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Abstract: In this research, a logarithmic-type estimator was formulated for estimating the finite
population variance in stratified random sampling. By ensuring that the sampling process is sym-
metrically conducted across the population, biases can be minimized, and the sample is more likely
to be representative of the population as a whole. We conducted a comprehensive numerical study
and simulation study to evaluate the performance of the proposed estimator. The mean squared
error values were computed for both our proposed estimator and several existing ones, including the
standard unbiased variance estimator, difference-type estimator, and other considered estimators.
The results of the numerical study and simulation study demonstrated that the proposed log-type
estimator outperforms the other considered estimators in terms of MSE and percentage relative
efficiency. Graphical representations of the results are also provided to illustrate the efficiency of
the proposed estimator. Based on the findings of this study, we conclude that the proposed log-type
estimator is a valuable addition to the existing literature on variance estimation in stratified random
sampling. It provides a more efficient and accurate estimate of the population variance, which can be
beneficial for various statistical applications.

Keywords: logarithmic estimator; mean squared error; percentage relative efficiency; variance
estimation; stratified random sampling

1. Introduction

In survey sampling, it is critical to ensure accurate and exact estimations of population
parameters. When creating strata in stratified sampling, symmetry can be applied to ensure
that each stratum is internally homogeneous and balanced. This involves dividing the
population into groups that exhibit similar characteristics, creating symmetric groupings.
For example, if you’re stratifying by income levels, you might aim to create strata with
similar income distributions within each group, thereby achieving symmetry.

This study explores the intricate realm of variance estimation in stratified random
sampling (STRS), a technique often used to improve survey efficiency by splitting the
population into distinct strata. Understanding and resolving the sources of variation within
and between strata is crucial for creating accurate estimates. This work also emphasizes
the importance of log-type estimators in the context of variance estimation. In the STRS
paradigm, the use of log-type estimators can play a critical role in contributing to more
robust and accurate variance estimations.

The role of stratified sampling in estimating population variance is discussed by [1].
Later, ref. [2] presented more precise variance estimators for predicting population variance
that leverage auxiliary information to reduce bias and improve estimate when compared
to existing approaches, therefore supporting numerous sectors that rely on correct vari-
ance estimation. In simple random sampling (SRS), ref. [3] as well as, ref. [4] suggested
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a variance estimator. They compared the proficiency of the estimator to the traditional
ratio estimator and ref. [2] estimator, and theoretical and numerical investigations were
used to demonstrate the effectiveness of the suggested estimator. Later, ref. [5] extended
their research to variance-type ratio estimators in both SRS and STRS, demonstrating the
efficacy of the proposed estimator. Further, ref. [6] established a new ratio-type expo-
nential estimator in SRS that is superior to classic ratio, regression, refs. [2,5] estimators.
Later, ref. [7] introduced unbiased estimators for population variance using equilibrated
stratification and obtained lower variances. Further, ref. [8] suggested exponential ratio-
and product-type estimators using bivariate data of auxiliary variables and illustrated the
efficiency of these estimators through empirical research.

