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Abstract: Mineral assemblages containing Cu-Bi sulfosalts, Bi chalcogenides, and Ag-(Au) tellurides
have been identified in the mid-Miocene Zhibula Cu skarn deposit, Gangdese Belt, southern Tibet.
Different mineral assemblages from three locations in the deposit, including proximal massive garnet
skarn, proximal retrogressed pyroxene-dominant skarn in contact with marble, and distal banded
garnet–pyroxene skarn hosted in marble, are studied to constrain the evolution of the mineralization.
Hypogene bornite contains elevated Bi (mean 6.73 wt.%) and co-exists in proximal andradite skarn
with a second bornite with far lower Bi content, carrollite, Au-Ag tellurides (hessite, petzite), and
wittichenite. This assemblage indicates formation at relatively high temperatures (>400 ◦C) and high
f S2 and f Te2 during prograde-stage mineralization. Assemblages of Bi sulfosalts (wittichenite, aikinite,
kupčíkite, and paděraite) and bismuth chalcogenides (e.g., tetradymite) in proximal pyroxene skarn
are also indicative of formation at relatively high temperatures, but at relatively lower f Te2 and f S2

conditions. Within the reduced distal skarn (chalcopyrite–pyrrhotite-bearing) in marble, cobalt, and
nickel occur as discrete minerals: cobaltite, melonite and cobaltic pentlandite. The trace ore mineral
signature of the Zhibula skarn and the distributions of precious and critical trace elements such as
Ag, Au, Co, Te, Se, and Bi support an evolving magmatic–hydrothermal system in which different
parts of the deposit each define ore formation at distinct local physicochemical conditions. This is the
first report of kupčíkite and paděraite from a Chinese location. Their compositions are comparable to
other occurrences, but conspicuously, they do not form nanoscale intergrowths with one another.

Keywords: ore mineralogy; Au-Ag tellurides; Bi chalcogenides; Cu-Bi sulfosalts; Zhibula Cu skarn;
Tibet

1. Introduction

Copper skarns commonly contain anomalous concentrations of precious metals (Au
and Ag) and may also be markedly enriched in one or more elements considered critical,
including Co, Bi, Se, and Te [1]. This relative enrichment may be expressed by characteristic
ore mineral assemblages that include a range of tellurides, selenides, and Bi-Pb and Cu-Bi
sulfosalts. The presence of these minerals and their prevailing associations may provide
valuable additional constraints on ore genesis, including estimates of the temperatures and
pressures of ore-forming fluids, as well as relevant fugacities (e.g., f Se2, f S2, and f Te2) [2].

Telluride minerals are widespread in many types of ore deposits and can provide
valuable physicochemical constraints on mineralization [2,3]. Tellurides have also been
proposed as a tool to decipher orefield zonation in porphyry–epithermal systems, e.g., in
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the Larga orefield, Romania [3]. Bismuth chalcogenides and some related tellurides when
forming Bi-Te-bearing assemblages have low melting points and thus represent ideal melt
scavengers that can play a significant role in gold enrichment processes [4].

Sulfosalts of the cuprobismutite homologous series are scarce in nature. The series
includes cuprobismutite, hodrushite, and kupčíkite, with the ideal formulae Cu8AgBi13S24,
Cu8Bi12S22, and Cu8Bi10S20, respectively ([5,6] and references therein). Paděraite, Cu6AgPb-
Bi12S22, is a closely related phase [7]. These minerals are reported from only a limited
number of occurrences in mineralized veins and skarns, e.g., from the Felbertal metamor-
phogenic scheelite deposit, Austria [5,8]; the Băiţa Bihor Cu and Ocna de Fier Fe-Cu skarns,
Romania [6,9]; the Swartberg rare metal pegmatite, South Africa [10]; and in Slovakia [11],
Poland [12], and the high-grade Obari Au-Cu-Bi deposit, Japan [13]. Makovicky [14] pos-
tulated the general formula for these minerals as Cu4Me2(N-1)+1Bi4S2N+8, where Me is Bi
and Ag, and N is the order number for each homologue type. However, subsequent study
of natural samples revealed a greater compositional complexity due to substitutions of
several other elements, notably Fe, Pb and Ag. The substitution mechanisms and site
occupancies for these elements and the formation conditions of related species remain
imperfectly constrained [9].

