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Abstract: Whether to use face priors in the face super-resolution (FSR) methods is a symmetry
problem.Various face priors are used to describe the overall and local face features, making the
generation of super-resolution face images expensive and laborious. FSR methods that do not
require any prior information tend to focus too much on the local features of the face, ignoring
the modeling of global information. To solve this problem, we propose a dual-path facial image
super-resolution network (SwinDPSR) fused with Swin Transformer. The network does not require
additional face priors, and it learns global face shape and local face components through two
independent branches. In addition, the channel attention ECA module is used to aggregate the global
and local face information in the above dual-path sub-networks, which can generate corresponding
high-quality face images. The results of face super-resolution reconstruction experiments on public
face datasets and a real-scene face dataset show that SwinDPSR is superior to previous advanced
methods both in terms of visual effects and objective indicators. The reconstruction results are
evaluated with four evaluation metrics: peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), learned perceptual image patch similarity (LPIPS), and mean perceptual score (MPS).

Keywords: super-resolution; Transformer; attention

1. Introduction

Face super-resolution (FSR) represents a specialized endeavor within the domain of
image super-resolution (SR), specifically targeting the enhancement of facial imagery. It
pertains to the process of reconstructing a high-resolution (HR) representation of a face from
a provided low-resolution (LR) counterpart. This approach significantly enhances the visual
fidelity of facial images by reinstating intricate details often lost in lower-quality renditions.
Given the inherent symmetry commonly found in facial structures, FSR methodologies
heavily leverage global contextual cues to refine the reconstruction process, thereby yielding
more faithful representations of the original face.

Various deep learning-based FSR methods have emerged, categorized into three
groups: general, prior-information-guided, and attribute-constrained approaches. General
methods focus on streamlined neural networks for face super-resolution without specific
facial features. For instance, BCCNN [1] by Zhou et al. introduced a CNN for LR to HR face
image mapping. CDFH [2] by Liu et al. is a cascaded model that first denoises and restores
low-frequency information, then compensates for high-frequency details. SPARNet [3]
by Chen et al. incorporates spatial attention in the generator and employs a multi-scale
discriminator for enhanced image quality. PCRCN [4] by Liu et al. uses progressive
upsampling for gradual high-resolution image acquisition. DBTC [5] by Shi et al. combines
Transformer and CNN for improved detail recovery. SCGAN [6] introduces semi-cycled
generative adversarial networks to address real-world face super-resolution challenges.
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While most general methods employ CNNs, limited by their local receptive fields, they
struggle to model global information, necessitating improvements in face reconstruction
naturalness and fidelity.

For prior-information-guided FSR methods, FSRNet [7] by Chen et al. utilizes fa-
cial image characteristics to construct a prior-knowledge-extraction network, extracting
geometric prior information (facial parsing map) to enhance super-resolution effects. MS-
FSR [8] introduces a novel face prior (face boundary) for progressive LR image processing,
employing cascaded sub-networks for upsampling. JASRNet [9] by Yin et al. leverages
prior estimates’ correlation for face super-resolution, while FSRGFCH [10] integrates the
prior estimation branch (PEB) directly into the super-resolution branch (SRB), splitting
the PEB into distinct segments. EIPNet [11] by Kim et al. incorporates a lightweight edge
block and identity information to mitigate distortion, preserving identity integrity via an
identity loss function. Notably, the reconstruction performance of prior-information-guided
FSR methods hinges on the quality of prior information, which can be resource-intensive
to generate.

In addition to network architecture design and prior information utilization, face
super-resolution incorporates face attribute data, known as the attribute-constrained FSR
approach. Face attributes, as semantic data, provide valuable insights, such as whether
an individual wears glasses, enhancing the super-resolution process. AGCycleGAN [12]
replicates attribute vectors to match LR image dimensions, generating attribute maps
concatenated with LR images for super-resolution. However, Lee et al. suggest poten-
tial disparities between LR image data and attributes, prompting the development of
AACNN [13], featuring a feature extraction network, super-resolution model, and dis-
criminator. In contrast, ATENet [14] and its enhanced version, ATSENet [15], employ
an attribute transfer network to upsample LR features and fuse them with attributes,
generating an upsampled LR image with consistent attributes. Reconstruction efficacy
in attribute-constrained FSR methods directly hinges on face attribute accuracy, shaping
reconstruction outcomes.