Further, ref. [9] introduced a category of exponential estimators, demonstrating their
effectiveness over other methods in terms of bias and MSE using the provided dataset.
Novel estimators using known population parameters to estimate variance are introduced
by [10], comparing them to established estimators and showing their superiority under op-
timal conditions through bias and MSE analysis. An empirical study validates the proposed
estimators’ effectiveness. Refs. [11,12] introduced a category of estimators and proved its
effectiveness over others by utilizing four datasets. Additionally, by analyzing large sample
properties, they demonstrated their superior efficiency over various existing estimators
by employing a numerical study. By utilizing bivariate auxiliary information to estimate
population variance, ref. [13] proposed a novel generalized exponential estimator. This
analysis showed its enhanced efficiency compared to existing estimators through empirical
and simulated studies. For estimating population variance, ref. [14] suggested a log-type
estimator. For population variance, ref. [15] introduced an innovative set of exponential
ratio estimators within the context of STRS, demonstrating equal optimal efficiency with
regression estimators and outperforming classical ratio estimators by using analytical and
numerical results. Later, ref. [16] offered a few estimators for finite population variance,
and ref. [17] proposed a new class of estimators and ranks in STRS for finite population
variance, outperforming conventional estimators in efficiency on empirical evaluation
with real data analysis. Further, ref. [18] introduced innovative variance estimators us-
ing ln-function in STRS, outperforming conventional estimators. The separate method
showcases superior efficiency, validated by MSE derivation, numerical examples, and
simulations. Ref. [19] proposed variance estimator by using L-moments approach under
double stratified sampling. Later, ref. [20] recommended generalized variance estimators
by using single and double auxiliary variables and proved their efficiency over others
by employing empirical and simulation studies. Further, ref. [21–23] proposed various
variance estimators. Ref. [24] proposed hybrid estimators in SRS. Theoretical comparisons
and empirical evidence showcase their enhanced efficiency over other estimators. Further,
ref. [25] introduced an improved variance estimator and proved its efficiency with others
by using three datasets. Ref. [26] proposed an advanced variance estimator and showed
its superiority by utilizing numerical and simulation studies with real datasets. Further,
ref. [27] proposed a nonparametric maximum likelihood estimator (MLE), developed us-
ing the EM algorithm and a likelihood based on order statistics, which outperforms over
other considered estimators. Later, ref. [28] suggested an exponential ratio with a prod-
uct estimator was proposed for the estimation of population variance in SRS. Empirical
validation confirms theoretical discoveries and assists data practitioners. Further, ref. [29]
introduced finite population variance estimation in random responses via SRS for applied
and environmental sciences and proved its effectiveness over others. Refs. [30,31] explored
innovative approaches for variance estimation in sampling methodologies, particularly
focusing on L-moments and calibration techniques. Their work contributed to refining
variance estimation methods, especially in the context of stratified and double stratified
random sampling method, with practical applications including analyses related to the
COVID-19 pandemic. A ratio-type estimator was proposed by [32] and ref. [33] suggested
an estimator in conditional and unconditional post-stratification.
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Expanding on the contributions of [31], future directions may involve refining vari-
ance estimation methods through a deeper exploration of calibration approaches and the
integration of L-moments in diverse sampling frameworks. Additionally, there is potential
for investigating the robustness and scalability of these methods across various domains,
with a focus on enhancing their applicability in real-world data analysis contexts beyond
epidemiological studies. Furthermore, efforts to streamline implementation and improve
computational efficiency could enhance the practical utility of these variance estimators in
large-scale surveys and monitoring programs.

The existing literature lacks a comprehensive exploration of variance estimation
through log-type estimators. In this study, our objective is to introduce a log-type es-
timator tailored for estimating population variance within the framework of stratified
random sampling. We develop a logarithmic estimator for population variance, detailed in
Section 4. Through a comparative analysis with established methods outlined in the cur-
rent literature, and considering the conditions delineated in Section 5, we derive valuable
insights. Empirical findings presented in Section 6, along with simulation investigations,
corroborate the superior efficiency of our proposed estimator over alternative approaches.

2. Notations

Consider a finite population χ = {χ1, χ2, . . . χN}, comprising N units distributed
across L strata. Let z1hi and z2hi represent the characteristics of the study variable (z1) and
auxiliary variable (z2), respectively, in stratum h such that ∑l

h=1 Nh = N. A sample of nh
units are drawn from Nh in each stratum satisfying ∑l

h=1 nh = n.
Let s2

z1h = 1
nh−1 ∑nh

h=1(z1hi − z1h) and s2
z2h = 1

nh−1 ∑nh
h=1(z2hi − z2h) represent the sam-

ple variances accordingly to the population variances S2
z1h = 1

Nh−1 ∑Nh
h=1(z1hi − Z1h) and

S2
z2h = 1

Nh−1 ∑Nh
h=1(z2hi − Z2h). Here, z1h and z2h represent the sample means according to

the population means Z1h and Z2h.
We assume error terms to obtain the equations for bias and MSE for the variance

estimators as

ζ0h =
s2

z1h − S2
z1h

S2
z1h

and ζ1h =
s2

z2h − S2
z2h

S2
z2h

E(ζ0h) = E(ζ1h) = 0

E
(

ζ2
0h

)
= γhψ∗

40h = ϑ0h (say)