The Gangdese Belt, southern Tibet, hosts a large and growing number of ore de-
posits associated with episodes of magmatic activity spanning the Jurassic to Miocene
(e.g., [15,16]). Porphyry Cu-Mo and Cu-Au deposits and associated skarns formed during
this age range are the most economically significant types of mineralization. Until recently,
there had been little detailed study of these deposits with respect to the distribution and ore
mineralogy of minor components such as Co, Se, Bi, and Te [17,18]. This is despite the sig-
nificance of such elements for interpretation of deposits related to magmatic–hydrothermal
events. This contribution focuses on the occurrence of ore minerals and assemblages from
the Zhibula Cu skarn that include several critical trace elements (Bi, Co, Te, Au, Ag, and
Se). An appreciation of these minerals permits us to constrain the ore genesis of the de-
posit. Detailed mineral characterization also allows us to offer insights that may assist the
potential recovery of these value-adding components.

2. Geological Setting

The Zhibula Cu skarn deposit has a reserve of 0.32 Mt Cu @ 1.64%. It is located
approximately 2 km south of the Qulong porphyry Cu-Mo deposit in the Gangdese Belt,
southern Tibet (Figure 1). Skarn orebodies occur as layers and less lenticular bodies
within marble and tuffs of the 3 km-thick Yeba Formation, which has a U-Pb zircon age
of 174.4 ± 1.7 Ma [19]. Skarn emplacement was controlled by the contacts between tuff
and marble, as well as by fractures in the tuff. Outcropping intrusive rocks have not
been identified in the mine area except for a few monzogranite and granodiorite dikes in
deeper exploration drillholes. These granitoids have zircon U-Pb ages of ~17 Ma, which
are concordant with those measured in minerals from the Qulong deposit [20]. Compa-
rable molybdenite Re-Os ages (16–17 Ma; [21]) and zircon Hf-O isotopic signatures [22]
for Zhibula and Qulong are also noted, strongly suggesting that skarns and porphyry
mineralization share a common magmatic source and comprise a single large magmatic–
hydrothermal ore system [22].

Isotope data for sulfur (δ34S −0.1 to −6.8 ‰), hydrogen (δDH2O −91 to −159 ‰),
and oxygen (δ18OH2O 1.5 to 9.2 ‰) further support an interpretation in which the Zhibula
mineralization is related to magmatic–hydrothermal fluids. Fluid inclusion data confirm
that ore-forming fluids changed from relatively high temperature and high salinity to low
temperature, moderate salinity during transition from the prograde to retrograde stage [22].

Insights into skarn formation, particularly from the trace element signatures of garnet,
were reported by Xu et al. [23]. Although minor endoskarn is noted in granodiorite, few
skarns develop at the contacts between the Yeba Formation and granitoids. Instead, they
typically occur within the Yeba Formation, with marble and tuff units as the dominant
protoliths. A combination of different protoliths and variation in the local physicochemical
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environment resulted in skarns of different appearance and composition, as well as the
observed zonation at the orefield scale. Garnet is the dominant skarn mineral. The trace
element endowment of garnet, particularly the rare earth element signatures, but also
other elements (e.g., W, Sn, As, and Mo), changes in both space and time, as a function of
multiple factors, e.g., mineralogy of co-crystallizing phases, variation in X(CO2), salinity,
and proximity to local fluid sources.
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Figure 1. Simplified geological map of the Zhibula Cu skarn deposit, modified after Xu et al. [22].
Abbreviations: JSSZ—Jinsha Suture Zone; BNSZ—Bangong–Nujiang Suture Zone; IYZSZ—Indus–
Yarlung Zangbo Suture Zone.

Copper skarns are primarily comprised of chalcopyrite and bornite. Other trace ore
minerals include magnetite, sphalerite, galena, scheelite, molybdenite, Cu-Bi sulfosalts,
Bi chalcogenides, and Au-Ag tellurides. Solid solution between scheelite and powellite
(up to 80 mol.% powellite) is considered the retrogressed product of the replacement of
garnet. A detailed micro- to nanoscale study of scheelite–powellite aggregates showed
that non-linear thermodynamics governing the patterning in non-ideal solid solution may
account for the formation of distinct patterning domains within the Mo-rich areas of the
aggregates. The sharpest contrast in chemical composition of the Mo-rich scheelite is also
recognizable by variation in the growth directions [24].

3. Sampling and Analytical Methodology

Detailed skarn mineralogy and associated mineralization has been depicted by Xu
et al. [23]. We focus on three types of mineralized skarn here: distal banded garnet–
pyroxene skarn in marble (e.g., sample 321), proximal massive garnet skarn (e.g., sample
374), and proximal retrogressed pyroxene-dominated skarn (e.g., sample 180). For locations
and short descriptions of these samples, the reader is referred to Figure 1 and Table 1.
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Table 1. Overview of samples studied.