Making full use of the information that face is symmetrical, the global information
of face image is introduced for image reconstruction. In this paper, we propose a new
dual-path face super-resolution network fused with Swin Transformer, called SwinDPSR,
to improve the naturalness and realism of face reconstruction results. The network learns
global face shape and local face components through two independent branches. Specif-
ically, we first construct an encoder to extract high-dimensional features of LR images,
and take the high-dimensional features as the input of the local representation path (LRP)
and global representation path (GRP). In the LRP, we use the spatial attention mechanism to
construct the facial attention unit (FAU), which focuses on the local information of the face.
In our approach, the GRP utilizes the self-attention mechanism from Swin Transformer
to construct the Residual Swin Transformer Block (RSTB), capturing global face features
without relying on CNN architectures like in [16]. A fusion and reconstruction module
then merges features from the LRP and GRP, feeding the fused vector into the decoder for
high-resolution face image generation. Training occurs through end-to-end supervision,
combining multiple loss functions in a weighted sum. Experimental results, as depicted in
Figure 1, demonstrate superior global information modeling compared to existing methods,
thereby enhancing the quality of super-resolution face images. In summary, our main
contributions are as follows:

• We propose a dual-path face super-resolution network fused with Swin Transformer,
called SwinDPSR, to perform face super-resolution reconstruction by fusing local
detail features and global face features. The proposed global representation path
utilizes Transformer’s self-attention mechanism to recover face global information.
This is followed by feature fusion with a local representation path composed of facial
attention units, thereby improving the representation ability and SR performance of
the network.
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• We jointly train the network with pixel loss, style loss, and SSIM loss to promote
network convergence from the pixel level, perception level, and image structure
level, respectively.

• In addition to traditional SR evaluation metrics like PSNR and SSIM, we incorporate
learned perceptual image patch similarity (LPIPS), mean perceptual score (MPS),
and identity similarity as network performance indicators. LPIPS is computed using
AlexNet to measure the L2 distance between SR and HR image eigenvectors. Identity
similarity, calculated using FaceNet, quantifies the cosine similarity between SR and
HR image eigenvectors.

(b) (c) (d) (e) (f) (g) (h) (i)(a) (b) (c) (d) (e) (f) (g) (h) (i)(a)

Figure 1. Visual results of different super-resolution methods using upscale factor of 8: (a) Ground
truth; (b) Bicubic; (c) SRGAN; (d) FSRNet; (e) FSRGAN; (f) AACNN; (g) SPARNet; (h) EIPNet;
(i) Ours.

2. Related Works
2.1. Attention Networks

The attention mechanism aims to scan the entire image, identifying key attention areas
while suppressing irrelevant information, thereby enhancing the efficiency and accuracy
of visual information processing. In recent years, this mechanism has found widespread
application in high-level vision tasks like image segmentation and enhancement.

In the field of image segmentation, DANet [17], proposed by Fu et al., adaptively
integrates local features and their global dependencies, and realizes scene segmentation
task by capturing rich contextual correlations. Tao et al. [18] found that the predictions of
network models at certain scales are better at resolving specific failure modes, resulting in
better predictions. Therefore, they proposed an attention-based method to combine multi-
scale information for segmentation, which improves the effect of semantic segmentation.
Traditional attention mechanisms ignore the implicit semantic segmentation subtask and
are constrained by the grid structure of convolution kernels. The SANet [19], proposed by
Zhong et al., utilizes an efficient squeeze-and-attention (SA) module to account for the two
salient features of segmented pixel-group attention and pixel-level prediction.

In the field of image enhancement, Zhang et al. [20] integrated channel attention into
a deep residual network for super-resolution. Qin et al. proposed FFA-Net [21] to directly
restore haze-free images, featuring channel and pixel attention for enhanced flexibility
in processing varied information types. Tian et al.’s ADNet [22] employs sparse, feature
enhancement, attention, and reconstruction blocks for image denoising. The attention block
extracts hidden noise information from the background, while the feature enhancement and
attention blocks collaboratively streamline noise model training and reduce complexity.

In the field of face super-resolution reconstruction, spatial-attention-guided convo-
lutional layers can adaptively guide features related to key facial structures and pay less
attention to those regions that are not rich in features. In order to better capture key face
structures, for the local representation path (LRP), we utilize a Facial Attention Unit (FAU)
to focus on face local information.

2.2. Vision Transformer

Transformer [23], originating from natural language processing (NLP), stacks multi-
head self-attention and feed-forward MLP layers to capture long-range correlations among
words. Inspired by its success, researchers have explored Transformer’s advantages in
various visual tasks, emphasizing global feature extraction. For instance, Dosovitskiy
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et al. [24] introduced Vision Transformer, treating 16×16 image patches as a sequence and
predicting image classes via a unique class token. Swin Transformer [25] combines CNN
and Transformer strengths, utilizing local attention for large-scale image handling and a
shifted-window scheme for long-term dependency modeling. SwinIR [26] employs residual
Swin Transformer blocks (RSTBs) for deep feature extraction, achieving notable perfor-
mance across diverse image denoising tasks. Swin-Unet [27] applies Swin Transformer in a
UNet architecture for medical image segmentation, facilitating local-global semantic feature
learning. DehazeFormer [28] enhances Swin Transformer-based single-image dehazing
by improving normalization, activation functions, and spatial information aggregation,
effectively removing uneven haze from real remote sensing datasets.