E
(

ζ2
1h

)
= γhψ∗

04h = ϑ1h (say)

E(ζ0hζ1h) = γhψ∗
22h = ϑ01h (say)

where
ψ∗

40h = (ψ40h − 1), ψ∗
04h = (ψ04h − 1), ψ∗

22h = (ψ22h − 1),

ψabh =
ξabh

ξ
a
2
20hξ

b
2
02h

, ξabh =
1

Nh − 1∑N
h=1(z1hi − Z1h)

a
(z2hi − Z2h)

b, γh =

(
1

nh
− 1

Nh

)
.

3. Review of the Literature

The literature contains various variance estimators utilized in STRS, accompanied by
their respective Var/MSE formulae. Employing these estimators, we compared them with
the proposed estimator, identifying pertinent conditions crucial for evaluating efficiency
in comparisons.

1. The unbiased variance estimator is

t1(st) =
l

∑
h=1

W2
h γhs2

z1h
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Variance of t1(st) is given by

Var
(

t1(st)

)
=

l

∑
h=1

W4
h γ3

hS4
z1hψ∗

40h (1)

2. The usual difference-type estimator is

t2 = ∑l
h=1 W2

h γh

{
s2

z1h + θh(S2
z2h − s2

z2h)
}

where θh is unknown. Its optimum value is θh =

(
S2

z1hψ∗
22h

S2
z2hψ∗

04h

)
.

The minimum variance of t2 is attained at the optimum value of θh,

Var (t2) = ∑l
h=1 W4

h γ3
hS4

z1hψ∗
40h(1−r2

h) (2)

where rh =
ψ∗

22h√
ψ∗

40h

√
ψ∗

04h
.

3. The population variance’s unbiased estimator as provided by [3] is

t3 =
l

∑
h=1

W2
h γh

(
s2

z1h −
s2

z2h

S2
z2h

+ 1

)

and its variance is given by

MSE(t3) = ∑l
h=1 W4

h γ3
hS4

z1h

[
ψ∗

40h +
ψ∗

04h
S4

z1h
− 2

ψ∗
22h

S2
z1h

]
(3)

4. We transformed the [10] estimator in STRS as

t4 =
l

∑
h=1

W2
h γhs2

z1h

[
π

(
S2

z2h

s2
z2h

)
+ (1 − π)

(
s2

z2h

S2
z2h

)]

where π is a suitable constant.

The minimum MSE of t4 for the optimum value of π is provided as

MSE min(t4) = ∑l
h=1 W4

h γ3
hS4

z1h

{
ψ∗

40h −
(ψ∗

22h)
2

ψ∗
04h

}
(4)

5. Ref. [16] suggested an estimator such as

t5 =
l

∑
h=1

W2
h γhs2

z1hωh

(
S2

z2h

s2
z2h

)

where ωh =
1+[ψ∗

04h−ψ∗
22h]

1+[3ψ∗
04h−4ψ∗

22h+ψ∗
40h]

.

By using the optimum value of ωh, we obtain MSE as

MSE min(t5) = ∑l
h=1 W4

h γ3
hS4

z1h

{
1 −

(1 +
[
ψ∗

04h − ψ∗
22h
]
)

2

1 + γh
[
3ψ∗

04h − 4ψ∗
22h + ψ∗

40h
]} (5)
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6. A suggested a generalized exponential ratio with a product estimator was suggested
by [28] is

t6 =
l

∑
h=1

W2
h γhs2

z1h


(

S2
z2h

s2
z2h

)τ

− 1(
S2

z2h

s2
z2h

)τ

+ 1


where τ is a suitable value to minimize the MSE of t6, as follows:

MSE min(t6) = ∑l
h=1 W4

h γ3
hS4

z1h

{
ψ∗

40h −
(ψ∗

22h)
2

ψ∗
04h

}
(6)

4. Proposed Estimator

To better estimate variance, we introduced a log-type estimator, enhancing accuracy
and reliability. This method improves precision and reliability in variance estimation,
offering a more effective alternative to conventional approaches. Below is the combination
of difference and ratio type logarithmic estimator.

tprop =
l

∑
h=1

W2
h γh

[
R1s2

z1h + R2(S2
z2h − s2

z2h)

]
log
(

S2
z2h

s2
z2h

+ α

)
where α is a constant

tprop =
l

∑
h=1

W2
h γh

[
R1S2

z1h(1 + e0h) + R2(S2
z2h − S2

z2h(1 + e1h))
]
log
(

S2
z2h

S2
z2h(1+e1h)

+ α

)
=

l
∑

h=1
W2

h γh

[
R1S2

z1h + R1S2
z1he0h − R2S2

z2he
1h

][
log(α + 1)− 1

α+1 e1h +
2α+1

2(α+1)2 e2
1h

] (7)

By taking deviation on both sides with ∑l
h=1 W2

h γhS2
z1h, we have

tprop −
l

∑
h=1

W2
h γhS2

z1h

=
l

∑
h=1

W2
h γhS2

z1h

{
(R1log(α + 1)− 1) + (R1log(α + 1)e0h)−

(
R1

α+1 e1h

)
+

(
(2α+1)R1

2(α+1)2 e2
1h

)
−
(

R1
α+1 e0he1h

)}
+

l
∑

h=1
W2

h γhS2
z2h

{(
R2

α+1 e2
1h

)
− (R2log(α + 1)e1h)

} (8)

By computing expectations on both sides of Equation (10), the resulting outcome
yields the bias.

Bias
(
tprop

)
=

l

∑
h=1

W2
h γhS2

z1h

{
(R1log(α + 1)− 1) +

(
(2α + 1)R1

2(α + 1)2 ϑ1h

)
−
(

R1

α + 1
ϑ01h

)}
+

l

∑
h=1

W2
h γhS2

z2h

{(
R2

α + 1
ϑ1h

)}
Upon squaring both sides of Equation (10) and subsequently computing expectations,

the mean squared error (MSE) is derived as
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(
tprop −

l
∑

h=1
W2

h γhS2
z1h

)2

=
l

∑
h=1

W4
h γ2

hS4
z1h

{
(R1log(α + 1)− 1)2 + (R1log(α + 1))2ϑ0h

+

[
R2

1
(α+1)2 +

R2
1log(α+1)(2α+1)

(α+1)2 − 2α+1
(α+1)2

]
ϑ1h −

[
4R2

1log(α+1)
α+1 − 2R1

α+1

]
ϑ01h

}
+

l
∑

h=1
W4

h γ2
hS4

z2h(R2log(α + 1))2ϑ1h

+
l

∑
h=1

W4
h γ2

hS2
z1hS2

z2h

{
4R1R2
α+1 log(α + 1)ϑ1h − 2R1R2(log(α + 1))2ϑ01h − 2R2

α+1 ϑ1h

}
MSE

(
tprop

)
=

l
∑

h=1
W4

h γ2
hS4

z1h

{[
1 −

(
2α+1
(α+1)2

)
ϑ1h

]
+ R1

[(
2ϑ01h
α+1

)
− 2log(α + 1)

]
+R2

1

([
(log(α + 1))2(1 + ϑ0h)

]
+ ϑ1h

[(
1

(α+1)2

)
+

(
(2α+1)log(α+1)

(α+1)2

)]
−ϑ01h

[
4log(α+1)

α+1

])
}+

l
∑

h=1
W4

h γ2
hS4

z2h

{
R2

2(log(α + 1))2
ϑ1h

}
+

l
∑

h=1
W4

h γ2
hS2

z1hS2
z2h

{
R2
[ −2

α+1 ϑ1h
]
+ R1R2

[(
4log(α+1)

