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Abstract: The aim of this paper is to study the coupled fixed point of a class of mixed monotone oper-
ators in the setting of a subordinate semimetric space. Using the symmetry between the subordinate
semimetric space and a JS-space, we generalize the results of Senapati and Dey on JS-spaces. In this
paper, we obtain some coupled fixed point results and support them with some examples.
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1. Introduction and Preliminaries

One of the most important tools in nonlinear functional analysis is fixed point theory.
It is very well known that most nonlinear analysis problems can be treated as fixed point
problems. Banach proposed that each contraction on a complete metric space possesses a
unique fixed point. In [1], J. Villa-Morales introduced the concept of subordinate semimetric
spaces. A subordinate semimetric space is an extension of the concept of the RS-space
introduced by Rolda’n and Shahzad in [2]. Also, the notions of Jleli and Samet’s metric
space and Branciari’s generalized metric space are special cases of an RS-space. The
purpose of this article is to study the existence of coupled fixed points (CFPs) on complete
subordinate semimetric spaces. We also aim to provide some applications and examples to
illustrate our results. In this article, we operate on the set of extended real numbers using
standard arithmetic operations, R̄ = R ∪ {∞,−∞}, and the notations have their regular
meanings. Let Γ be a nonempty set. We begin with an extension of the definition of a
semimetric space.

Definition 1 ([1]). Let Γ be a nonempty set. A semimetric space is a pair (Γ, Ψ) where Ψ : Γ2 →
[0, ∞] is a function that meets the following conditions:

(D1) For each (ω, ν) ∈ Γ2, if Ψ(ω, ν) = 0, then ω = ν;
(D2) For each (ω, ν) ∈ Γ2, Ψ(ω, ν) = Ψ(ν, ω).

We will use this notion to define several fundamental topological concepts.

Definition 2 ([1]). Assume (Γ, Ψ) is a semimetric space. Let ω ∈ Γ, and let {ωn} be a sequence
in Γ. Then, we have the following:

(i) {ωn} is called a convergent sequence to ω if lim
n→∞

Ψ(ω, ωn) = 0.

(ii) {ωn} is called a Cauchy sequence if lim
n,m→∞

Ψ(ωn, ωm) = 0.

(iii) The pair (Γ, Ψ) is called a complete semimetric space if each Cauchy sequence in Γ is convergent.

Our approach exhibits symmetry with the generalized metric space concept that Jleli
and Samet established in their work [3]. Rolda’n and Shahzad [2] promptly generalized
this concept in the manner described below.
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Definition 3 ([1]). A semimetric space (Γ, Ψ) is an RS-space if there exists c > 0 such that if
ω, ν ∈ Γ are two points and {ωn} is an infinite Cauchy sequence and lim

n→∞
Ψ(ωn, ω) = 0, then

Ψ(ω, ν) ≤ c lim sup
n→∞

Ψ(ωn, ν).

The special cases of the RS-space concept include the concepts of quasimetric spaces,
modular spaces, generalized metric spaces, and Branciari’s generalized metric spaces
(see [2,3]).

Definition 4 ([1]). We say that a semimetric space (Γ, Ψ) is a subordinate if there exists a function
ξ : [0, ∞] → [0, ∞] with the following:

(SO1) ξ is non-decreasing and lim
ω→0

ξ(ω) = 0;

(SO2) For every (ω, ν) ∈ Γ2, with ω ̸= ν, and when {ωn} is an infinite Cauchy sequence in Γ
such that {ωn} is convergent to ω, we have

Ψ(ω, ν) ≤ ξ(lim sup
n→∞

Ψ(ωn, ν)).

Then, the pair (Γ, Ψ) is said to be subordinate to ξ or that (Γ, Ψ) is a subordinate semimetric
space.

Remark 1. Note that each RS-space is a subordinate semimetric space (if we take ξ(ω) = cx), but
the converse is not true. Examples 2, 3, and 5 of [1] are subordinate semimetric spaces but they are
not RS-spaces.

The next proposition proves the uniqueness of the limit of a convergent sequence in a
subordinate semimetric space, which is necessary for our main results.

Proposition 1. Let (ωn) be an infinite Cauchy sequence in a subordinate semimetric space (Γ, Ψ).
Suppose that (ωn) converges to ω and λ. Then, ω = λ.

Proof. Suppose that ω ̸= λ. Then, by condition (SO2), there is a function ξ : [0, ∞] → [0, ∞]
where ξ is non-decreasing, lim

ω→0
ξ(ω) = 0, and

Ψ(ω, λ) ≤ ξ(lim sup
n→∞

Ψ(ωn, λ))

= ξ(0) = 0.

Thus, ω = λ.

Proposition 2. Let (ωn) be an infinite Cauchy sequence in a subordinate semimetric space (Γ, Ψ)
that converges to ω ∈ Γ. Then, Ψ(ω, ω) = 0.

Proof. By condition (SO2), there is a function ξ : [0, ∞] → [0, ∞] where ξ is non-decreasing,
lim
ω→0

ξ(ω) = 0, and

Ψ(ω, ω) ≤ ξ(lim sup
n→∞

Ψ(ωn, ω)) = ξ(0) = 0.

In the context of partially ordered (PO) metric spaces, Bhaskar and Lakshmikan-
tham [4] introduced the notion of coupled fixed points (CFPs) as follows:

Definition 5 ([4]). An element (ω, ν) ∈ Γ2 is said to be a CFP of the function G : Γ2 → Γ if
ω = G(ω, ν) and ν = G(ν, ω).
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Additionally, they presented the notion of the MM operator as follows.

Definition 6 ([4]). Assume (Γ,≤) is a PO set and G : Γ2 → Γ is a function. Then, we say that G
has the MM property if the following hold:

(MM-1) ω1 ≤ ω2 ⇒ G(ω1, ν) ≤ G(ω2, ν) for all ω1, ω2, ν ∈ Γ;
(MM-2) ν1 ≤ ν2 ⇒ G(ω, ν1) ≥ G(ω, ν2) for all ω, ν1, ν2 ∈ Γ.

Given this notion, the authors of [4] established the next theorem, which shows the
existence of the CFP of an operator with the MM property in the setting of a complete PO
metric space.