While pure Transformer networks excel at extracting global representations, they may
struggle to capture local fine-grained details in images. To address this limitation, some
approaches integrate CNNs into Vision Transformer, leveraging their unique local modeling
and translation invariance capabilities. For instance, Carion et al. [29] employed a cascaded
CNN and Transformer for end-to-end object detection. Similarly, Yang et al. [30] combined
a CNN-based learnable texture extraction module with a Transformer-based embedding
module for texture transfer and synthesis tasks, achieving visually objective results. In this
study, we propose a hybrid face super-resolution reconstruction network that combines a
spatial-attention-guided CNN with a self-attention-guided Transformer. This architecture
effectively restores local face details while capturing the global face structure.

3. Proposed Method

In this section, we introduce SwinDPSR, a novel face super-resolution approach that
integrates a dual-path architecture with Swin Transformer. The network is structured
with an encoder–decoder architecture, which systematically extracts high-dimensional
features of the face. It employs a local representation path, leveraging spatial attention,
and a global representation path, utilizing Swin Transformer, to capture detailed facial
features and global characteristics, respectively. Subsequently, we provide a comprehen-
sive overview of SwinDPSR, including its overall structure, internal module architecture,
and optimization strategy.

3.1. Overall Architecture

The overall architecture of SwinDPSR is shown in Figure 2. It consists of five parts:
encoder, global representation path, local representation path, fusion and reconstruction
module, and decoder. The input and output of the network are taken as IIR and ISR. First,
a shallow feature extractor composed of 3 × 3 convolutional layers is used to extract a
shallow feature Fshallow containing rich structural information from the input image.

Fshallow = H3×3
Conv(ILR) (1)

where H3×3
Conv is a convolutional layer with a convolution kernel size of 3 × 3. Then, use

FShallow as the input of the encoder to extract high-dimensional features FEncoder from the
input image:

FEncoder = HEncoder(FShallow) (2)

HEncoder serves as the downsampling encoder, while FEncoder is inputted into both the global
representation path and local representation path to extract global structure and local
details, respectively.

Fglobal = Hglobal(FEncoder), Flocal = Hlocal(FEncoder) (3)

where Hglobal and Hlocal are functions of the global representation path and local represen-
tation path, respectively. Fglobal and Flocal denote the global features extracted by the global
representation path and the local features extracted by local representation path, respec-
tively. After obtaining the global and local features, feature fusion is performed using the
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fusion and reconstruction module, which utilizes two ECA modules and a convolutional
layer to fuse Fglobal and Flocal . The fused feature is expressed as

Fgl = HECA(H3×3
Conv(HECA(HCat(F f t

global , F f t
local)))) (4)

where HCat represents the splicing function in the channel dimension. After obtaining Fgl ,
the decoder needs to perform an upsampling operation to obtain the feature FDecoder.

FDecoder = HDecoder(Fgl) (5)

where HDecoder() represents the upscale decoder. Finally, the enlarged features are recon-
structed by convolutional layers, and the target high-resolution image ISR is output.

ISR = H3×3
Conv(FDecoder) (6)

where H3×3
Conv is used to output RGB three-channel images.
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Figure 2. The overall architecture of SwinDPSR, which consists of five components: encoder, global
representation path composed of RSTB, local representation path composed of Facial Attention Units
(FAUs), fusion and reconstruction module (FRM), and decoder.

Algorithm 1 gives the algorithm process of SwinDPSR.

Algorithm 1 Training of SwinDPSR

Require: Set the batch size to 16, the amplification factor to 8, the epoch to 20, the network
initialization method to Xavier, the learning rate to 4× 10−4, the learning rate decay
strategy to linear decay, and the parameters β1 in the Adam optimizer to 0.9 and β2 to
0.99.

1: iter ← 0
2: repeat
3: high_dim_ f eatures← Encoder(low_resolution_image)
4: local_ f eatures← LPR(high_dim_ f eatures)
5: global_ f eatures← GRP(high_dim_ f eatures)
6: Learns global face shape and local face components through two independent

branches.
7: f used_ f eatures← FusionAndReconstructionModule(local_ f eatures, global_ f eatures)
8: high_resolution_image← Decoder( f used_ f eatures)
9: Output: Generate high_resolution_image

10: Calculate the loss update parameter
11: until end of Training
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3.2. Details of SwinDPSR
3.2.1. Local Representation Path

Taking inspiration from SPARNet [3], our attention branch requires the extraction of
multi-scale features. To achieve this, we introduce a Facial Attention Unit (FAU). Illustrated
in Figure 3, the FAU utilizes an hourglass block and an additional Conv layer to generate
attention maps. The hourglass block is renowned for its ability to capture information
across multiple scales [31], demonstrating effectiveness in face analysis tasks such as face
alignment [32] and face parsing [7]. Through the stacking of FAUs, critical features for
facial SR images are continuously enhanced.

LeakyReluConv Batch Norm

Elementwise multiplyElementwise add Sigmoid function

Fj

Hourglass Block

Fj-1 Fatt

Fatt'   
Conv Block

LeakyReluConv Batch Norm

Elementwise multiplyElementwise add Sigmoid function

Fj

Hourglass Block

Fj-1 Fatt

Fatt'   
Conv Block

Figure 3. The architecture of the Face Attention Unit (FAU).