Skarn Type Sample
ID

Drill
Hole

Depth
(m)

Main Skarn Assemblage Minor
Skarn As-
semblage

Ore Minerals

Grt Px Czo Act Chl Qz Cal Sulfides Oxides

Distal skarn
(banded Grt-Px

in marble)

321 1611 321 xx x x x xxx Wo, Ap,
Ttn, Ves

Pyh, Ccp, Gn,
Sp, Pn

323 1611 323 xx x x xxx Wo, Ap,
An, Ves

Pyh, Ccp, Gn,
Sp, Pn

Proximal skarn
(massive Grt)

372 1611 372 xxx x x x x x Ap Ccp, Bn, Mol,
Cli, Gn, Sp, Py

Mag,
Hem,
Sch

374 1611 374 xxx x x x x Ap
Ccp, Bn, Cc, Sp,

Gn, Ptz, Hes,
Wtc, Cli

8 quarry - xxx x x x x Ap
Bn, Ccp, Mol,
Cc, Gn, Hes,
Ptz, El, Cli

Sch

Proximal skarn
(retrogressed
Px in contact
with marble)

180 1611 180 x xxxx x x xx xxx Ap, Wo
Ccp, Bn, Wtc,
Aik, Ttd, Pde,

Kup

Mag,
Hem,
Sch

355 1215 355 x xx xxx xx xx xxx xx Ap Ccp, Sp, Gn

Abbreviations: Act—actinolite; Aik—aikinite; An—anorthite; Ap—apatite; Bn—bornite; Cal—calcite; Cc—
chalcocite; Ccp—chalcopyrite; Chl—chlorite; Cli—carrollite; Czo—clinozoisite; El—electrum; Gn—galena; Hem—
hematite; Hes—hessite; Kup—kupčíkite; Mag—magnetite; Mol—molybdenite; Pde—paděraite; Ptz—petzite;
Pwl—powellite; Px—pyroxene; Py—pyrite; Pyh—pyrrhotite; Qz—quartz; Sp—sphalerite; Ttd—tetradymite;
Ttn—titanite; Ves—vesuvianite; Wo—wollastonite; Wtc—wittichenite. xxx—major; xx—minor; x—trace.

Samples were prepared as 1 inch-diameter polished blocks and thin sections. All
analytical work was performed at Adelaide Microscopy, University of Adelaide. Imaging
was performed in reflected light and using an FEI Quanta 450 scanning electron microscope
(SEM) (FEI, Hillsboro, OR, USA) equipped with energy-dispersive X-ray spectrometry
and backscatter electron (BSE) imaging capabilities. BSE imaging was performed at a
20 kV accelerating voltage and 10 nA beam current. Quantitative mineral compositional
data was obtained on a Cameca SX-Five electron probe microanalyzer (EPMA) (Cameca
Instruments Inc., Fitchburg, WI, USA) and a Resonetics M-50-LR 193-nm Excimer laser
microprobe (Resonetics, Nashua, NH, USA) coupled with an Agilent 7700cx quadrupole
ICP-MS (LA-ICP-MS) (Agilent, Santa Clara, CA, USA).

Foils for nanoscale study were prepared using an FEI-Helios nanoLab (FEI, Hillsboro,
OR, USA) focused ion beam–scanning electron microscopy (FIB–SEM). Transmission elec-
tron microscopy (TEM) imaging and selected area electron diffraction (SAED) patterns were
obtained using a Philips CM200 microscope (Amsterdam, The Netherlands), equipped with
a LaB6 source and Gatan Orius digital camera (Gatan Inc., Pleasanton, CA, USA), and oper-
ated at 200 kV. Data processing was carried out using DigitalMicrograph™ 3.11.1 (Gatan
Inc., Pleasanton, CA, USA) software for indexation of electron diffractions. High-angle
annular dark-field scanning transmission electron microscopy (HAADF STEM) studies
were performed using an FEI Titan Themis (FEI, Hillsboro, OR, USA). TIA software (v4.7.2)
was used for STEM image processing. WinWulff© (JCrystalSoft, Livermore, CA, USA) was
used to index diffraction patterns. CrystalMaker® (v10.5.7) (CrystalMaker Software Ltd.,
Kidlington, UK) was used to generate crystal structure models, and image simulations
were created using STEM for xHREMTM software (v 4.1) (HREM Research, Tokyo, Japan).