α+1 ϑ1h

)
−
(

2(log(α + 1))2ϑ01h

)]}

(9)

By differentiation Equation (9) with respect to R1 and R2 and equating them with zero,
we obtain

R1 =
s2

s1

where

s1 = 4
(

l
∑

h=1
W4

h γ2
hS4

z1h

) (
l

∑
h=1

W4
h γ2

hS4
z2h

)(
ϑ1h(log(α + 1))2

)[
(log(α + 1))2(1 + ϑ0h) +

(
ϑ1h

(α+1)2

)
+

(
(2α+1)log(α+1)

(α+1)2 ϑ1h

)
− ϑ01h

[
4log(α+1)

α+1

]]
+

(
l

∑
h=1

W4
h γ2

hS2
z2hS2

z2h

)2(
2ϑ01h(log(α + 1))2

−
(

4log(α+1)
(α+1) ϑ1h

))(
2ϑ1h
α+1

)(
4log(α+1)

α+1 ϑ1h + 2(log(α + 1))2ϑ01h

)

s2 = 4
(

l
∑

h=1
W4

h γ2
hS4

z1h

) (
l

∑
h=1

W4
h γ2

hS4
z2h

)(
log(α + 1)− ϑ01h

α+1

)(
ϑ1h(log(α + 1))2

)
+

(
l

∑
h=1

W4
h γ2

hS2
z2hS2

z2h

)2(
2ϑ01h(log(α + 1))2 −

(
4log(α+1)
(α+1) ϑ1h

))(
2ϑ1h
α+1

)

and R2 =

(
l

∑
h=1

W4
h γ2

hS2
z2hS2

z2h)
[( 2

α+1 ϑ1h
)
− R1

(
4log(α+1)

α+1 ϑ1h − 2ϑ01h(log(α + 1))2
)]

2ϑ1h

(
l

∑
h=1

W4
h γ2

hS4
z2h

)
(log(α + 1))2

By substituting the values of R1 and R2 into Equation (9), we obtain the minimum
MSE as
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MSEmin
(
tprop

)
=

{
l

∑
h=1

W4
h γ2

hS4
z1h

[
1 −

(
2α+1
(α+1)2

)
ϑ1h

]}
+ R1

{
l

∑
h=1

W4
h γ2

hS4
z1h

[(
2ϑ01h
α+1

)
− 2log(α + 1)

]}
+R2

{
l

∑
h=1

W4
h γ2

hS2
z1hS2

z2h
[ −2

α+1 ϑ1h
]}

+R2
1

{
l

∑
h=1

W4
h γ2

hS4
z1h

([
(log(α + 1))2(1 + ϑ0h)

]
+ ϑ1h

[(
1

(α+1)2

)
+

(
(2α+1)log(α+1)

(α+1)2

)]
−ϑ01h

[
4log(α+1)

α+1

])
}+ R2

2

{
l

∑
h=1

W4
h γ2

hS4
z2h(log(α + 1))2ϑ1h

}
+R1R2

{
l

∑
h=1

W4
h γ2

hS2
z1hS2

z2h

[(
4log(α+1)

α+1 ϑ1h

)
−
(

2(log(α + 1))2ϑ01h

)]}
MSEmin

(
tprop

)
= const + R1η1 + R2η2 + R2

1η3 + R2
2η4 + R1R2η5 (10)

where

const =
l

∑
h=1

W4
h γ2

hS4
z1h

[
1 +

(
−(2α + 1)

(α + 1)2 ϑ1h

)]

η1 =
l

∑
h=1

W4
h γ2

hS4
z1h

[(
2ϑ01h
α + 1

)
− 2log(α + 1)

]

η2 =
l

∑
h=1

W4
h γ2

hS2
z1hS2

z2h

[
−2

α + 1
ϑ1h

]

η3 =
l

∑
h=1

W4
h γ2

hS4
z1h

([
(log(α + 1))2(1 + ϑ0h)

]
+ ϑ1h

[(
1

(α + 1)2

)
+

(
(2α + 1)log(α + 1)