Theorem 1 ([4]). Let (Γ, d) be a complete PO metric space. Let k ∈ (0, 1) and suppose G : Γ2 → Γ
is an MM operator with the following property:

d(G(ω, ν), G(λ, µ)) ≤ k
2
{d(ω, λ) + d(ν, µ)} for all ω ≥ λ; ν ≤ µ. (1)

Also, consider that there exist ω0, ν0 ∈ Γ with ω0 ≤ G(ω0, ν0) and ν0 ≥ G(ν0, ω0). If (I) G
is continuous or (II) Γ has the following properties:

(i) If a non-decreasing sequence (ωn) is convergent to ω, then ωn ≤ ω for every n ∈ N;
(ii) If a non-increasing sequence (νn) is convergent to ν, then νn ≥ ν for all n ∈ N;

then there exist ω, ν ∈ Γ such that ω = G(ω, ν) and ν = G(ν, ω).

The contraction condition (1) was then generalized by Berinde [5] in 2011 as follows:

d(G(ω, ν), G(λ, µ)) + d(G(ν, ω), G(µ, λ)) ≤ k{d(ω, λ) + d(ν, µ)} for all ω ≥ λ; ν ≤ µ (2)

This condition proved a CFP for an MM operator on partially ordered complete
metric spaces.

Senapati and Dey in [6] improved and extended Berinde’s CFP findings in [5] using
the condition of contraction (2) for an MM operator on partially ordered complete JS-
metric spaces.

In this work, motivated by the concepts of subordinate semimetric spaces, we ex-
tended and improved the CFP findings of Senapati and Dey [6] due to the condition of
contraction (2) for an MM operator in PO complete subordinate semimetric spaces. In order
to support our main finding, we constructed some examples.

2. Main Results

We will first provide some notions related to the structure before introducing our
main results.

Let (Γ, Ψ) be a partially ordered subordinate semimetric space to some function ξ.
Consider Γ2 and define a partial order on Γ2 as (ω, ν) ≤ (µ, λ) ⇔ ω ≥ µ ; ν ≤ λ.
Define a distance function Ψ+ : Γ2 × Γ2 → [0, ∞] as

Ψ+((ω, ν), (µ, λ)) = Ψ(ω, µ) + Ψ(ν, λ).

Then, (Γ2, Ψ+) is a partially ordered subordinate semimetric space to ξ ′ = max{2ξ, ξ +
ξ1 | ξ1(t) = t}.

To see this, note the following:

(D1) Ψ+((ω, ν), (λ, µ)) = 0. This implies that Ψ(ω, λ) + Ψ(ν, µ) = 0. This is only possible
if both Ψ(ω, λ) = 0 and Ψ(ν, µ) = 0, i.e., ω = λ and ν = µ. Hence,

Ψ+((ω, ν), ((λ, µ))) = 0 ⇒ (ω, ν) = (λ, µ) for all (ω, ν), (λ, µ) ∈ Γ2.

(D2) Clearly, Ψ+((ω, ν), (λ, µ)) = Ψ+((λ, µ), (ω, ν)) for all (ω, ν), (λ, µ) ∈ Γ2.
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Then,
(
Γ2, Ψ+

)
is a semimetric space.

Next, let {(ωn, νn)}n∈N be an infinite Cauchy sequence in Γ2 that is convergent to
(ω, ν). There are two cases.

Case (1): Both sequences, {ωn}n∈N and {νn}n∈N, are infinite Cauchy sequences that
converge to ω and ν, respectively. Then,

Ψ+((ω, ν), (µ, λ)) = Ψ(G(ω, µ)) + Ψ(ν, λ))

≤ ξ

(
lim sup

n→∞
Ψ(ωn, µ)

)
+ ξ

(
lim sup

n→∞
Ψ(νn, λ)

)
≤ ξ

(
lim sup

n→∞
Ψ(ωn, µ) + lim sup

n→∞
Ψ(νn, λ)

)
+

(
lim sup

n→∞
Ψ(ωn, µ) + lim sup

n→∞
Ψ(νn, λ)

)
≤ ξ

(
lim sup

n→∞
(Ψ(ωn, µ) + Ψ(νn, λ))

)
+ ξ

(
lim sup

n→∞
(Ψ(ωn, µ) + Ψ(νn, λ))

)
= 2ξ

(
lim sup

n→∞
Ψ(ωn, µ) + lim sup

n→∞
Ψ(νn, λ)

)
.

Case (2): One of {ωn}n∈N and {νn}n∈N is finite (say {νn}n∈N). Then, νn = ν for all
n ≥ n0, for some n0 ∈ N. Let ξ1(t) = t.

Ψ+((ω, ν), (µ, λ)) = Ψ(G(ω, µ)) + Ψ(ν, λ))

≤ ξ

(
lim sup

n→∞
Ψ(ωn, µ)

)
+ lim sup

n→∞
Ψ(νn, λ)

≤ ξ

(
lim sup

n→∞
(Ψ(ωn, µ) + Ψ(νn, λ))

)
+

(
lim sup

n→∞
(Ψ(ωn, µ) + Ψ(νn, λ))

)
= (ξ + ξ1)

(
lim sup

n→∞
(Ψ(ωn, µ) + Ψ(νn, λ))

)
.

Let ξ ′(t) = max{2ξ(t), (ξ + ξ1)(t)}.
From the above, we see that there exists a function ξ ′ : [0, ∞] → [0, ∞] with the

following conditions:

(SO1) ξ ′ is non-decreasing and lim
ω→0

ξ ′(ω) = 0;

(SO2) For every ((ω, ν), (µ, λ)) ∈ Γ2 × Γ2, with (ω, ν) ̸= (µ, λ), and when {(ωn, νn)} is an
infinite Cauchy sequence in Γ2 such that {(ωn, νn)} is convergent to (ω, ν), we have

Ψ+((ω, ν), (µ, λ)) ≤ ξ ′(lim sup
n→∞

Ψ+((ωn, νn), (µ, λ))).

Thus, (Γ2, Ψ+) is a partially ordered subordinate semimetric space to ξ ′ = max{2ξ, ξ +
ξ1 | ξ1(t) = t}.

In a similar fashion, we define a distance function on each n-tuple set Γn for each
n ≥ 2.

Thus, we define the function Ψm : Γ2 → Γ as

Ψm((ω, ν), (λ, µ)) = max{Ψ(ω, λ), Ψ(ν, µ)}.

