτλ1 +

t∫
tr−1

K21(τ)dτλm(l+1)+1 +

t∫
tr−1

f̃ (τ)dτ, t ∈ [tr−1, tr).

In (18), assuming that t = τ, we multiply both sides of the equation by K(t, τ) and
integrate with respect to τ in the interval [tr−1, tr). Then,

tr∫
tr−1

K(t, τ)ur(τ)dτ =

tr∫
tr−1

K(t, τ)

τ∫
tr−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ1, s)ui(s)dsdτ1dτ (19)

+

tr∫
tr−1

K(t, τ)

τ∫
tr−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ1, s)dsdτ1dτλi
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+

tr∫
tr−1

K(t, τ)

τ∫
tr−1

[
K20(τ1)λ1 + K21(τ1)λm(l+1)+1 + f̃ (τ1)

]
dτ1dτ, r = 1, m(l + 1).

Summing up the left and right sides of Equation (19), we obtain:

m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)ur(τ)dτ =
m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)

τ∫
tr−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ1, s)ui(s)dsdτ1dτ (20)

+
m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)

τ∫
tr−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ1, s)dsdτ1dτλi

+K20(τ1)λ1 + K21(τ1)λm(l+1)+1 + f̃ (τ1)
]
dτ1dτ, ] t ∈ [0, T].

Let us introduce the notations:

Φl(t) =
m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)ur(τ)dτ,

Hr(l, t) =
m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)X(τ)

τ∫
tr−1

X−1(τ1)

tj∫
tj−1

K(τ1, s)dsdτ1dτ

P1(l, t) =
m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)

τ∫
tr−1

K20(τ1)dτ1dτ,

P2(l, t) =
m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)

τ∫
tr−1

K21(τ1)dτ1dτ,

F(l, t) =
m(l+1)

∑
r=1

tr∫
tr−1

K(t, τ)

τ∫
tr−1

f̃ (τ1)dτ1dτ.

Then, Equation (17) can be written as:

Φl(t) =
m(l+1)

∑
i=1

ti∫
ti−1

K(t, τ)

τ∫
ti−1

Φl(τ1)dτ1dτ +
m(l+1)

∑
r=1

Hr(l, t)λr (21)

+P1(l, t)λ1 + P2(l, t)λm(l+1)+1 + F(l, t).

Let us take such l0 that q(l0) = βT h
l0
< 1. Then, from the estimation∥∥∥∥∥∥

m(l+1)

∑
i=1

ti∫
ti−1

K(t, τ)

τ∫
ti−1

Φl(τ1)dτ1dτ

∥∥∥∥∥∥ ≤ βT
h
l0

max
t∈[0,T]

‖Φl(t)‖, t ∈ [0, T] (22)

it follows that for any l ≥ l0 Equation (21) has a unique solution.
The set of all l for which the Cauchy problem (14), (15) has a unique solution is called

a regular partition and is denoted by ∆l . As can be seen from (22), this set is nonempty.
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Let l ∈ ∆l . Using the successive approximation method, we determine

Φl(t) =
m(l+1)

∑
i=1

H∗i (l, t)λi + P∗1 (l, t)λ1 + P∗2 (l, t)λm(l+1)+1 + F∗(l, t)

the unique solution to Equation (21). Substituting the obtained expression for Φl(t) into
the right-hand side of (18), we get:

ur(t) =
t∫

tr−1

[
m(l+1)

∑
i=1

H∗i (l, τ)λi + P∗1 (l, τ)λ1 + P∗2 (l, τ)λm(l+1)+1 + F∗(l, τ)

]
dτ (23)

+

t∫
tr−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ, s)dsdτλi +

t∫
tr−1

K20(τ)dτλ1

+

t∫
tr−1

K21(τ)dτλm(l+1)+1 +

t∫
tr−1

f̃ (τ)dτ, t ∈ [tr−1, tr), r = 1, m(l + 1).