4. Results
4.1. Ore Petrography and Mineralogy

Minor sulfides, chalcopyrite associated with pyrrhotite, occur in the distal skarn
formed within altered marble with a weak banding expressed by different proportions
of grossular (Gr~50) and diopside (Di~80) (Figure 2a). In contrast, the proximal skarn
represented by massive andradite garnet skarn is typified by the presence of chalcopy-
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rite and bornite, as well as subordinate Au-Ag-Bi-Te and Co minerals, which occur as
disseminations and/or larger patches (Figure 2b,c), as well as veinlets.
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ula skarn. (a) Chalcopyrite–pyrrhotite associated with quartz replaces an assemblage of grossular 
(Gro~90), diopside (Di~80), and wollastonite in the distal banded skarn within marble (sample 321). 
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dradite (Adr100–95) garnet skarn (sample 374). (d) Replacement of andradite (Adr100–95) by heden-

Figure 2. Representative photomicrographs showing skarn and ore mineral associations in the
Zhibula skarn. (a) Chalcopyrite–pyrrhotite associated with quartz replaces an assemblage of grossu-
lar (Gro~90), diopside (Di~80), and wollastonite in the distal banded skarn within marble (sample
321). (b,c) Intergranular chalcopyrite-bornite associated with Ag-Au-Bi minerals in proximal mas-
sive andradite (Adr100–95) garnet skarn (sample 374). (d) Replacement of andradite (Adr100–95) by
hedenbergite–johannsenite (Hd60Jhn30) and Bi-bearing minerals in proximal retrogressed pyroxene-
dominant skarn (sample 180). (e) Abundant magnetite together with disseminations of Cu-Fe sulfides
(chalcopyrite) and Bi-bearing minerals in hedenbergite–johannsenite skarn (sample 180). (f–h) De-
tails showing extensive replacement of garnet and magnetite by Bi-bearing minerals (sample 180).
Note the abundant pores in magnetite, which represent evidence of replacement. Abbreviations:
Adr—andradite; Bn—bornite; Cal—calcite; Ccp—chalcopyrite; Di—diopside; Gro—grossular; Hd—
hedenbergite; Jhn—johannsenite; Mag—magnetite; Pyh—pyrrhotite; Qz—quartz; Ttd—tetradymite.
All are BSE images except for (b) (reflected polarized).

Bismuth sulfosalts and tellurides are most abundant throughout the proximal pyroxene-
dominant, garnet skarn that experienced strong retrogression marked by changes from
Mg–pyroxene (diopside) to Mn- and Fe-rich pyroxene (johannsenite–hedenbergite) and re-
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placement of andradite (Figure 2d). Bismuth minerals occur as tiny inclusions in the garnet
or as larger patches along the contact between the two silicates. The same Bi minerals are
also abundant in areas with higher concentrations of magnetite (Figure 2e). Chalcopyrite
is also present throughout the magnetite. In detail, zoned garnet shows reworking of
smaller particles of Bi minerals along the zones, into coarser patches, and across zones
(Figure 2f). Magnetite also displays abundant Bi minerals within growth zones, outside
from grain cores that are mottled with inclusions of chalcopyrite (Figure 2g). Coarser,
euhedral tetradymite (Bi2Te2S) occurs at contacts between chalcopyrite and magnetite
(Figure 2h).

Distal skarn pyrrhotite occurs together with chalcopyrite within calcite (Figure 3a).
In detail, inclusions of diopside are noted within the sulfides (Figure 3b). Pentlandite is
present as minor lamellae within pyrrhotite (Figure 3b). Note the flame-like morphology of
pentlandite indicative of exsolution from solid solution (Figure 3c). Trace sphalerite and
seleniferous galena (clausthalite?) are also noted along the margins or within pyrrhotite
(Figure 3d,e).
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Figure 3. Representative images showing ore mineral associations in distal banded garnet–pyroxene
skarn. (a–c) Pyrrhotite co-existing with chalcopyrite; diopside is enclosed in pyrrhotite. Details show
lamellar pentlandite exsolution in pyrrhotite. (d,e) Chalcopyrite formed together with pyrrhotite; note
micron-scale seleniferous galena and diopside enclosed in pyrrhotite. All are BSE images except right
panel on d (reflected polarized). Abbreviations: Cal—calcite; Ccp—chalcopyrite; Cth—clausthalite or
seleniferous galena; Di—diopside; Pn—pentlandite; Pyh—pyrrhotite; Qz—quartz; Sp—sphalerite.