(α + 1)2

)]
− ϑ01h

[
4log(α + 1)

α + 1

])

η4 =
l

∑
h=1

W4
h γ2

hS4
z2h(log(α + 1))2ϑ1h

η5 =
l

∑
h=1

W4
h γ2

hS2
z1hS2

z2h

[(
4log(α + 1)

α + 1
ϑ1h

)
−
(

2(log(α + 1))2ϑ01h

)]
5. Comparison of Efficiency

In this research, we theoretically specified numerous conditions for comparing the
proposed estimators to a variety of traditional and existing estimators used in this context.
This comparison analysis provides insights into why the proposed estimators outperform
others, particularly with regard to MSE and percentage relative efficiency (PRE).

From (1) and (10), we obtain

MSEmin
(
tprop

)
− Var

(
t1(st)

)
≤ 0

const + R1η1 + R2η2 + R2
1η3 + R2

2η4 + R1R2η5 − ∑l
h=1 W4

h γ3
hS4

z1hψ∗
40h ≤ 0 (11)

From (2) and (10), we obtain

MSEmin
(
tprop

)
− Var (t2) ≤ 0

const + R1η1 + R2η2 + R2
1η3 + R2

2η4 + R1R2η5 − ∑l
h=1 W4

h γ3
hS4

z1hψ∗
40h(1−r2

h) ≤ 0 (12)

From (3) and (10), we obtain

MSEmin
(
tprop

)
− MSE(t3) ≤ 0
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const + R1η1 + R2η2 + R2
1η3 + R2

2η4 + R1R2η5 − ∑l
h=1 W4

h γ3
hS4

z1h

[
ψ∗

40h +
ψ∗

04h
S4

z1h
− 2

ψ∗
22h

S2
z1h

]
≤ 0 (13)

From (4) and (10), we obtain

MSEmin
(
tprop

)
− MSE min(t4) ≤ 0

const + R1η1 + R2η2 + R2
1η3 + R2

2η4 + R1R2η5 − ∑l
h=1 W4

h γ3
hS4

z1h

{
ψ∗

40h −
(ψ∗

22h)
2

ψ∗
04h

}
≤ 0 (14)

From (5) and (10), we obtain

MSEmin
(
tprop

)
− MSE min(t5) ≤ 0

const + R1η1 + R2η2 + R2
1η3 + R2

2η4 + R1R2η5 − ∑l
h=1 W4

h γ3
hS4

z1h

{
1 −

(1 +
[
ψ∗

04h − ψ∗
22h
]
)

2

1 + γh
[
3ψ∗

04h − 4ψ∗
22h + ψ∗

40h
]} ≤ 0 (15)

From (6) and (10), we obtain

MSEmin
(
tprop

)
− MSE min(t6) ≤ 0

const + R1η1 + R2η2 + R2
1η3 + R2

2η4 + R1R2η5 − ∑l
h=1 W4

h γ3
hS4

z1h

{
ψ∗

40h −
(ψ∗

22h)
2

ψ∗
04h

}
≤ 0 (16)

5.1. Quantitative Assessment

Population-I: We used the data from [5]. The data are about the information on apple
production amounts (considered as the primary variable of interest) and the count of
apple trees (regarded as an auxiliary variable) originating from the dataset encompassing
854 villages across Turkey in the year 1999, sourced from the Institute of Statistics, Republic
of Turkey. Initially, the data were stratified based on the distinct regions within Turkey.
Symmetry can also be applied in determining the allocation of sample units to each stratum.
Symmetric allocation ensures that each stratum receives a fair representation in the sample
relative to its size and variability. This can involve proportional allocation based on
the size of each stratum or optimal allocation methods that consider both stratum size
and variability.

Following this stratification, a random sampling approach was employed to select
villages from each region using Neyman allocation to determine sample sizes per stratum
(region). Specifically, a predetermined sample size of n = 140 was utilized. Subsequently,
after analyzing the outcomes of the sample sizes for individual regions, a decision was
made to merge the two regions. Consequently, the data were organized into six strata,
designated as follows: (1) Marmara, (2) Aegean, (3) Mediterranean, (4) Central Anatolia,
(5) Black Sea, and (6) East and Southeast Anatolia.