Determining the limits lim
t→ts−0

us(t), s = 1, m(l + 1) from (23) and substituting them

into the boundary conditions (17), we obtain a system of linear equations with respect to
the introduced parameters λr, r = 1, m(l + 1) + 1

m

∑
i=0

Biλj(l+1)+1 = d, (24)

λs +

ts∫
ts−1

m(l+1)

∑
i=1

H∗i (l, τ) +

ti∫
ti−1

K(τ, s)ds

dτλi +

ts∫
ts−1

[P∗1 (l, τ) + K20(τ)]dτλ1 (25)

+

ts∫
ts−1

[P∗2 (l, τ) + K21(τ)]dτλm(l+1)+1 − λs+1

= −
ts∫

ts−1

[
F∗(l, τ) + f̃ (τ)

]
dτ, s = 1, m(l + 1).

The matrix corresponding to the right-hand side of the system of algebraic equations
is denoted by Q∗(l). Then, the system of Equations (24) and (25) can be written in the
following matrix form:

Q∗(l)λ = F∗(l), λ ∈ Rn[m(l+1)+1], (26)

where

F∗(l) =

d, −
t1∫

0

(F∗(l, τ) + f (τ))dτ, . . . , −
T∫

T−hm

(F∗(l, τ) + f (τ))dτ

.

Lemma 1. For l ∈ ∆l the following statements are valid:

1. Vector λ∗ =
(

λ∗1 , λ∗2 , ..., λ∗m(l+1)+1

)
∈ Rn[m(l+1)+1] composed of the values of the solution

to problem (9), (10)–functions x∗(t) in the points λ∗r = x∗(tr−1), r = 1, m(l + 1) + 1
satisfies the system of Equation (26);
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2. If λ̃ =
(

λ̃1, λ̃2, ..., λ̃m(l+1)+1

)
∈ Rn[m(l+1)+1] is a solution to system (26), and the system

of functions ũ[t] =
(

ũ1(t), ũ2(t), ..., ũm(l+1)(t)
)

is a solution to the special Cauchy problem

(14), (15) for λr = λ̃r, r = 1, m(l + 1) + 1, then the function x̃(t), x̃(t) = λ̃r + ũr(t),
t ∈ [tr−1, tr), r = 1, m(l + 1), x̃(T) = λ̃m(l+1)+1 is a solution to problem (9), (10).

Proof. 1. Let x∗(t) be a solution to problem (9), (10). Then, a pair (λ∗, u∗[t]) with el-
ements λ∗j = x∗

(
tj−1

)
, t ∈

[
tj−1, tj

)
, j = 1, m(l + 1) + 1 è u∗r (t) = x∗(t) − x∗(tr−1),

t ∈ [tr−1, tr), r = 1, m(l + 1) will be a solution to a problem equivalent to the boundary
value problem with parameter (14)–(17). Taking into account the assumption l ∈ ∆l and
repeating the above reasoning, we find that λ∗ =

(
λ∗1 , λ∗2 , ..., λ∗m(l+1)+1

)
∈ Rn[m(l+1)+1]

satisfies the system of Equations (26).
2. Let λ̃ =

(
λ̃1, λ̃2, ..., λ̃m(l+1)+1

)
∈ Rn[m(l+1)+1] be a solution to systems of Equation (26).

As l ∈ ∆l , the special Cauchy problem (14), (15) has a unique solution for any
λ =

(
λ1, λ2, ..., λm(l+1)+1

)
∈ Rn[m(l+1)+1]. Denote itssolutionforany λ̃ =

(
λ̃1, λ̃2, ..., λ̃m(l+1)+1

)
∈ Rn[m(l+1)+1] as ũ[t] =

(
ũ1(t), ũ2(t), ..., ũm(l+1)(t)

)
. Let us show that the pair

(
λ̃, ũ[t]