It is easy to check that Ψm meets the axioms of a subordinate semimetric space.
Furthermore, (Γ2, Ψm) is a Ψm-subordinate semimetric space. Proceeding in this way,

we may establish an n-tuple Ψm-subordinate semimetric space for each n ≥ 2.
The following proposition will be necessary in order to state our main results.

Remark 2. By Proposition (1), the limit of a Cauchy convergent sequence is unique in the subordi-
nate semimetric space (Γ2, Ψ+), i.e, if (σn) = (ωn, νn) is an infinite Cauchy sequence in (Γ2, Ψ+),
with (σn), Ψ+ converges to ω∗ = (ω, ν), and λ∗ = (λ, µ) and then ω∗ = λ∗.
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By Proposition (2), we may derive the next argument.

Proposition 3. Assume (σn) is an infinite Cauchy sequence in (Γ2, Ψ+) that converges to
(ω, ν) ∈ Γ2, where σn = (ωn, νn). Then, Ψ+((ω, ν), (ω, ν)) = 0.

If (Γ, Ψ) is a complete subordinate semimetric space, then it is easy to show that
(Γ2, Ψ+) and (Γ2, Ψm) are complete as well.

Let (ω, ν) ∈ Γ2, and let there be a function of G : Γ2 → Γ that has an MM operator. We
have defined

δG(Ψ, (ω, ν)) = sup{Ψ(Gi(ω, ν), Gj(ω, ν)) : i, j ∈ N}

and
δG(Ψ, (ν, ω)) = sup{Ψ(Gi(ν, ω), Gj(ν, ω)) : i, j ∈ N},

where

G2(ω, ν) = G(G(ω, ν), G(ν, ω)); Gi(ω, ν) = G(Gi−1(ω, ν), Gi−1(ν, ω)).

Remember that the partial order ′ ≤′ on Γ2 is defined in the following manner:

(λ, µ) ≤ (ω, ν) ⇔ λ ≤ ω, µ ≥ ν

for all ω, ν, λ, µ ∈ Γ.

CFP Results

Throughout this part, we generalize the works of Senapati and Dey [6], improving the
results of Berinde [5].

Let (Γ, Ψ) be a PO subordinate semimetric space to some function ξ.
Let (Γ2, Ψ+) be the PO complete subordinate semimetric space (induced by (Γ, Ψ)).
Let G : Γ2 → Γ be an MM operator.
The contraction condition (2) is written as follows:

Ψ(G(ω, ν), G(λ, µ)) + Ψ(G(ν, ω), G(µ, λ)) ≤ k{Ψ(ω, λ) + Ψ(ν, µ)} (3)

for all ω ≥ λ, ν ≤ µ, and k ∈ (0, 1).
Now, we define an operator TG : Γ2 → Γ2 as

TG(ω, ν) = (G(ω, ν), G(ν, ω)) (4)

for all (ω, ν) ∈ Γ2. Thus, the contraction condition (3) is presented as

Ψ+(TG(Σ), TG(∆)) ≤ kΨ+(Σ, ∆) (5)

where Σ = (ω, ν), ∆ = (λ, µ) ∈ Γ2 with ω ≥ λ, ν ≤ µ, and k ∈ (0, 1).

Remark 3. Clearly, from the above, the CFP theorem for G simplifies to the common fixed point
theorem for TG, as TG has a fixed point if and only if G has a CFP.

Let σ0 = (ω0, ν0) ∈ Γ2. We how define

δ(Ψ+, TG, σ0) = sup{Ψ+(TG
i(σ0), TG

j(σ0)) : i, j ∈ N}.

The extended version of Senapati and Dey’s results in [6] is shown in the following
results.

Theorem 2. Consider that G : Γ2 → Γ is a mapping with an MM operator on a PO complete
Ψ+-subordinate semimetric space (Γ2, Ψ+). Assume that for all ω ≥ λ and ν ≤ µ,



Symmetry 2024, 16, 499 6 of 16

G meets the condition of contraction (3). If there exists σ0 = (ω0, ν0) ∈ Γ2 with the following
conditions:

(i) ω0 ≤ G(ω0, ν0) and ν0 ≥ G(ν0, ω0) or ω0 ≥ G(ω0, ν0) and ν0 ≤ G(ν0, ω0);
(ii) δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞;

then there exists a CFP σ̃ = (ω̃, ν̃) ∈ Γ2 of G, i.e., ω̃ = G(ω̃, ν̃); ν̃ = G(ν̃, ω̃).

Proof. By the hypothesis, assume that there exists σ0 = (ω0, ν0) ∈ Γ2 with ω0 ≤ G(ω0, ν0)
and ν0 ≥ G(ν0, ω0).

Let ω1 = G(ω0, ν0) and ν1 = G(ν0, ω0), and we denote the following:

G2(ω0, ν0) = G(G(ω0, ν0),G(ν0, ω0)) = G(ω1, ν1) = ω2;

G2(ν0, ω0) = G(G(ν0, ω0),G(ω0, ν0)) = G(ω1, ω1) = ν2.

In a similar fashion, since G is an MM operator, we obtain

Gn(ω0, ν0) = G(Gn−1(ω0, ν0),Gn−1(ν0, ω0)) = ωn;

Gn(ν0, ω0) = G(Gn−1(ν0, ω0),Gn−1(ω0, ν0)) = νn.

Throughout Remark 3, to establish the presence of a CFP of G, it is enough to prove the
presence of a fixed point of TG provided by Equation (4). To demonstrate this, let us assume

σ1 = (ω1, ν1) = (G(ω0, ν0), G(ν0, ω0)) = TG(ω0, ν0) = TG(σ0).

and

σ2 = (ω2, ν2) = (G2(ω0, ν0), G2(ν0, ω0)) = (G(ω1, ν1), G(ν1, ω1)) = TG(σ1) = T2
G(σ0).

Proceeding in this way, we obtain

σn = (ωn, νn) = (Gn(ω0, ν0), Gn(ν0, ω0)) = ... = Tn
G(σ0) for all n ∈ N.

Thus, {σn} is a Picard sequence that has the initial approximation σ0. Also, since G is
an MM operator, one can easily check that for any n ≥ 0, ωn ≤ ωn+1 and νn ≥ νn+1. Thus
σn ≤ σn+1, i.e., {σn} is a non-decreasing sequence.