In the proximal garnet skarn, carrollite (CuCo2S4) accompanies bornite (Figure 4a–c)
and is the only confirmed cobalt mineral. Locally, carrollite is replaced by late chalcocite
and trace galena (Figure 4a). Marginal or grain boundary replacement of bornite by lamellar
chalcocite is noted (Figure 4b,c). Bornite occurs as blebs within chalcopyrite. Particularly
interesting are binary blebs of bornite and a Bi-rich bornite-like phase containing ~6.7 wt.%
Bi that appears brighter on BSE images and has a light reddish-brown color in reflected
light (Figure 4d–f).
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Figure 4. Representative images showing ore mineral associations in proximal massive garnet skarn.
(a) Bornite co-exists with carrollite; both are altered by late chalcocite and galena. (b,c) Relatively
coarse-grained bornite replaced by late chalcocite. Note the presence of trace carrollite along margins
of bornite. (d) Fine-grained bornite exsolved from chalcopyrite. (d–f) Co-existing bornite phases
(high and low Bi) occurring as inclusions within chalcopyrite. Note the lighter reddish-brown color
in Bi-rich bornite compared to normal bornite. All images are BSE images except the right part of
b and c, e, and f, which are reflected polarized photomicrographs. Abbreviations: Adr—andradite;
Bn—bornite; Cc—chalcocite; Ccp—chalcopyrite; Cli—carrollite; Gn—galena.

Abundant tiny Ag-Au tellurides and the common Cu-Bi sulfosalt wittichenite (Cu3BiS3)
are observed as inclusions within Cu-(Fe) sulfides from the proximal garnet skarn (Figure 5).
The Ag-Au tellurides are dominated by hessite (Ag2Te) with subordinate petzite (Ag3AuTe2)
and electrum (Au,Ag). Hessite, generally accompanied by petzite, displays a close relation-
ship with bornite and wittichenite (Figure 5a–c), and locally is associated with molybdenite.
Rare melonite (NiTe2), together with tsumoite (BiTe), and hessite were also observed within
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wittichenite (Figure 5d). Minor sphalerite and galena together with Ag-Au-Bi minerals can
form along the margin of bornite grains (Figure 5e–f). Notable is the presence of petzite
and hessite as filaments and patchy inclusions within wittichenite (Figure 5f).
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Figure 5. Representative BSE images showing Ag-Au-Bi mineral assemblages in proximal massive
garnet skarn. (a) Trace petzite in hessite together with coarser grains of bornite, wittichenite and
chalcopyrite. (b) Hessite inclusion in wittichenite. (c) Trace electrum occurs along the margin of
petzite and hessite. (d) Minor melonite co-existing with hessite and tsumoite in wittichenite and
bornite. (e) Minor sphalerite, galena, and wittichenite at margins of bornite. (f) Detail of (e) showing
trace hessite and petzite. Abbreviations: Adr—andradite; Bn—bornite; Ccp—chalcopyrite; El—
electrum; Gn—galena; Hes—hessite; Mlt—melonite; Tsm—tsumoite; Ptz—petzite; Sp—sphalerite;
Wtc—wittichenite.

In the proximal retrogressed pyroxene skarn, the main Bi minerals are wittichenite
and aikinite (CuPbBiS3) (Figure 6). These phases occur together at contacts between chal-
copyrite and magnetite (Figure 6a). Dense fields of micron- to submicron-scale lamellae of
tetradymite form inner parts of the wittichenite enclosed in magnetite (Figure 6b). These
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textures are likely indicative of tetradymite exsolution from a broad wittichenite solid
solution. Wittichenite and aikinite form along magnetite margins; adjacent tetradymite
is present as a separate, coarser (~50 µm-long) lamella (Figure 6c,d). Such textural rela-
tionships indicate co-crystallization between the two Bi minerals and their host magnetite
and chalcopyrite.
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Figure 6. Representative images showing Bi-bearing mineral associations in proximal retrogressed
pyroxene-dominated skarn (a–d) and their composition plots (e,f) (after [3]). (a) Co-existing wit-
tichenite, aikinite, chalcopyrite and calcite. (b) Exsolution of lamellar tetradymite from wittichenite.
(c,d) Granular aikinite and tetradymite associated with chalcopyrite. All are BSE images except c
(reflected polarized). Abbreviations: Adr—andradite; Aik—aikinite; Cal—calcite; Ccp—chalcopyrite;
Hed—hedenbergite; Mag—magnetite; Ttd—tetradymite; Wtc—wittichenite.