The theoretical conditions outlined in Equations (11)–(16) are not only theoretically
sound but were also validated numerically. Employing the data statistics provided in
Table 1, we calculated the MSE values for the estimators, as detailed in Table 2. The results
reveal that the proposed estimator exhibits a lower MSE value, coupled with a significantly
higher PRE value. This indicates that, among the estimators considered in this study, the
proposed estimator boasts the highest PRE, underscoring its superior performance.
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Table 1. Data statistics.

N = 854 Nh 106 106 94 171 204 173

N = 140 nh 9 17 38 67 7 2

Z1 = 29.30 Z1h 15.37 22.13 93.84 55.88 9.67 4.04

Z2 = 376.00 Z2h 243.76 274.22 724.10 743.65 264.42 98.44

β2(z1) = 195.84 β2(z1h) 80.13 97.68 24.14 101.97 53.38 27.96

β2(z2) = 312.07 β2(z2h) 25.71 34.57 26.14 97.60 27.47 28.10

Sz1 = 171.06 Sz1h 64.25 115.52 299.07 286.43 23.90 9.46

Sz2 = 1447.94 Sz2h 491.89 574.61 1607.57 2856.03 454.03 187.94

θh 33.3 57.4 20.8 99.53 21.09 23.08

Wh 0.12 0.12 0.11 0.20 0.24 0.20

Table 2. MSE and PRE values of the considered and proposed estimators for Population-I.

Estimator Theoretical Conditions MSE PRE

Var
(

t1(st)

)
MSEmin

(
tprop

)
− Var

(
t1(st)

)
≤ 0 1940.6 100

Var (t2) MSEmin
(
tprop

)
− Var (t2) ≤ 0 1940.6 100

MSE(t3) MSEmin
(
tprop

)
− MSE(t3) ≤ 0 1940.8 0.99

MSE min(t4) MSEmin
(
tprop

)
− MSE(t4) ≤ 0 1939.8 100.04

MSE min(t5) MSEmin
(
tprop

)
− MSE min(t5) ≤ 0 299.2 648.60

MSE min(t6) MSEmin
(
tprop

)
− MSE min(t6) ≤ 0 1939.8 100.04

MSEmin
(
tprop

)
MSEmin

(
tprop

)
− MSE min(ti) ≤ 0, i = 1, . . . , 6 184.8 1050.11

5.2. Simulation Analysis

A simulation exercise was performed using the R program to show the proposed and
considered estimators’ performance by using two populations.

(a) Population-II: We subdivided N = 1500 into four subpopulations of varying sizes. We
conducted 10,000 iterations to achieve efficient results. The models are as follows:

z21 = rnorm(N1, 8, 3), z22 = rnorm(N2, 5, 2),

z23 = rnorm(N3, 4, 1), and z24 = rnorm(N4, 3, 1);

z11 = 2 + (2.5z21) + e1, z12 = 3 − (5z22) + e2,

z13 = 2 − (7.2z23) + e3 and z14 = 1 + (5.5z24) + e4;

(b) Population–III: We divided 2000 samples into four strata and applied optimum allo-
cation to obtain samples of strata. We conducted 20,000 iterations to obtain the MSE
values of estimators. The models considered in this population are as follows:

z21 = rnorm(N1, 8, 4), z22 = rnorm(N2, 6, 3),

z23 = rnorm(N3, 5, 1), and z24 = rnorm(N4, 9, 7);
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z11 = 2 + (3z21) + e1, z12 = 3 − (562) + e2,

z13 = 2 − (8z23) + e3 and z14 = 1 + (6z24) + e4;

Error terms ei = rnorm(Ni, 0, 1); i = 1, 2, 3, 4.

The PRE of the estimators was determined by employing

PRE(tr, t1) =
MSE(t1)

MSE(tr)
∗ 100

where r = 1, 2, 3, 4, 5, 6, prop.