Now, we can show that {σn} is a Cauchy sequence due to the fact that G meets the
condition of contraction (3), for each n ≥ 0 and i ≤ j. Therefore, we have the following:

Ψ(Gn+i(ω0, ν0), Gn+j(ω0, ν0)) + Ψ(Gn+i(ν0, ω0), Gn+j(ν0, ω0))

≤ k[Ψ(Gn+i−1(ω0, ν0), Gn+j−1(ω0, ν0)) + Ψ(Gn+i−1(ν0, ω0), Gn+j−1(ν0, ω0))]

⇒ Ψ+(TG
n+i(σ0), TG

n+j(σ0))

≤ kΨ+(TG
n−1+i(σ0, TG

n−1+j(σ0))) [by (5)]

⇒ δ(Ψ+, TG, Tn
G(σ0)

≤ kδ(Ψ+, TG, Tn−1
G (σ0)).

This holds for each n ∈ N such that for each i ≤ j, we obtain

Ψ+(TG
n+i(σ0), TG

n+j(σ0)) ≤ kδ(Ψ+, TG, TG
n−1(σ0))

≤ k2δ(Ψ+, TG, TG
n−2(σ0))

.

.

.

≤ knδ(Ψ+, TG, σ0). (6)
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Also, we know that

δ(Ψ+, TG, σ0) = sup{Ψ+(Ti
G(σ0), T j

G(σ0)) : i, j ∈ N}
= sup{Ψ(Gi(ω0, ν0), Gj(ω0, ν0)) + Ψ(Gi(ν0, ω0), Gj(ν0, ω0))}
= δG(Ψ, (ω0, ν0)) + δG(Ψ, (ν0, ω0)).

Since δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞, then we have

δ(Ψ+, TG, σ0)) < ∞.

Using this in (6) , for all m ∈ N, we obtain

Ψ+(σn, σn+m) = Ψ+(TG
n(σ0), TG

n+m(σ0))

≤ δ(Ψ+, TG, TG
n(σ0))

≤ knδ(Ψ+, TG, σ0) → 0 as n → ∞.

Thus, {σn} is a Cauchy sequence. As (Γ2, Ψ+) is complete, the sequence {σn} con-
verges to σ̃ for some σ̃ = (ω̃, ν̃) ∈ Γ2.

Finally, we need to prove that σ̃ = (ω̃, ν̃) is a fixed point of TG and that it is a CFP
of G.

Now, we have two cases to consider about the Cauchy sequence {σn} = {(ωn, νn)} ⊆ Γ2.
Case (1): If {σn} is finite, then there exists n0 ∈ N such that σn = Tn

G(ω0, ν0) = σ̃ for
all n ≥ n0. Now,

TG(σ̃) = TG(σn) = TG(Tn
G(ω0, ν0)) = Tn+1

G (ω0, ν0) = σ̃, since n + 1 ≥ n ≥ n0.

Thus, σ̃ is a fixed point of TG.
Case (2): If {σn} = {(ωn, νn)} is an infinite Cauchy sequence and we suppose that

TG(σ̃) ̸= σ̃, then since the space (Γ2, Ψ+) is subordinate with the function ξ ′, we have

Ψ+(σ̃, TG(σ̃)) ≤ ξ ′
(

lim sup
n→∞

Ψ+(Tn
G(σ0), TG(σ̃))

)
≤ ξ ′

(
lim sup

n→∞
kΨ+(σ̃)

)
= ξ ′(0) = 0.

This implies that σ̃ = TG(σ̃); that is, σ̃ is a fixed point of TG.
By using Remark 3, we can deduce that σ̃ = (ω̃, ν̃) is a CFP of G; that is, ω̃ = G(ω̃, ν̃)

and ν̃ = G(ν̃, ω̃).

Following this, we state several further requirements for a CFP of G to be a unique.

Theorem 3. Assume σ̃ = (ω̃, ν̃) and ρ = (λ, µ) are CFPs of G such that they are comparable and
let Ψ+(ρ, σ̃) < ∞. Then, ρ = σ̃.

Proof. Now,

Ψ+(ρ, σ̃) = Ψ+(TG(ρ), TG(σ̃))≤ kΨ+(ρ, σ̃)

⇒ Ψ+(ρ, σ̃) = 0

⇒ ρ = σ̃

⇒ (λ, µ) = (ω̃, ν̃).

As a result, the proof follows.
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Theorem 4. Assume ρ = (λ, µ) and σ̃ = (ω̃, ν̃) are CFPs of G such that they are incomparable.
Assume that there is a lower bound or upper bound σ∗ = (ω∗, ν∗) ∈ Γ2 of ρ and σ̃ such that
Ψ+(ρ, σ∗) < ∞ and Ψ+(σ̃, σ∗) < ∞. Then, ρ = σ̃.

Proof. It is clear that, for every n ∈ N, Tn
G(σ

∗) is comparable to ρ = Tn
G(ρ) as well as to

σ̃ = Tn
G(σ̃). By using the contraction principle (5), we obtain

Ψ+(TG(ρ), TG(σ
∗)) ≤ kΨ+(ρ, σ∗),

and
Ψ+(T2

G(ρ), T2
G(σ

∗)) ≤ kΨ+((TG(ρ), TG(σ
∗)) ≤ k2Ψ+(ρ, σ∗),

In a similar way, we obtain

Ψ+(Tn
G(ρ), Tn

G(σ
∗)) ≤ knΨ+(ρ, σ∗). (7)

Employing the axioms of Ψ+-subordinate semimetric spaces and the above inequality,
we obtain

Ψ+(ρ, Tn
G(σ

∗)) ≤ ξ ′(lim sup
n→∞

Ψ+(Tn
G(ρ), Tn

G(σ
∗))) ≤ ξ ′(lim sup

n→∞
knΨ+(ρ, σ∗)).

Since Ψ+((ρ, σ∗) < ∞ and 0 < k < 1, we must have Ψ+(ρ, Tn
G(σ

∗)) → ξ ′(0) = 0
whenever n → ∞. Thus, the sequence {Tn

G(σ
∗)} also converges to ρ.

Similarly, it can be demonstrated that the sequence {Tn
G(σ

∗)} also converges to σ̃.
Through Remark 2, we can conclude that σ̃ = ρ; that is, (ω̃, ν̃) = (λ, µ).

Next, we look for further requirements for the equality of CFP components. To
demonstrate equality, assume the following conditions:

(Q1) Assume that (ω̃, ν̃) is a CFP of G with comparable components ω̃ and ν̃ in Γ such that
Ψ(ω̃, ν̃) < ∞.