4.2. Paděraite and Kupčíkite: Micron to Nanoscale Characterization

Two rare Bi-Cu-(Pb) sulfosalts, kupčíkite and paděraite, are observed within the ret-
rogressed skarn enriched in associations of Bi minerals (Figure 7). The two rare sulfosalts
occur as discrete grains, oriented at ~90◦ to one another at the edge of a larger lamella of
tetradymite (Figure 7a). Paděraite is euhedral, whereas kupčíkite is marginally replaced by
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wittichenite (Figure 7b). This also displays a scalloped boundary with tetradymite. Paděraite
is also replaced by wittichenite, as observed from marginal relationships (Figure 7c). Slightly
ragged boundaries between the two sulfosalts are also observed (Figure 7d). Tetradymite
is present as a small sigmoid-shaped inclusion on the boundary of paděraite, whereas
wittichenite is observed on the side of the kupčíkite. Taken together, these textural rela-
tionships indicate reworking of primary paděraite–kupčíkite + tetradymite associations
(Figure 7a,b) with superimposed replacement by wittichenite (Figure 7c,d).
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Figure 7. BSE images showing paděraite and kupčíkite associations in proximal retrogressed
pyroxene-dominated skarn. (a,b) Intergrowths between paděraite and kupčíkite together with
tetradymite. (c) Paděraite surrounded by wittichenite and magnetite. (d) Co-existing paděraite,
kupčíkite, and tetradymite, which were replaced by wittichenite. Abbreviations: Adr—andradite;
Kup—kupčíkite; Mag—magnetite; Pde—paděraite; Ttd—tetradymite; Wtc—wittichenite.

Nanoscale study was carried out on several S/TEM foils to assess the identity of
the two rare sulfosalts (Figure 8). Two of these foils comprise kupčíkite with a rim of
wittichenite towards the boundary with magnetite at depth (Figure 8a) and paděraite alone
(Figure 8b). The [010] zone axis was targeted in both sulfosalts, as this is the best orientation
to assess their crystal-structure building modules using HR TEM [6].
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Figure 8. (a,b) Overview of S/TEM foils studied for kupčíkite (Kup) and paděraite (Pad). (c) Selected
area electron diffraction (SAED) showing measurements of 27 Å and 17 Å between lattice vectors at
75◦ indicative of paderaite tilted close to [010] zone axis. (d–g) SAED patterns and corresponding
images representative of kupčíkite (d,e) and paděraite (f,g) tilted on zone axes as labeled. The images
show 12 Å and 27 Å repeats corresponding to the c parameter of kupčíkite and paderaite, respectively.
BF-TEM—bright-field transmission electron microscopy; HAADF STEM—high-angle annular dark-
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field scanning transmission electron microscopy. (h,i) Fast Fourier transform and image of wittichenite
(Wtc) tilted on zone axis as labeled. Crystal model of wittichenite on the same [100] zone axis as
an overlay on the image in (i) showing the bismuth atoms as dumbbell arrays on the HAADF
STEM image. (j) Crystal model and STEM simulation for paděraite on the [110] zone axis. Note the
correspondence with the HAADF STEM image in (g) is the simulation for paděraite on the [110] zone
axis. Abbreviations: Kup—kupčíkite; Mag—magnetite; Pde—paděraite; Wtc—wittichenite.

Paděraite from a third foil was tilted only close to [010], as shown in the selected area
electron diffraction (SAED) in Figure 8c, but could not be imaged. Kupčíkite from the foil
in Figure 8a was identified from the SAED on the [010] zone axis (Figure 8d). This could
be imaged only in BF-TEM mode (Figure 8e) as this zone axis was out of reach for the
tilt allowed on the S/TEM microscope. The BF-TEM image shows regular ~12 Å repeats
corresponding to the c parameter of kupčíkite (indexing using Topa et al. [8]). Paděraite
from the foil in Figure 8b was identified from the SAED and HAADF STEM imaging on
the [110] zone axis (Figure 8f,g). The image shows regular ~27 Å repeats corresponding
to the c parameter of paděraite using one of the structures of Topa and Makovicky [25].
Wittichenite was also identified from SAED and HAADF STEM imaging on the [100]
zone axis (Figure 8h,i). The crystal structure model for wittichenite (overlay on image in
Figure 8i) and crystal model and STEM simulation for paděraite on the [110] zone axis
(Figure 8j) show a good match with the images.

4.3. Compositional Data
4.3.1. EPMA Data

EPMA data for the Bi-rich bornite, Cu-Bi sulfosalts, Bi chalcogenides, and Au-Ag
tellurides are listed in Tables 2–6. Data for other sulfides are given in Tables S1–S7.