)
is

a solution to problem (14)–(17). If λ̃ =
(

λ̃1, λ̃2, ..., λ̃m(l+1)+1

)
∈ Rn[m(l+1)+1] satisfies (26),

then (24) and (25) are valid for it, i.e.,

m

∑
i=0

Biλ̃j(l+1)+1 = d, (27)

λ̃s +

ts∫
ts−1

m(l+1)

∑
i=1

H∗i (l, τ) +

ti∫
ti−1

K(τ, s)ds

dτλ̃i +

ts∫
ts−1

[P∗1 (l, τ) + K20(τ)]dτλ̃1 (28)

+

ts∫
ts−1

[P∗2 (l, τ) + K21(τ)]dτλ̃m(l+1)+1 − λ̃s+1

= −
ts∫

ts−1

[
F∗(l, τ) + f̃ (τ)

]
dτ, s = 1, m(l + 1).

Condition (16) follows from (27). We rewrite (28) as

λ̃s +


ts∫

ts−1

[
m(l+1)

∑
i=1

H∗i (l, τ)λ̃i + P∗1 (l, τ)λ̃1 + P∗2 (l, τ)λ̃m(l+1)+1 + F∗(l, τ)

]
dτ

+

ts∫
ts−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ, s)dsdτλ̃i +

ts∫
ts−1

K20(τ)dτλ1

+

ts∫
ts−1

K21(τ)dτλm(l+1)+1 +

ts∫
ts−1

f̃ (τ)dτ

 = λs+1, s = 1, m(l + 1). (29)

From (23) we get that

us(t) =
t∫

ts−1

[
m(l+1)

∑
i=1

H∗i (l, τ)λ̃i + P∗1 (l, τ)λ̃1 + P∗2 (l, τ)λ̃m(l+1)+1 + F∗(l, τ)

]
dτ
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+

t∫
ts−1

m(l+1)

∑
i=1

∫ ti

ti−1

K(τ, s)dsdτλ̃i +

t∫
ts−1

K20(τ)dτλ̃1

+

t∫
ts−1

K21(τ)dτλ̃m(l+1)+1 +

t∫
ts−1

f̃ (τ)dτ, t ∈ [ts−1, ts).

Because

lim
t→ts−0

us(t) =
ts∫

ts−1

[
m(l+1)

∑
i=1

H∗i (l, τ)λ̃i + P∗1 (l, τ)λ̃1 + P∗2 (l, τ)λ̃m(l+1)+1 + F∗(l, τ)

]
dτ

+

ts∫
ts−1

m(l+1)

∑
i=1

ti∫
ti−1

K(τ, s)dsdτλ̃i +

ts∫
ts−1

K20(τ)dτλ̃1

+

ts∫
ts−1

K21(τ)dτλ̃m(l+1)+1 +

ts∫
ts−1

f̃ (τ)dτ.

Since the expression in curly bracket (29) determines lim
t→ts−0

us(t), then from (29)

the validity of relation (17) follows. Then, the function x̃(t) constructed using the pair[(
λ̃1, λ̃2, ..., λ̃m(l+1)

)
,
(

ũ1(t), ũ2(t), ..., ũm(l+1)(t)
)]

, i.e., x̃(t) = ũr(t)+ λ̃r, t ∈ [tr−1, tr),

r = 1, m(l + 1), x̃(T) = λ̃m(l+1)+1 will be a solution to problem (9) and (10). The lemma
is proved.

Definition 1. Problem (1) and (2) is called uniquely solvable if for any pair ( f (t), d) it has a
unique solution x(t).

Theorem 1. Let the conditions ai 6= ±1, i = 1, n be satisfied. Then, the boundary value
problem (1), (2) is uniquely solvable if and only if for any l ∈ ∆l matrix Q∗(l) is reversible.