Taking the j-th FAU as an example, the input features and output features of the
FAU are taken as Fj−1 ∈ RCj−1×Hj−1×Wj−1 and Fj ∈ RCj×Hj×Wj. First, a convolutional block
consisting of batch normalization layers, LeakyRelu activation layers, and Fatt ∈ RCj×Hj×Wj

convolutional layers is used to extract the features containing higher-dimensional informa-
tion from the input features.

Fatt = HCB(Fj−1) (7)

where HCB() denotes a convolutional block consisting of batch normalization layers,
LeakyRelu activation layers, and convolutional layers with a kernel size of 3 × 3. We then
use Fatt as the input of the hourglass block to extract face attention features Fatt′ ∈ R1×Hj×Wj

from the original features.
Fatt′ ∈ Rl×Hj×Wj (8)

where HHB() represents the hourglass block, H3×3
Conv is a convolutional layer with a kernel

size of 3 × 3, σ is the sigmoid function; then, use Fatt′ , Fatt, and Fj−1 to perform element-wise
multiplication and element-wise addition to obtain the output feature Fj.

Fj = Fj−1 + Fatt′ ⊗ Fatt (9)
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where ⊗ is element-wise multiplication. Similarly, we also use hourglass blocks to build
the encoder and decoder (shown in Figure 4). The output feature Fj becomes

Fj = Hscale(Fj−1) + Fatt′ ⊗ Fatt (10)

where Hscale() represents the scale Conv layer. The downscale Conv in the encoder is a
normal convolution layer with a step size of 2, and the upscale Conv in the decoder first
performs nearest-neighbor upsampling, and then, performs the convolution operation,
which helps to avoid checkerboard artifacts [33].

DownScale Conv

Fj

Hourglass Block

Fj-1

Fatt
Fatt' Conv Block

(A)

UPScale Conv

Fj

Hourglass Block

Fj-1

Fatt

Fatt'  Conv Block

(B)

DownScale Conv

Fj

Hourglass Block

Fj-1

Fatt
Fatt' Conv Block

(A)

UPScale Conv

Fj

Hourglass Block

Fj-1

Fatt

Fatt'  Conv Block

(B)

Figure 4. The architecture of encoder and decoder: (A) shows the detailed structure of encoder;
(B) shows the detailed structure of decoder.

3.2.2. Global Representation Path

We use Swin Transformer to construct the global representation path, as shown in
Figure 5A, RSTB is a residual block composed of Swin Transformer layers (STLs) and
convolutional layers. Given the input feature Fi,0 of the i-th RSTB, then the intermediate
features Fi,1, Fi,2, ... Fi,J , are expressed as

Fi,j = HSTLi,j(Fi,j−1), j = 1, 2, . . . J (11)

where HSTLi,j() represents the j-th STL in the i-th RSTB, then the output feature vector Fi,out
of the i-th RSTB is expressed as

Fi,out = H3×3
Conv(Fi,J) + Fi,0 (12)

where H3×3
Conv() represents a convolutional layer with a convolution kernel size of 3 × 3.

The Shifted Transformer Layer (STL) differs from the original Vision Transformer [24]
by employing a shifted-window scheme, which enhances efficiency by confining self-
attention computation to non-overlapping local windows while facilitating cross-window
connections. This layered architecture offers scalability across different scales and maintains
linear computational complexity relative to image size. The STL is shown in Figure 5B,
and the propagation process of the input feature X ∈ RH×W×C is

X = MSA(LN(X)) + X

X = MLP(LN(X)) + X
(13)

where MSA() is the multi-head self-attention layer, and MLP() is the multi-layer percep-
tron layer. A LayerNorm (LN) layer is added before the MSA and MLP, and both modules
use residual connections.
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Figure 5. The architecture of RSTB. (A) Shows the overall structure of an RSTB, which contains
six Swin Transformer layers (STLs) and one convolution layer. (B) Shows the detailed structure of
an STL.

The multi-head self-attention layer first divides the input into N× N non-overlapping
local windows, and reshapes the input feature size to HW

N2 × N2 × C, where HW
N2 is the total

number of windows. Then, local self-attention is computed for each window separately.