(Q2) Let every pair of components ω, ν ∈ Γ have either a lower bound or an upper bound
ρ ∈ Γ such that Ψ(ω, ρ) < ∞, Ψ(ν, ρ) < ∞, Ψ(ω, ν) < ∞, and Ψ(ρ, ρ) < ∞.

(Q3) Let ω0, ν0 be comparable in Γ with Ψ(ω0, ν0) < ∞.

Theorem 5. If we add any of the preceding requirements to the hypothesis of Theorem 2, then the
components of a CFP are equal.

Proof. The theorem is proved by the following cases.
Case I: Assume that requirement (Q1) is satisfied, together with the assumptions of

Theorem 2. Let Σ = (ω̃, ν̃) and ∆ = (ν̃, ω̃). By using the contraction principal in Theorem 2,
we obtain

⇒ Ψ(G(ω̃, ν̃), G(ν̃, ω̃)) + Ψ(G(ν̃, ω̃), G(ω̃, ν̃)) ≤ k(Ψ(ω̃, ν̃) + Ψ(ν̃, ω̃))

⇒ Ψ(G(ω̃, ν̃), G(ν̃, ω̃)) ≤ kΨ(ω̃, ν̃)

⇒ Ψ(ω̃, ν̃) ≤ kΨ(ω̃, ν̃)

⇒ Ψ(ω̃, ν̃) = 0, i.e., ω̃ = ν̃.

Case II: Assume that requirement (Q2) is satisfied, together with the assumptions of
Theorem 2. We consider (ω̃, ν̃) to be a CFP of G with ω̃, ν̃ being incomparable.

Suppose ρ̃ ∈ Γ is an upper bound of ω̃ and ν̃ such that Ψ(ω̃, ρ̃) < ∞, Ψ(ν̃, ρ̃) < ∞,
Ψ(ω̃, ν̃) < ∞, and Ψ(ρ̃, ρ̃) < ∞.

Then, ω̃ ≤ ρ̃ and ν̃ ≤ ρ̃. With respect to partial order in (Γ2, Ψ+), we obtain

(ω̃, ν̃) ≥ (ω̃, ρ̃); (ω̃, ρ̃) ≤ (ρ̃, ω̃); (ρ̃, ω̃) ≥ (ν̃, ω̃).
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Let Σ = (ω̃, ν̃) and ∆ = (ω̃, ρ̃). Because Σ and ∆ are comparable due to the conditions
of contraction (3) and (5), we have

Ψ(G(ω̃, ν̃), G(ω̃, ρ̃)) + Ψ(G(ν̃, ω̃), G(ρ̃, ω̃)) ≤ k[Ψ(ω̃, ω̃) + Ψ(ν̃, ρ̃)]

⇒ Ψ+(TG(Σ), TG(∆)) ≤ k[Ψ(ω̃, ω̃) + Ψ(ν̃, ρ̃)].

Using Proposition 2, we must have Ψ+(ω̃, ω̃) = 0, and thus, we obtain

Ψ+(TG(Σ), TG(∆)) ≤ kΨ(ν̃, ρ̃). (8)

Now, as Σ = (ω̃, ν̃) is a fixed point of operator TG, Tn
G(Σ) = Σ for each n ∈ N. Then,

inequality (8) is simplified to

Ψ+(Tn
G(Σ), Tn

G(∆)) ≤ knΨ+(Σ, ∆)

⇒ Ψ+(Σ, Tn
G(∆)) ≤ knΨ(ν̃, ρ̃)

⇒ Ψ+(Σ, Tn
G(∆)) → 0 (9)

as n → ∞ and Ψ(ν̃, ρ̃) < ∞. Hence, the sequence (Tn
G(∆)) converges to Σ.

Next, let Ξ = (ν̃, ω̃) and Π = (ρ̃, ω̃). Clearly Ξ and Π are comparable, and thus,
we obtain

Ψ+(TG(Ξ), TG(Π)) ≤ kΨ+(Ξ, Π)

≤ k[Ψ+((ν̃, ω̃), (ρ̃, ω̃))]

≤ k[Ψ(ν̃, ω̃) + Ψ(ω̃, ω̃)]

≤ kΨ(ν̃, ρ̃).

Similarly, we have

Ψ+(Tn
G(Ξ), Tn

G(Π)) ≤ knΨ+(Ξ, Π)

⇒ Ψ+(Ξ, Tn
G(Π))≤ knΨ(ν̃, ρ̃) ⇒ Ψ+(Ξ, Tn

G(Π))→ 0 (10)

as n → ∞ and Ψ(ν̃, ρ̃) < ∞. Thus, the sequence (Tn
G(Π)) is convergent to Ξ.

Now, as ∆ and Π are comparable, then by the condition of contraction (3), we obtain

Ψ+(Tn
G(∆), Tn

G(Π)) ≤ knΨ+(∆, Π)

⇒ Ψ+(Tn
G(∆), Tn

G(Π)) ≤ kn(Ψ+((ω̃, ρ̃), (ρ̃, ω̃)))

⇒ Ψ+(Tn
G(∆), Tn

G(Π)) ≤ kn{Ψ(ω̃, ρ̃) + Ψ(ρ̃, ω̃)}
⇒ Ψ+(Tn

G(∆), Tn
G(Π)) → 0 (11)

as n → ∞ since Ψ(ω̃, ρ̃) < ∞ and Ψ(ρ̃, ω̃) < ∞. In using the axioms of Ψ+-subordinate
semimetric spaces along with (9), (10), and (11), there exists a non-decreasing function ξ ′

with lim
ω→0

ξ ′(ω) = 0 such that

Ψ+(Σ, Ξ) ≤ ξ ′(lim sup
n→∞

Ψ+(Tn
G(∆), Tn

G(Π))) = ξ ′(0) = 0

⇒ Σ = Ξ

⇒ (ω̃, ν̃) = (ν̃, ω̃)

⇒ ω̃ = ν̃.