Proof. Let the matrix Q∗(l) be reversible for l ∈ ∆l and f (t) ∈ C([0, T], ∆m(l+1), Rn),
d ∈ Rn. Using the reversibility of the matrix Q∗(l), we find a unique solution to the system
of linear algebraic equations:

λ∗ = −[Q∗(l)]−1 · F∗(l), λ∗ ∈ Rn[m(l+1)+1]

The solution of the special Cauchy problem (14), (15) for λ = λ∗ defines the system
of functions u∗[t] =

(
u∗1(t), u∗2(t), ..., u∗m(l+1)(t)

)
. Due to the regularity of the partition

l ∈ ∆l , there must exist systems of functions u∗[t] with elements u∗r (t), r = 1, m(l + 1) de-
termined by the right-hand part of (23) for λ = λ∗ =

(
λ∗1 , λ∗2 , ..., λ∗m(l+1)+1

)
∈ Rn[m(l+1)+1].

Then, according to lemma the function x∗(t) defined by the equalities x∗(t) = λ∗r +

u∗r (t), t ∈ [tr−1, tr), r = 1, m(l + 1), x∗(T) = λ∗m(l+1)+1 is a solution to problem (9), (10).
Therefore, x∗(t) satisfies (10). Equation (9) can be written as:

dx∗

dt
=

T∫
0

K̃1(t, s)x∗(s)ds−
T∫

0

∂K̃2(t, s)
∂s

x∗(s)ds

− K̃2(t, 0)x∗(θ0) + K̃2(t, T)x∗(θm) + f̃ (t). (30)
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As

T∫
0

K̃2(t, s)ẋ∗(s)ds = −
T∫

0

∂K̃2(t, s)
∂s

x∗(s)ds− K̃2(t, 0)x∗(0) + K̃2(t, T)x∗(T),

x∗(t) satisfies

dx∗

dt
=

T∫
0

K̃1(t, s)x∗(s)ds +
T∫

0

K̃2(t, s)ẋ∗(s)ds + f̃ (t),

i.e., x∗(t) satisfies (9).
From the equivalence of boundary value problems (9), (10) and (1), (2) under the

condition ai 6= ±1, i = 1, n it follows that x∗(t) is a solution to problem (1) and (2).
Let us show the uniqueness of the solution.
Suppose that problem (1), (2) besides solution x∗(t) has the other solution x̃(t).

Then, the boundary value problem (14)–(17) has, respectively, solutions (λ∗, u∗[t]) and(
λ̃, ũ[t]

)
.

According to Lemma 1, the system of Equation (26) is satisfied for λ∗, as well as for λ̃,
i.e.,

Q∗(l) · λ∗ = −F∗(l), Q∗(l) · λ̃ = −F∗(l).

However, the matrix Q∗(l) is reversible, hence it follows that λ∗ = λ̃. For our regular
partitioning, the special Cauchy problem has a unique solution, therefore u∗r[t] = ũr[t],
t ∈ [tr−1, tr), r = 1, m(l + 1). Hence, x∗(t) = x̃(t).

Let us prove the necessity. Fulfillment of the condition ai 6= ±1, i = 1, n makes it possible
to pass from the boundary value problem (1), (2) to the boundary value problem (9), (10).
Let problem (9), (10) be uniquely solvable and l ∈ ∆l . Suppose that, if the problem (9), (10)
is uniquely solvable, the matrix Q∗(l) is not reversible. This is possible only in case of a
nonzero solution of the homogeneous system Q∗(l) · λ = 0, λ ∈ Rn[m(l+1)+1].

Suppose that λ̃ =
(

λ̃1, λ̃2, ..., λ̃m(l+1)+1

)
∈ Rn[m(l+1)+1] is a nonzero solution of (26).

This means that for f (t) = 0, d = 0 the homogeneous boundary value problem (1), (2) has
a nonzero solution. However, this contradicts the unique solvability of the boundary value
problem (1) and (2).