For feature X ∈ R
HW
N2 ×N2×C, the query, key and value matrices Q, K, and V are computed as

Q = XαQ, K = XαK, V = XαV (14)

where αQ, αK, and αV represent the weight parameter matrix that needs to be trained

and updated. Q, K, V ∈ R
HW
N2 ×M×N2× C

M , where M is the number of self-attention heads in
the multi-head self-attention layer. Classical Transformer [21,22] uses either deterministic
positional encoding or learnable positional encoding. Compared with absolute positional
encoding, relative positional encoding [34] is able to learn stronger “relationships” between
local content, bringing important performance improvements in the case of large-scale
dataset training, and has been widely used [25,35]. We therefore add relative position
encoding to the Transformer, and calculate the attention matrix through the self-attention
mechanism in the local window. The attention matrix looks like this:

Attention(Q, K, V) = softmax
(

QKT
√

d

)
+ E)V (15)

where KT is the transpose of the third and fourth dimensions of the K matrix, d = C
M ,

and E is a learnable relative positional encoding, which is added to the attention map as a
bias item. To achieve the interaction between windows, we alternately use regular-window
partitioning and shifted-window partitioning to achieve cross-window connections, where
shifted-window partitioning shifts features by (N

2 , N
2 ) pixels before partitioning. Next,

a multi-layer perceptron is used for further feature transformation, which consists of two
fully connected layers and the GELU nonlinear activation function. To sum up, the global
representation path uses the global receptive field of Swin Transformer to model the
global context. Such a design can improve the issue of the network only focusing on local
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information, and make the network pay attention to the global information of the face at
the same time.

3.2.3. ECA Module

In recent years, channel attention mechanisms have demonstrated significant potential
in enhancing deep convolutional neural network performance. SENet, introduced by Hu
et al. [36], utilizes fully connected layers to predict channel attention weights and alleviate
attention to redundant channels. However, Wang et al. [37] noted that SENet’s dimension-
ality reduction may introduce side effects to the channel attention mechanism, increasing
network complexity by capturing dependencies among all channels. To strike a balance
between performance and complexity, they proposed an Efficient Channel Attention (ECA)
module. This module, with few parameters, achieves substantial performance gains by
employing one-dimensional convolution for local cross-channel interaction without dimen-
sionality reduction. Moreover, they devised a method to adaptively select the size of the
1D convolution kernel, determining the extent of local cross-channel interactions.

This paper uses the ECA module to focus on the difference in channel importance
between the spatial attention module and the self-attention module, and also reduces the
attention to redundant channels during feature fusion. The structure of the ECA module
is shown in Figure 6, and GAP in the figure represents the global average pool layer.
Assuming that the input feature of the ECA module is Finput, then the output feature Foutput
of the ECA module is expressed as

Foutput = ϕ(HConv(HGAP(Finput)))⊗ Finput (16)

In the formula, ϕ() denotes the sigmoid function. After Finput undergoes global
average pooling via HGAP(), it undergoes one-dimensional convolution HConv() to establish
inter-channel connections among neighboring local channels. The range of local cross-
channel interaction is determined by the convolution kernel size of the one-dimensional
convolution, which correlates positively with the channel dimension of the input feature
Finput of the ECA module. Channel attention weights are derived by passing the output
feature of the one-dimensional convolution through the sigmoid function; subsequently,
the input features of the ECA module are element-wise multiplied by the channel attention
weights to obtain the output features Foutput.
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Figure 6. ECA module structure diagram.

3.3. Training and Loss Function

We train the network jointly with multiple loss functions, and the joint loss function is
defined as

l = αlpixel + βlssim + γlstyle (17)

In our experiments, we fixed α = 100, β = 10, and γ = 1. In image conversion tasks,
pixel loss serves as a measurement method relying on the disparity between the output
and real images. This metric computes the average absolute error between corresponding
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pixel pairs across both images, aiming to minimize discrepancies for greater similarity. It is
expressed as:

lpixel(IHR, ISR) =
1

NM
∥IHR − ISR∥ (18)

Pixel loss, utilizing L1 loss (mean absolute error), constrains the SR image to closely
match the HR image in pixel values. In practice, L1 loss demonstrates superior performance
and convergence compared to L2 loss. Given that PSNR definition correlates closely with
pixel-level differences, pixel loss directly maximizes PSNR, making it the most commonly
used loss function. However, pixel loss neglects image perception quality and texture
details, often resulting in perceptually unsatisfactory outcomes with diminished high-
frequency details. Similar to pixel loss, SSIM loss aims to enhance the structural similarity
of super-resolution images, operating on the principle that:

lssim(IHR, ISR) =
1
2
(1− SSIM(IHR − ISR)) (19)

In face super-resolution, style loss is commonly employed to enhance facial details
and visual quality, as seen in ASFFNet [38]. Both SR and HR images are passed through
a pre-trained network (e.g., VGGFace [39]) to obtain their respective features FSR and
FHR. Style loss, initially proposed in [40] for image style transfer, operates similarly to
perceptual loss as both are feature-level loss functions. Subsequently, their Gram matrices
are computed, and these matrices are utilized to calculate the loss, defined as:

lstyle(IHR, ISR) = ∥G(FHR)− G(ISR)∥2 (20)

where G() represents the operation of obtaining the feature Gram matrix. We use the above
three losses for joint training to accelerate the convergence of the network from multiple
perspectives, and then, improve the network performance to a certain extent.