Our EPMA dataset indicates that most bornite is stoichiometric Cu5FeS4, albeit with
detectable levels of Bi (mean 0.20 wt.%), Ag (mean 0.12 wt.%), Co (~0.17 wt.%), and Se
(~0.09 wt.%) (Table 2). The Bi-rich bornite-like phase occurring in sample 374 (Figure 4d–f) is
relatively Fe-rich, Cu-poor, and contains a mean Bi content of 6.73 wt.%, giving the empirical
composition Cu4.37Bi0.16Fe1.28S4.18 (Table 2). Both chalcopyrite (Cu0.98–1.02Fe0.98–1.01S1.97–2.01)
and chalcocite (Cu1.85Fe0.06S1.09) are stoichiometric and host comparable contents of Bi
(0.06–0.16 wt.%), Ag (<dl~0.16 wt.%), Se (<dl~0.08 wt.%) and Co (<dl~0.10 wt.%) (Table S1).

Compositional data for all Cu-Bi-(Pb) sulfosalts are listed in Tables 3 and 4 and plotted
in Figure 6e (wittichenite and aikinite) and Figure 9 (kupčíkite and paděraite).

Wittichenite (Cu2.92–2.99Fe0.03–0.07Bi0.91–0.96 S3.00–3.06) and aikinite (Cu1.05Fe0.04Pb1.06
Bi1.10 S3.16) contain detectable Fe (average contents 0.77 wt.% and 0.53 wt.%, respectively).
Selenium contents are also quite high in both wittichenite (0.05–1.04 wt.%) and aikinite
(0.32–1.07 wt.%). Tellurium concentrations are below minimum limits of detection in
both minerals. Wittichenite contains measurable Ag concentrations in some analyses
(<dl~0.50 wt.%), whereas Ag is below the minimum detection limit in all analyzed aikinites.

Kupčíkite is a scarce mineral with fewer than 10 localities noted to date. Analytical data
for kupčíkite (Table 4) give the empirical formula (Cu3.43Fe0.59)4.02(Bi4.96Pb0.02Cd0.03Ag0.01)5.02
(S9.82Se0.14)9.96 (n = 18). Iron (1.34–2.53 wt.%) is an essential component in kupčíkite.
Kupčíkite displays variable contents of Pb (<dl to 0.68 wt.%), but Cd (0.06–0.34 wt.%) is
relatively steady. Kupčíkite also contains relatively high, consistent concentrations of Se
(0.60–0.79 wt.%), but no Te.

Paděraite contains Pb (average 7.23 wt.%), Ag (average 0.26 wt.%), Cd (average
0.07 wt.%) and minor Fe (average 0.50 wt.%). It also has Se contents (average 0.99 wt.%) that
are comparable with kupčíkite: and trace amounts of Te (average 0.16 wt.%). Analysis of
paděraite gives the empirical formula Cu7(Cu0.05Ag0.09Fe0.34Pb1.31Cd0.02Bi11.10)12.91(S21.56
Se0.47Te0.05)22.08 (n = 12; Table 4).
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Table 2. Summary EPMA data for Bi-rich and normal bornite in the Zhibula Cu skarn.

Bi-Rich Bornite-like Phase (wt.%) Normal Bornite (wt.%)

Sample 374 (n = 3) Sample 374 (n = 13) Sample 8 (n = 29) Sample 180 (n = 3) Sample 372 (n = 2)

1 2 3 Mean Max. Min. SD Mean Max. Min. SD Mean Max. Min. SD Mean Max. Min. SD Mean

Cu 54.6 55.24 54.77 54.87 64.50 61.39 0.73 63.55 63.90 62.50 0.37 63.35 60.86 60.59 0.11 60.71 62.93 62.52 0.20 62.72
Ag 0.09 0.09 0.07 0.08 0.20 <dl 0.06 0.03 0.23 <dl 0.04 0.12 0.06 <dl 0.00 0.02 0.10 0.09 0.00 0.10
Fe 14.53 14.12 13.68 14.11 11.59 10.27 0.31 11.31 11.48 10.78 0.17 11.19 15.23 14.76 0.20 14.96 11.65 11.64 0.00 11.64
Pb <dl 0.07 <dl 0.02 0.10 <dl 0.02 0.04 0.25 <dl 0.05 0.05 <dl <dl - <dl 0.09 <dl 0.03 0.05
Bi 6.47 6.82 6.9 6.73 0.51 0.12 0.10 0.20 0.31 0.11 0.04 0.18 0.30 0.25 0.02 0.27 0.39 0.25 0.07 0.32
Co 26.6 26.5 26.32 0.01 0.03 <dl 0.01 0.01 0.04 <dl 0.01 0.01 0.17 0.08 0.04 0.14 0.02 <dl 0.01 0.01
S 0.07 0.07 0.09 26.47 25.64 23.38 0.51 25.02 27.74 25.77 0.35 26.35 26.83 26.22 0.27 26.60 26.23 26.13 0.05 26.18
Se <dl 0.02 0.02 0.08 0.09 <dl 0.01 0.04 0.09 <dl 0.02 0.03 0.05 <dl 0.00 0.02 0.06 <dl 0.02 0.03
Total 102.35 102.91 101.83 102.36 101.14 98.59 0.74 100.22 102.08 99.91 0.62 101.27 102.61 102.52 0.04 102.58 101.34 100.77 0.28 101.06