Alternatively, it is easy to show that the components of a fixed point are equal by
assuming ρ̃ ∈ Γ is a lower bound of ω and ν such that Ψ(ω̃, ν̃) < ∞, Ψ(ν̃, ρ̃) < ∞, Ψ(ω̃, ν̃) <
∞, and Ψ(ρ̃, ρ̃) < ∞.
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Case III: Assume that requirement (Q3) is satisfied, together with the assumptions
of Theorem 2. Since G is an MM operator, for each n ≥ 1, ωn = G(ωn−1, νn−1) and
νn = G(νn−1, ωn−1) are comparable and ωn → ω̃, and νn → ν̃ as n → ∞. Using the axioms
of subordinate semimetric spaces, we obtain

Ψ(ω̃, ν̃) ≤ ξ(lim sup
n→∞

Ψ(ωn, νn)). (12)

Again, let Σ = {ωn, νn} and ∆ = {νn, ωn} in the condition of contraction of Theorem 2;
then, for each n ≥ 0, we have

Ψ(G(ωn, νn), G(νn, ωn)) ≤ kΨ(ωn, νn)

⇒ Ψ(ωn+1, νn+1) ≤ kΨ(ωn, νn). (13)

By inequalities (12) and (13), we obtain

Ψ(ω̃, ν̃) ≤ ξ(lim sup
n→∞

Ψ(ωn, νn)) ≤ ξ(lim sup
n→∞

knΨ(ω0, ν0)) = ξ(0) = 0

as n → ∞. This implies that Ψ(ω̃, ν̃) = 0. As a result, we must have ω̃ = ν̃.

The following corollary is a new form of Theorem (2.1.6) in [6].

Corollary 1. Let Γ be a PO complete subordinate semimetric space. Assume that the mapping
G : Γ2 → Γ satisfies the MM property on Γ, and there is a k ∈ (0, 1) with

Ψ((G(ω, ν), G(λ, µ)) ≤ k
2

Ψ+((ω, ν), (λ, µ))

for all ω ≥ λ and ν ≤ µ. Also, consider that there exists ω0, ν0 ∈ Γ such that the following hold:

(i) ω0 ≤ G(ω0, ν0) and ν0 ≥ G(ν0, ω0);
(ii) δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞.

Then, there exists ω, ν ∈ Γ such that ω = G(ω, ν); ν = G(ν, ω).

Remark 4. To prove the presence of CFPs, the authors of [4] investigated two different assumptions.
The first assumption is that the function G is continuous and the second assumption is if {ωn}
and {νn} are non-increasing and non-decreasing sequences, respectively, such that {ωn} → ω and
{νn} → ν, it follows that ωn ≤ ω and νn ≤ ν for all n ∈ N. However, Corollary 1 guarantees the
presence of CFPs without requiring any of the preceding assumptions.

Remark 5. Since each b-metric space is a subordinate semimetric space such that ξ(ω) = s(ω) ≥ 1
in Definition 4, it is easy to prove the CFP results in a PO b-metric space based on this paper’s
findings. In particular, the CFP findings in a b-metric space can be deduced from Theorem (2.2)
in [7] using Corollary 1.

Remark 6. In Corollary 1, the quality of the components of a CFP and the uniqueness of a CFP of
G are ensured using Theorems 3–5 as well.

Similarly, anyone can also prove the presence of a CFP of Ψm on Γ2. The next theorem presented
addresses this.

Theorem 6. Assume that the mapping G : Γ2 → Γ satisfies the MM property on Γ and there is a
k ∈ (0, 1) with

Ψm((G(ω, ν), G(ν, ω)), (G(λ, µ), G(µ, λ))) ≤ kΨm((ω, ν), (λ, µ))

for all ω ≥ λ and ν ≤ µ. If there exist ω0, ν0 ∈ Γ such that the following hold:

(i) ω0 ≤ G(ω0, ν0) and ν0 ≥ G(ν0, ω0);
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(ii) δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞;

then G has a CFP (ω, ν) ∈ Γ2; that is, ω = G(ω, ν) and ν = G(ν, ω).

Proof. The proof is essentially the same as the proof of Theorem 2. Hence, we will skip the
proof.

We will now present examples to support our major conclusion.

Example 1. Let Γ = [0, 1]. Let Ψ : Γ × Γ → [0, ∞] be given by Ψ(ω, ν) = (ω − ν)2.
Then, (Γ, Ψ) is a subordinate semimetric space to ξ(t) = t, t ∈ [0, ∞].
Consider the subordinate semimetric space on (Γ2, Ψ+), where

Ψ+((ω, ν), (µ, λ)) = Ψ(ω, µ) + Ψ(ν, λ).

Define G : Γ2 → Γ as G(ω, ν) =

{
0, if 2ω ≤ ν;
2ω−ν

5 , otherewise.

1. G has the MM property.

(MM-1) Let ω1 ≤ ω2. For all ν ∈ Γ, consider the following.
Since 2ω1 − ν ≤ 2ω2 − ν, then G(ω1, ν) ≤ G(ω2, ν).
Thus, G is monotonically non-decreasing in its first component.

(MM-2) Let ν1 ≤ ν2. For all ω ∈ Γ, if ν2 < 2ω, consider the following.
Since 2ω − ν1 ≥ 2ω − ν2, then G(ω, ν1) ≥ G(ω, ν1).
If ν2 ≥ 2ω, then G(ω, ν1) = G(ω, ν1) = 0.
Thus, for all ω ∈ Γ, G(ω, ν1) ≥ G(ω, ν1).
Thus, G is monotonically non-increasing in its second component.

2. δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞.
Let (ω0, ν0) = (1, 0). Then,

ω1 = G(ω0, ν0) = G(1, 0) =
2
5
≤ 1 = ω0 and ν1 = G(ν0, ω0) = G(0, 1) = 0 ≥ 0 = ν0.

Also, ω2 = G2(ν0, ω0) = G(ω1, ν1) = G(
2
5

, 0) =
4
25

= (
2
5
)2 ≤ 2

5
= ω1 and

ν2 = G2(ν0, ω0) = G(ν1, ω1) = G(0,
2
5
) = 0 ≥ 0 = ν1.

Thus, Gn(ω0, ν0) =

(
2
5

)n
, and Gn(ν0, ω0) = 0.

Thus, δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞.
3. G satisfies the contraction condition.

Let (ω, ν), (µ, λ) ∈ Γ2 with ω ≥ µ and ν ≤ λ.