4. Experiments
4.1. Datasets

Training set: We use the CelebA dataset [41] to train SwinDPSR. We first use
MTCNN [42] to detect faces in the original dataset (178 × 218), crop and align them,
and then resize them to 128 × 128 with bicubic interpolation as the HR training set. The LR
(16 × 16) training set is obtained by downsampling the corresponding HR images. This
yields approximately 202k image pairs. To avoid overfitting, we perform data augmenta-
tion by random horizontal flipping and image scaling (between 1.0 and 1.3). Test set: We
randomly select 200 and 100 images from the Helen dataset [43] and FFHQ dataset [44],
respectively, as the test set, and evaluate the image quality of the test set. For identity
similarity evaluation, we select low-resolution images of 130 people from the SCface surveil-
lance scene face dataset [45] as the test set to verify the effectiveness of the algorithm in
real scenes.

4.2. Implementation Details

The parameter settings of the SwinDPSR training are shown in Table 1. All codes are
written and tested in PyTorch [46] and Python.

Table 1. Hyperparameter settings for SwinDPSR.

Hyperparameter Value

Batch Size 16
Amplification Factor 8

Epoch 20
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Table 1. Cont.

Hyperparameter Value

Network Initialization Xavier
Learning Rate 4× 10−4

Learning Rate Decay Strategy Linear Decay
β1 (Adam Optimizer) 0.9
β2 (Adam Optimizer) 0.99

GPU Tesla V100
Environment PyTorch

4.3. Evaluation Metrics

The reconstruction results are assessed using four evaluation metrics: peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [47], learned perceptual image patch
similarity (LPIPS) [48], and mean perceptual score (MPS) [49]. PSNR and SSIM are con-
ventional metrics extensively employed in vision tasks like image enhancement. LPIPS
and MPS represent novel perceptual metrics for gauging image perceptual quality, with
smaller LPIPS values indicating higher perceptual similarity. MPS is the average of SSIM
and LPIPS. Its formula is as follows:

MPS = 0.5× (SSIM + (1− LPIPS)) (21)

Identity similarity measures how well identity information is preserved in super-
resolution faces. We first use the pre-trained FaceNet model [50] to extract identity feature
vectors for SR image and HR image faces, and then, calculate the cosine similarity between
the two feature vectors as the identity similarity.

4.4. Ablation Experiments and Discussion

In the ablation experiments, we trained SwinDPSR on the CelebA dataset [41] and
tested it on the Helen dataset [43]. During the test, a 16 × 16 low-resolution image was
used as input, and face image super-resolution reconstruction with an enlargement factor
of 8 was performed (SR× 8). Through the following experiments, it was finally determined
to set the number of FAUs to 16, the number of RSTBs and STLs was set to 6, and the
embedded channels of Transformer were set to 120, and the effectiveness of the two paths
and the joint loss was verified.

In order to verify the influence of FAUs in the local representation path on the network
performance, the experiment was carried out under the condition of removing the global
representation path, and the results are shown in Figure 7. The results show that as the
number of FAUs increases, although PSNR and SSIM gradually increase, the performance
gain gradually saturates and reaches a peak when the number of FAUs is 16. Therefore, we
chose 16 as the number of FAUs in the remaining experiments.

Figure 8A, Figure 8B, and Figure 8C, respectively, show the effects of the number of
RSTBs, the number of STLs and the number of embedded channels in the RSTBs on the
model performance under the premise that the number of FAUs is set to 16. The results
show that the PSNR and SSIM gradually increase with the increase in the number of RSTBs
and the number of STLs. The peak value is reached when the number of RSTBs is six.
Likewise, the PSNR and SSIM reach their peak when the number of embedded channels is
120. Therefore, in the remaining experiments, we choose six as the number of RSTBs, 120 as
the number of embedded channels, and in order to balance performance and model size,
we choose six as the number of STLs.
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Figure 7. Ablation experiments with different numbers of FAUs.
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Figure 8. Ablation experiments with different numbers of RSTBs, STLs, and embedded channels.

We conducted three experiments to assess the impact of the two paths in SwinDPSR.
The first experiment involved evaluating network performance after removing the global
representation path, while the second experiment evaluated performance after removing
the local representation path. The third experiment assessed the original SwinDPSR’s per-
formance. Results from these experiments are summarized in Table 1. Our findings indicate
two key points: firstly, removal of the local representation path significantly degrades
reconstruction performance, suggesting its importance in capturing facial local information;
secondly, the Swin Transformer-based global representation path notably enhances network
performance by capturing global facial structure information. In these experiments, the lo-
cal representation path contained 16 FAUs, while the global representation path comprised
six RSTBs and STLs each, with RSTBs featuring 120 embedded channels.