4. An Illustrative Example

Example 1. Consider the following three-point boundary value problem in the segment [0, 1] :

ẋ(t)− 2ẋ(1− t) =
1∫

0

(3t + 1)x(s)ds + 3
1∫

0

(t + s)ẋ(s)ds− 3t− 1, (31)

x(0)− 2x
(

1
2

)
+ x(1) = 0. (32)

Consider the values of Equation (31) in the point t∗ = 1− t

ẋ(1− t)− 2ẋ(t) =
1∫

0

(4− 3t)x(s)ds + 3
1∫

0

(1− t + s)ẋ(s)ds + 3t− 4. (33)

Then, from the system of Equations (31) and (33) we get

ẋ(t) =
1∫

0

(t− 3)x(s)ds + 3
1∫

0

(t− 3s− 2)ẋ(s)ds− t + 3.



Symmetry 2022, 14, 1626 12 of 15

Integrating the second integral by parts and grouping the corresponding terms, we obtain the
following equivalent boundary value problem:

ẋ(t) =
1∫

0

tx(s)ds + (t− 5)x(1)− (t− 2)x(0)− t + 3, (34)

x(0)− 2x
(

1
2

)
+ x(1) = 0. (35)

Let us divide the segment [0, 1) into two parts [0, 1) =
[
0, 1

2

)
∪
[

1
2 , 1
)

.
Introduce parameters λ1 = x1(0), λ2 = x1(1/2), λ3 = lim

t→1
x2(t) and make the substitu-

tion xr(t) = ur(t) + λr, r = 1, 2.
Then, from the boundary value problem (34), (35) we transfer to the following equivalent

problem

u̇1(t) = t
1/2∫
0

u1(s)ds + t
1∫

1/2

u2(s)ds

−
(

t
2
− 2
)

λ1 +
t
2

λ2 + (t− 5)λ3 − t + 3, t ∈
[

0,
1
2

)
(36)

u1(0) = 0 (37)

u̇2(t) = t
1/2∫
0

u1(s)ds + t
1∫

1/2

u2(s)ds

−
(

t
2
− 2
)

λ1 +
t
2

λ2 + (t− 5)λ3 − t + 3, t ∈
[

1
2

, 1
)

, (38)

u2

(
1
2

)
= 0, (39)

λ1 − 2λ2 + λ3 = 0 (40)

λ1+lim
t→1

u1(t) = λ2, (41)

λ2+lim
t→1

u2(t) = λ3. (42)

For fixed values of parameters λ1, λ2, λ3 determine solution of the Cauchy
problem (36)–(39)

u1(t) = 2tλ1 +
12
43

t2λ2 −
(

6
43

t2 + 5t
)

λ3 −
6

43
t2 + 3t, t ∈

[
0,

1
2

)
, (43)

u2(t) = (2t− 1)λ1 +

(
12
43

t2 − 3
43

)
λ2

−
(

6
43

t2 + 5t− 109
43

)
λ3 −

6
43

t2 + 3t− 63
43

, t ∈
[

1
2

, 1
)

. (44)
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Substituting the obtained solution into the boundary conditions (40)–(42), we obtain a system
of linear algebraic equations with respect to the introduced parameters

λ1 − 2λ2 + λ3 = 0,

2λ1 − 40
43 λ2 − 109

43 λ3 = − 63
43 ,

λ1 +
52
43 λ2 − 155

43 λ3 = − 60
43 .

(45)

From (45), we obtain that the matrix Q∗ is revertible and λ1 = λ2 = λ3 = 1.
Substituting the obtained values in (43), (44) we determine that u1(t) = 0, u2(t) = 0. As the
matrix Q∗ is revertible, the unique solution to the boundary value problem (31), (32) is found in the
form of the sum x1(t) = u1(t) + λ1 = 1, x2(t) = u2(t) + λ2 = 1 or x(t) = 1.