(a) Suppose ω = µ = 0. Then, for all ν, λ ∈ Γ, we have Ψ(G(ω, ν), G(µ, λ)) = 0. Hence,

Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) = Ψ(G(ν, ω), G(λ, µ))

= Ψ(
2ν

5
,

2λ

5
)

=

(
2ν

5
− 2λ

5

)2

=
4

25

[
(ν − λ)2 + (ω − µ)2

]
≤ 4

25
[Ψ(ω, µ) + Ψ(ν, λ)]

≤ 4
25

Ψ+((ω, ν), (µ, λ)).



Symmetry 2024, 16, 499 12 of 16

(b) For ν = λ = 0, then, similarly, Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) ≤
4

25 Ψ+((ω, ν), (µ, λ)).
(c) For µ = 0, ω ̸= 0, and ν = 0, λ ̸= 0, in a similar way, we have

Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) ≤ 4
25

Ψ+((ω, ν), (µ, λ)).

(d) For (ω, ν), (µ, λ) ∈ Γ2 with ω ≥ µ and ν ≤ λ and µ ̸= 0 and ν ̸= 0, note that
(a − b)2 ≤ 2(a2 + b2), a, b ∈ R. We then have

Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) = Ψ
(

2ω − ν

5
,

2µ − λ

5

)
+ Ψ

(
2ν − ω

5
,

2λ − µ

5

)
=

(
2ω − ν

5
− 2µ − λ

5

)2
+

(
2ν − ω

5
− 2λ − µ

5

)2

=

(
2(ω − µ)

5
− (ν − λ)

5

)2

+

(
2(ν − λ)

5
− (ω − µ)

5

)2

≤ 2
[

4(ω − µ)2

25
+

(ν − λ)2

25

]
+ 2

[
4(ν − λ)2

25
+

(ω − µ)2

25

]
= 2

[
(ω − µ)2

5
+

(ν − λ)2

5

]
=

2
5

[
(ω − µ)2 + (ν − λ)2

]
≤ 4

25
[Ψ(ω, µ) + Ψ(ν, λ)]

≤ 4
25

Ψ+((ω, ν), (µ, λ)).

Thus, G satisfies the contraction condition.
Hence, the point (0, 0) is the only coupled fixed point of G.

Example 2. Let Γ = [0, 1]. Let Ψ : Γ × Γ → [0, ∞] be given by

Ψ(ω, ν) = Ψ(ν, ω) =


n2, if (ω, ν) =

(
1
n , 0

)
, n ∈ N;

n, if (ω, ν) =
(

r
n(r+1) , 0

)
, n, r ∈ N;

(x − y)2, otherewise.
Let m ∈ N.
Note that lim

n→∞
Ψ
(

1
m , n

m(n+1)

)
= lim

n→∞

(
1
m − n

m(n+1)

)2
= 0, and

lim
n,r→∞

Ψ
(

n
m(n + 1)

,
r

m(r + 1)

)
= lim

n,r→∞

(
n

m(n + 1)
− r

m(r + 1)

)2
= 0.

Thus, the sequence
{

n
m(n+1)

}
n∈N

is an infinite Cauchy sequence that is convergent to 1
m .

Now, suppose there is a c > 0 such that

m2 = Ψ
(

1
m

, 0
)
≤ c lim sup

n→∞
Ψ
(

n
m(n + 1)

, 0
)
= cm,

then c ≥ m for all m ∈ N. Hence, (Γ, Ψ) is not an RS-space. Note that (Γ, Ψ) is subordinately

semimetric to ξ(t) =
{

t, 0 ≤ t ≤ 1;
t4, t > 1.

Let s be a real number such that s > 1.

Define G : Γ2 → Γ by G(ω, ν) =


0, if ω ≤ ν, ω = 1

n , ν = 0, n ∈ N
or ω = r

n(r+1) , ν = 0, n, r ∈ N ;
ω−ν

s , otherewise.



Symmetry 2024, 16, 499 13 of 16

1. G has MM property.

(MM-1) Let ω1 ≤ ω2. For all ν ∈ Γ, consider the following.
Since ω1−ν

s ≤ ω2−ν
s , then G(ω1, ν) ≤ G(ω2, ν).

Thus, G is monotonically non-decreasing in its first component.
(MM-2) Let ν1 ≤ ν2. For all ω ∈ Γ, if ν2 < ω, consider the following.

Since ω−ν1
s ≥ ω−ν2

s , then G(ω, ν1) ≥ G(ω, ν1).
If ν2 ≥ ω, then G(ω, ν1) = G(ω, ν1) = 0.
Thus, for all ω ∈ Γ, G(ω, ν1) ≥ G(ω, ν1).
Thus, G is monotonically non-increasing in its second component.

2. δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞.
Let (ω0, ν0) = (1, 0).

ω1 = G(ω0, ν0) = G(1, 0) =
1
s
≤ 1 = ω0 and ν1 = G(ν0, ω0) = G(0, 1) = 0 ≥ 0 = ν0.

Also, ω2 = G2(ν0, ω0) = G(ω1, ν1) = G(
1
s

, 0) =
1
s2 = (

1
s
)2 ≤ 1

s
= ω1 and

ν2 = G2(ν0, ω0) = G(ν1, ω1) = G(0,
1
s
) = 0 ≥ 0 = ν1.

Thus, Gn(ω0, ν0) =
(

1
s

)n
and Gn(ν0, ω0) = 0.

Thus, δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞.
3. G satisfies the contraction condition.

Let (ω, ν), (µ, λ) ∈ Γ2 with ω ≥ µ and ν ≤ λ.

(a) Suppose ω = µ = 0. Then, for all ν, λ ∈ Γ, we have Ψ(G(ω, ν), G(µ, λ)) = 0. Hence,

Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) = Ψ(G(ν, ω), G(λ, µ))

= Ψ(
ν

s
,

λ

s
)

=

(
ν

s
− λ

s

)2

=
1
s2

[
(ν − λ)2 + (ω − µ)2

]
≤ 1

s2 [Ψ(ω, µ) + Ψ(ν, λ)]

≤ 1
s2 Ψ+((ω, ν), (µ, λ)).

(b) For ν = λ = 0, similarly, Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) ≤ 1
s2 Ψ+

((ω, ν), (µ, λ)).
(c) For µ = 0, ω ̸= 0 and ν = 0, λ ̸= 0, in a similar way, we have

Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) ≤ 1
s2 Ψ+((ω, ν), (µ, λ)).