5.3. Discussion of Results

This article introduced a logarithmic-type estimator specifically developed for esti-
mating the finite population variance of a study variable. This estimator leverages the
information from an auxiliary variable to enhance the precision of the variance estimation.
This study emphasizes the importance of variance estimation to enhance the reliability
of survey outcomes. We suggested an estimator and derived its bias and MSE equations,
and we also considered the existing variance estimators from the literature and derived
their MSE equations. When the considered estimator’s efficiency was compared with the
proposed estimator’s efficiency, we obtained the theoretical conditions from (11) to (16).

By using a real dataset in Population-I, we computed the performance effectiveness
of the estimators under consideration, including the proposed estimator, by assessing
their MSE and PRE values. From Table 2, we can observe that the value of MSE is low
compared to the other one. Also, the PRE is high, which indicates the importance of the
proposed estimator.

Moreover, from simulation studies, we can prove the effectiveness of the proposed
estimator. Table 3 reveals that the proposed estimator demonstrates superior efficiency in
comparison to the existing methods. Here, we considered two populations and generated
data by using a normal distribution and performed a simulation. In Populations II and
III, we performed 10,000 and 20,000 replications respectively. After the replications, we
obtained the data statistics of the replications’ average. Then, we found the values of MSE
and PRE for all the considered and suggested estimators.

Table 3. Comparisons between the proposed estimator and other considered estimators through
simulation.

Population-II Population-III

Estimator MSE PRE MSE PRE

Var
(

t1(st)

)
2.11432 × 10−6 100.00 0.07 100.00

Var (t2) 7.43164 × 10−6 28.45 0.24 27.88

MSE(t3) 2.04132 × 10−6 103.58 0.06 103.21

MSE min(t4) 2.15414 × 10−6 98.15 0.11 58.62

MSE min(t5) 1.28051 × 10−6 165.12 0.05 125.22

MSE min(t6) 2.15414 × 10−6 98.15 0.11 58.62

MSEmin
(
tprop

)
9.04361 × 10−7 233.79 0.02 369.10

In the graphical representation plotted in Figure 1, the red, blue and green colors
indicate the PRE values of Population-I, Population-II, and Population-III respectively. We
considered estimator 7 as the proposed estimator in this study. We can observe that the
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proposed estimator’s PRE values are high compared to the others in all three populations.
Our suggested log-type estimator’s superior performance highlights its potential as a
valuable tool in variance estimation, providing a more efficient and reliable alternative to
the existing approaches.
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Figure 1. Graphical representation of PRE values of the three populations.

These results contribute to the ongoing discourse on refining statistical methodolo-
gies for survey research, providing a robust alternative for enhancing the precision of
survey outcomes. As we navigate the implications of our findings, the proposed esti-
mator stands as a promising avenue for further exploration and potential adoption in
diverse sampling contexts, signaling a positive step forward in the evolution of variance
estimation techniques.

6. Conclusions

In this study, we formulated a logarithmic-type estimator for finite population variance
estimation and we conducted an in-depth analysis of its effectiveness using a real-world
dataset. Our investigation delved into a meticulous comparison of our proposed estimator
against the established methods, aiming to evaluate its performance comprehensively. The
computation of MSE values served as a pivotal metric in assessing the efficiency of the
proposed estimator and several existing ones.

The comparison set included well-known estimators such as the standard unbiased
variance, difference type, and those proposed by [3,10,16,28]. In both numerical and simu-
lation studies, we examined our proposed estimator’s performance across three distinct
populations to understand its characteristics. From Tables 2 and 3, it is clear that the
proposed estimator performed better. From the graphical representation (Figure 1), we can
also conclude that the proposed estimator achieved the greatest efficiency in comparison to
the other considered estimators.
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Upon a thorough examination and interpretation of the results, our findings unequiv-
ocally indicate the superior performance of the proposed logarithmic-type estimator. The
proposed estimator consistently received favorable assessment metrics in both MSE and
PRE values, suggesting its heightened accuracy and efficiency compared to the consid-
ered alternatives.
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