Example 2. On the segment [0, 1], consider the following three-point boundary value problem:

ẋ(t)− 3ẋ(1− t) = 2
1∫

0

x(s)ds +
1∫

0

ẋ(s)ds− 2, (46)

x(0)− 3x
(

1
3

)
+ x(1) = 0. (47)

Applying the property of the involutive transformation, we obtain the following boundary
value problem:

ẋ(t) = −
1∫

0

x(s)ds +
1
2

1∫
0

ẋ(s)ds + 1, (48)

x(0)− 3x
(

1
3

)
+ x(1) = 0. (49)

Let us divide the segment [0, 1) into two parts [0, 1) =
[
0, 1

3

)
∪
[

1
3 , 1
)

.
Introduce parameters λ1 = x1(0), λ2 = x2(1/3), λ3 = lim

t→1
x2(t) and make the substitution

xr(t) = ur(t) + λr, r = 1, 2.
Then, from the boundary value problem (48), (49), we obtain the following equivalent problem:

u̇1(t) = −
1/3∫
0

u1(s)ds−
1∫

1/3

u2(s)ds− 5
6

λ1 −
2
3

λ2 +
1
2

λ3 + 1, t ∈
[

0,
1
3

)
(50)

u1(0) = 0 (51)

u̇2(t) = −
1/3∫
0

u1(s)ds−
1∫

1/3

u2(s)ds− 5
6

λ1 −
2
3

λ2 +
1
2

λ3 + 1, , t ∈
[

1
3

, 1
)

(52)

u2

(
1
3

)
= 0 (53)

λ1 −
1
3

λ2 + λ3 = 0, (54)

λ1 +lim
t→1

u1(t) = λ2, (55)

λ2 +lim
t→1

u2(t) = λ3. (56)
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For fixed values of the parameter λ1, λ2, λ3 we find the solution of the Cauchy problem
(50)–(53)

u1(t) =
[
−15λ1 −

36
69

λ2 +
54
138

λ3 +
18
23

]
t, t ∈

[
0,

1
3

)
, (57)

u2(t) =
[
−15λ1 −

36
69

λ2 +
54

138
λ3 +

18
23

](
t− 1

3

)
, t ∈

[
1
3

, 1
)

. (58)

Substituting the obtained solution of the Cauchy problem (50)–(53) into the boundary conditions
(54)–(56), we obtain a system of linear algebraic equations with respect to the introduced parameters:

λ1 − 3λ2 + λ3 = 0,

−12λ1 − 243
69 λ2 +

54
138 λ3 = − 18

23 ,

−30λ1 +
135
69 λ2 − 306

138 λ3 = − 36
23 .

(59)

The matrix Q∗ is invertible and λ1 = 0, λ2 = 1
3 , λ3 = 1. Substituting the obtained

values into (57) and (58) we obtain u1(t) = t, u2(t) = t − 1
3 . As the matrix Q∗ is invertible,

the boundary value problem (46), (47) has a unique solution x1(t) = u1(t) + λ1 = t, t ∈
[
0, 1

3

)
,

x2(t) = u2(t) + λ2 = t− 1
3 + 1

3 = t, t ∈
[

1
3 , 1
)

, lim
t→1

x2(t) = 1 or x(t) = t, t ∈ [0, 1].

5. Conclusions

In this paper, the parametrization method was used to solve a multipoint boundary
value problem for systems of integro-differential equations with involution transformations.
Introduction of new parameters and a successful change of variables enables us to split the
problem into two parts: the Cauchy problem for systems of integro-differential equations
and a system of linear equations with respect to the introduced parameters. Applying the
theory of integral equations, the solution to the problem is reduced to the reversibility of
the matrix, depending on the initial data. Thus, necessary and sufficient conditions for the
unique solvability of the studied problem have been established. The effectiveness and
accuracy of the method is demonstrated by an illustrative example. In the future, it is
planned to apply the parametrization method to multipoint boundary value problems for
integro-differential equations with fractional derivatives.
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