(d) For (ω, ν), (µ, λ) ∈ Γ2 with ω ≥ µ and ν ≤ λ and µ ̸= 0 and ν ̸= 0, note that
(a − b)2 ≤ 2(a2 + b2), a, b ∈ R. We then have
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Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) = Ψ
(

ω − ν

s
,

µ − λ

s

)
+ Ψ

(
ν − ω

s
,

λ − µ

s

)
=

(
ω − ν

s
− µ − λ

s

)2
+

(
ν − ω

s
− λ − µ

s

)2

=

(
(ω − µ)

s
− (ν − λ)

s

)2

+

(
(ν − λ)

s
− (ω − µ)

s

)2

≤ 2
[
(ω − µ)2

s2 +
(ν − λ)2

s2

]
+ 2

[
(ν − λ)2

s2 +
(ω − µ)2

s2

]
= 2

[
2(ω − µ)2

s2 +
2(ν − λ)2

s2

]
=

4
s2

[
(ω − µ)2 + (ν − λ)2

]
≤ 4

s2 [Ψ(ω, µ) + Ψ(ν, λ)]

≤ 4
s2 Ψ+((ω, ν), (µ, λ)).

Thus, G satisfies the contraction condition.
Hence, the point (0, 0) is the only coupled fixed point of G.

Example 3. Let Γ = R∪ {∞,−∞}. Let Ψ : Γ × Γ → [0, ∞] be given by

Ψ(ω, ν) = Ψ(ν, ω) =


n2, if (ω, ν) =

(
1
n , 0

)
, n ∈ N;

n, if (ω, ν) =
(

r
n(r+1) , 0

)
, n, r ∈ N;

0, if (ω, ν) = (∞, ∞), or (ω, ν) = (−∞,−∞) ;
(x − y)2, otherewise.

Let m ∈ N.
Note that lim

n→∞
Ψ
(

1
m , n

m(n+1)

)
= lim

n→∞

(
1
m − n

m(n+1)

)2
= 0, and

lim
n,r→∞

Ψ
(

n
m(n + 1)

,
r

m(r + 1)

)
= lim

n,r→∞

(
n

m(n + 1)
− r

m(r + 1)

)2
= 0.

Thus, the sequence
{

n
m(n+1)

}
n∈N

is an infinite Cauchy sequence that is convergent to 1
m .

Now, suppose there is a c > 0 such that

m2 = Ψ
(

1
m

, 0
)
≤ c lim sup

n→∞
Ψ
(

n
m(n + 1)

, 0
)
= cm,

then c ≥ m for all m ∈ N. Hence, (Γ, Ψ) is not an RS-space. Note that (Γ, Ψ) is subordinately

semimetric to ξ(t) =
{

t, 0 ≤ t ≤ 1;
t2, t > 1.

Let s be an irrational real number such that s > 3+
√

5
2 > 5

2 . Note that s2 − 3s + 1 > 0, if

s > 3+
√

5
2 ; hence, 2s − 1 < s2 − s.

Define G : Γ2 → Γ by G(ω, ν) =

{
0, if ω = ν = ∞ or ω = ν = −∞ ;
ω−ν

s , otherwise.

1. G has MM property.

(MM-1) Let ω1 ≤ ω2. For all ν ∈ Γ, consider the following.
Since ω1−ν

s ≤ ω2−ν
s , then G(ω1, ν) ≤ G(ω2, ν).
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Thus G, is monotonically non-decreasing in its first component.
(MM-2) Let ν1 ≤ ν2. For all ω ∈ Γ,

Since ω−ν1
s ≥ ω−ν2

s , then G(ω, ν1) ≥ G(ω, ν1).
Thus, for all ω ∈ Γ, G(ω, ν1) ≥ G(ω, ν1).
Thus, G is monotonically non-increasing in its second component.

2. δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞.
Let (ω0, ν0) = (−s, s − 1). Then,

ω1 = G(ω0, ν0) = G(−s, s − 1) =
−2s + 1

s
>

−s2 + s
s

= −s + 1 > −s = ω0

and

ν1 = G(ν0, ω0) = G(s − 1,−s) =
2s − 1

s
<

s2 − s
s

= s − 1 = ν0.

Also,

ω2 = G2(ν0, ω0) = G(ω1, ν1) = G(
−2s + 1

s
,

2s − 1
s

) =
−4s + 2

s2 =
2
s

(
−2s + 1

s

)
=

2
s

ω1 >
−2s + 1

s
= ω1

and

ν2 = G2(ν0, ω0) = G(ν1, ω1) = G(
2s − 1

s
,
−2s + 1

s
) =

4s − 2
s2 =

2
s

(
2s − 1

s

)
=

2
s

ν1 <
2s − 1

s
= ν1.

Thus,

Gn(ω0, ν0) =

(
2
s

)n−1
ω1, Gn(ν0, ω0) =

(
2
s

)n−1
ν1.

Thus, δG(Ψ, (ω0, ν0)) < ∞ and δG(Ψ, (ν0, ω0)) < ∞.
3. G satisfies the contraction condition.

Let (ω, ν), (µ, λ) ∈ Γ2 with ω ≥ µ and ν ≤ λ.
Note that (a − b)2 ≤ 2(a2 + b2), a, b ∈ R. We then have

Ψ(G(ω, ν), G(µ, λ)) + Ψ(G(ν, ω), G(λ, µ)) = Ψ
(

ω − ν

s
,

µ − λ

s

)
+ Ψ

(
ν − ω

s
,

λ − µ

s

)
=

(
ω − ν

s
− µ − λ

s

)2
+

(
ν − ω

s
− λ − µ

s

)2

=

(
(ω − µ)

s
− (ν − λ)

s

)2

+

(
(ν − λ)

s
− (ω − µ)

s

)2

≤ 2
[
(ω − µ)2

s2 +
(ν − λ)2

s2

]
+ 2

[
(ν − λ)2

s2 +
(ω − µ)2

s2

]
= 2

[
2(ω − µ)2

s2 +
2(ν − λ)2

s2

]
=

4
s2

[
(ω − µ)2 + (ν − λ)2

]
≤ 4

s2 [Ψ(ω, µ) + Ψ(ν, λ)]

≤ 4
s2 Ψ+((ω, ν), (µ, λ)).

Thus, G satisfies the contraction condition.
Hence, the point (0, 0) is a coupled fixed point of G. Also, the point (∞,−∞) is a coupled

fixed point of G as well.
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