To demonstrate the impact of combining different loss functions on model perfor-
mance, we provide Table 2 to show the gradual improvement in each loss function on the
SR effect. It can be observed from Table 2 that although joint style loss training does not
help much in improving the three indicators of PSNR, SSIM, and MPS, it can improve
the LPIPS indicator to a certain extent. This is because style loss uses the Gram matrix
instead of the covariance matrix, making the feature statistics of the generated image similar
to the real image. Training with SSIM loss can improve the SSIM indicator to a certain
extent, because SSIM loss always pays attention to the structural similarity difference
between images.
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Table 2. Verifying the effect of the local and global representation paths. “SwinDPSR w/o local”
indicates that the local representation path is removed. “SwinDPSR w/o global” indicates that the
global representation path is removed.

PSNR SSIM LPIPS MPS

SwinDPSR w/o global 28.3417 0.8345 0.2020 0.8162
SwinDPSR w/o local 26.0894 0.7636 0.3018 0.7308

SwinDPSR 28.5689 0.8395 0.1855 0.8270

We investigated the impact of different channel attention modules on reconstruction
performance by integrating SE and ECA modules into the base network for feature fu-
sion. As shown in Table 3, while the SE module marginally enhances PSNR and SSIM
values, the ECA module outperforms it in enhancing network performance. This superi-
ority stems from the ECA module’s more effective extraction of channel features through
one-dimensional convolution, reducing the influence of redundant features on network
performance. Through these experiments, we conclude that SwinDPSR, when appropri-
ately stacked with spatial attention units and residual Transformer blocks, can effectively
enhance the reconstruction of structured images. The network primarily utilizes the spatial
attention module, with the self-attention module serving as an auxiliary to establish LR-to-
HR mapping. Furthermore, multi-loss joint training and the inclusion of an ECA channel
attention module further elevate super-resolution reconstruction performance.

Table 3. Ablation experiments for training with different loss functions.

PSNR SSIM LPIPS MPS

Lpix 28.5689 0.8395 0.1855 0.8270
Lpix_Lstyle 28.5984 0.8396 0.1817 0.8289

Lpix_Lstyle_Lssim 28.6326 0.8415 0.1828 0.8293

4.5. Comparison with State-of-the-Art Methods

To further verify its practicality, we compared our proposed method with the current
state-of-the-art methods, including SRGAN [51] and FSRGAN [7], based on generative
adversarial networks; SPARNet [3], based on general methods; FSRNet [7] and EIPNet [11],
based on prior information constraints; and AACNN [13], based on attribute information
constraints. These methods are conditionally similar to our experiments, so their SR results
are compared quantitatively and qualitatively. In addition, we also performed identity
similarity comparisons. We verify the effectiveness of the method proposed in this paper
on face super-resolution reconstruction through the following experiments.

4.5.1. Quantitative and Qualitative Comparison

As can be seen from Table 4, on the Helen test data set of 8 × SR, SwinDPSR is
obviously superior to these latest technologies in three indexes, but lower than the FSRGAN
method in LPIPS and MPS evaluation indices, because the FSRGAN method pays too much
attention to the perceived distance between images. Thus, the mapping at the pixel level is
ignored. Among these quantitative results, we can find that AACNN and FSRNet have not
achieved satisfactory results. The main reason for this result is that the architecture based
on attribute constraints and prior information constraints has high requirements on the
accuracy of prior information, and inaccurate prior information will seriously affect the
reconstruction effect. Although FSRGAN performs best in the LPIPS index, from the other
three indicators, FSRGAN only focuses on the perceived distance between LR image and
HR image, which can be proved by qualitative experiments, as shown in Figure 9.
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Table 4. Effectiveness of SE module and ECA module on PSNR and SSIM indicators.

PSNR SSIM LPIPS MPS

BaseLine 28.6326 0.8415 0.1828 0.8293
SEModule 28.6517 0.8429 0.1819 0.8304

ECAModule 28.7688 0.8449 0.1799 0.8325

HRSwinDPSR(Ours)SPARNetSRGANBicubic FSRNet AACNNLR(Input) FSRGAN EIPNet

×8

×4

×2

Figure 9. Qualitative results with state-of-the-art methods on Helen dataset. The resolution of the
input is 16 × 16 and the upscale factor is 8.

Figure 9 shows the qualitative results of different methods for 8 × SR on the Helen
test dataset. We can see that SRGAN does not take into account the special structure of the
face, so the reconstruction effect is poor. The results reconstructed by AACNN, FSRNet,
and EIPNet are indeed blurrier than the methods with better quantitative results. Com-
pared with the SwinDPSR reconstruction results, FSRNet, AACNN, SPARNet, and EIPNet
produce different degrees of distortion in the reconstruction of the glasses area in the first
image and the earring area in the second image. Although the faces in the third and fourth
images are not aligned, making face restoration difficult, SwinDPSR can reconstruct the eye
area and mouth area better than other methods. Although the reconstruction perception
effect of FSRGAN is good, the prior knowledge with low accuracy leads to serious loss
of face identity information. The excellent reconstruction results of SwinDPSR strongly
prove the advantage of Transformer in capturing the global facial structure. Compared
with existing methods, SwinDPSR is able to maintain the consistency of the facial structure.

From the quantitative experiments on the FFHQ dataset in Table 5, it can be seen that
SwinDPSR achieves overwhelming success in all evaluation indicators except the LPIPS
indicator, which proves that the proposed method has a high generalization ability on
different datasets. We can also prove this from the qualitative experiments in Figure 10.

HRSwinDPSR(Ours)SPARNetSRGANBicubic FSRNet AACNNLR(Input) FSRGAN EIPNet

×2

×4

×8

HRSwinDPSR(Ours)SPARNetSRGANBicubic FSRNet AACNNLR(Input) FSRGAN EIPNet

×2

×4

×8

Figure 10. Qualitative comparison with state-of-the-art methods on FFHQ dataset. The resolution of
the input is 16 × 16 and the upscale factor is 8.
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4.5.2. Face Reconstruction and Recognition on Real-World Surveillance Scenarios

The ultimate goal of face super-resolution should be to serve reality, because the face
images captured by surveillance cameras in real scenes often contain a lot of noise and
serious texture distortion. Therefore, a real-world surveillance scenario is a challenging
environment for face super-resolution. In order to verify the reconstruction performance of
SwinDPSR in real surveillance scenarios, we selected 130 low-quality face images from the
SCface dataset [45] for face reconstruction experiments, and these low-resolution images
have no corresponding high-resolution images .

In this experiment, we use the identity similarity indicator to measure the preservation
of identity information in SR images. Similar to [3], we first use the MTCNN network to
perform face detection, alignment, and cropping on SR face images and HR face images,
and then, use the pre-trained FaceNet [50] model to extract the identity eigenvectors of
the preprocessed SR face images and HR face images, and finally, calculate the cosine
similarity between two eigenvectors as the value of identity similarity. The visualization
results of face reconstruction (8 × SR) on the SCface dataset by different methods are shown
in Figure 11. We can conclude that SwinDPSR generates sharper face images and preserves
more facial structure information than other methods. Table 6 lists the average identity
similarity of 130 cases of face recognition in the real monitoring scene. We can conclude that
the face reconstruction methods integrated with Swin Transformer can effectively improve
the performance of face recognition by capturing the global face structure.

HRSwinDPSR(Ours)SPARNetSRGANBicubic FSRNet AACNNLR FSRGAN EIPNet
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Figure 11. Visual reconstruction results on real-world surveillance scenarios for 8 × SR. The indicator
below the SR images is the identity similarity between the SR image and the corresponding HR image.

Table 5. Quantitative results compared with state-of-the-art super-resolution methods. Best results
are bolded and suboptimal results are underlined.

Helen Dataset FFHQ Dataset

PSNR SSIM LPIPS MPS PSNR SSIM LPIPS MPS

Bicubic 24.5312 0.6981 0.5030 0.5975 24.2786 0.6609 0.5378 0.5615
SRGAN 25.2783 0.7171 0.1964 0.7603 24.6129 0.6735 0.2052 0.7341
FSRNet 26.9341 0.7950 0.2212 0.7869 26.4785 0.7673 0.2272 0.7700

FSRGAN 25.8452 0.7556 0.1379 0.8088 25.191 0.7191 0.1380 0.7905
AACNN 26.7893 0.7867 0.2369 0.7748 26.2496 0.7511 0.4811 0.6349
SPARNet 28.2816 0.8328 0.2037 0.8145 26.8418 0.7894 0.2245 0.7824
EIPNet 26.8985 0.7912 0.1913 0.7999 26.7129 0.7717 0.2192 0.7762

SwinDPSR 28.7688 0.8449 0.1799 0.8325 27.9004 0.8099 0.1886 0.8106

Table 6. Comparison results for matching average similarity of face images reconstructed by different
methods. Best results are bolded and suboptimal results are underlined.

Method Average Identity Similarity

Bicubic 0.228293
SRGAN 0.302244
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Table 6. Cont.

Method Average Identity Similarity

FSRNet 0.385995
FSRGAN 0.359804
AACNN 0.445988
SPARNet 0.506417
EIPNet 0.480793

SwinDPSR 0.516619

5. Conclusions

In this paper, leveraging the inherent symmetry of face images, we proposed a new
dual-path FSR model fused with Swin Transformer. This model uses Swin Transformer to
pay attention to global information, and performs feature fusion with the facial attention
unit composed of a CNN. Maintaining the consistency of the global structure of the face
while focusing on local details improves the fidelity of face reconstruction to a certain
extent. Moreover, we additionally provide style loss and SSIM loss to constrain the network
model training from the image perception level and image structure level, respectively,
and use the channel attention mechanism of the ECA module to reduce the network’s at-
tention to redundant features. Extensive experiments and ablation studies demonstrate the
effectiveness of SwinDPSR. However, SwinDPSR also has certain limitations. Although our
method has achieved good performance in some evaluation indicators, it is still not the best
from the perspective of network parameters and calculation. Therefore, how to optimize
the network structure and reduce the amount of training parameters under the premise of
ensuring the reconstruction performance will be the focus of future research.
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