Formula (to 10 atoms)

Cu 4.336 4.383 4.391 4.370 5.167 4.938 0.058 5.038 4.978 4.820 0.031 4.931 4.672 4.632 0.017 4.650 4.901 4.894 0.004 4.898
Ag 0.004 0.004 0.004 0.004 0.009 - 0.003 0.002 0.011 - 0.002 0.005 0.003 - 0.000 0.001 0.005 0.004 0.000 0.004
Pb - 0.002 - 0.001 0.002 - 0.001 0.001 0.006 - 0.001 0.001 - - - - 0.002 - 0.000 0.001
Fe 1.313 1.275 1.248 1.279 1.058 0.926 0.029 1.020 1.009 0.950 0.012 0.991 1.331 1.286 0.020 1.303 1.037 1.032 0.002 1.035
Bi 0.156 0.165 0.168 0.163 0.012 0.003 0.002 0.005 0.007 0.003 0.001 0.004 0.007 0.006 0.000 0.006 0.009 0.006 0.002 0.008
Total M 5.809 5.828 5.811 5.816 6.232 5.998 0.055 6.065 5.991 5.779 0.037 5.933 6.010 5.934 0.035 5.960 5.946 5.945 0.001 5.945
S 4.186 4.167 4.183 4.179 3.997 3.768 0.054 3.932 4.221 4.006 0.038 4.065 4.066 3.990 0.034 4.039 4.055 4.050 0.003 4.053
Se 0.004 0.005 0.006 0.005 0.006 - 0.001 0.003 0.006 - 0.001 0.002 0.003 - 0.000 0.001 0.004 - 0.000 0.002
S(+Se) 4.191 4.172 4.189 4.184 4.002 3.768 0.055 3.935 4.221 4.009 0.037 4.067 4.066 3.990 0.035 4.040 4.055 4.054 0.001 4.055
M/S 1.386 1.397 1.387 1.390 1.654 1.499 0.037 1.542 1.495 1.369 0.022 1.459 1.506 1.460 0.022 1.476 1.467 1.466 0.001 1.466

Note: <dl, below minimum limit of detection. For detailed data, see Table S1.
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Table 3. Summary EPMA data for common Cu-Bi sulfosalts (wittichenite and aikinite) in the Zhibula
Cu skarn.

Wittichenite (Sample 374, n = 4) Wittichenite (Sample 180, n = 10) Aikinite (Sample 180, n = 11)

Max. Min. SD Mean Max. Min. SD Mean Max. Min. SD Mean

Cu 39.80 38.79 0.38 39.35 38.03 36.88 0.39 38.00 10.98 10.54 0.13 10.75
Ag 0.50 0.30 0.07 0.39 0.22 <dl 0.05 0.19 <dl <dl - <dl
Fe 1.16 0.60 0.22 0.83 0.87 0.54 0.14 0.77 0.86 0.07 0.29 0.53
Cd 0.09 0.06 0.01 0.08 0.06 0.04 0.01 0.04 0.14 0.05 0.04 0.04
Pb <dl <dl - <dl <dl <dl - <dl 36.22 35.11 0.37 35.53
Mn <dl <dl - <dl 0.08 <dl 0.02 0.02 0.03 <dl 0.01 0.01
Bi 40.42 39.15 0.51 39.55 41.89 40.57 0.44 40.90 37.56 36.07 0.46 37.01
S 20.12 19.80 0.12 19.94 20.45 19.39 0.30 20.06 16.91 15.70 0.39 16.25
Te <dl <dl - <dl <dl <dl - <dl 0.02 <dl 0.01 0.01
Se 0.11 <dl 0.02 0.07 1.04 0.09 0.25 0.26 1.07 0.32 0.29 0.67

Total 101.44 98.97 0.98 100.18 101.45 98.41 0.87 99.87 102.11 99.59 0.91 100.64

Formula (to 7 atoms) Formula (to 6 atoms)

Cu 3.004 2.977 0.011 2.989 2.922 2.870 0.016 2.923 1.157 0.947 0.078 1.050
Ag 0.022 0.013 0.003 0.017 0.010 - 0.002 0.009 - - - -
Pb - - - - - - - - 1.185 0.978 0.080 1.064
Fe 0.100 0.053 0.018 0.072 0.075 0.047 0.012 0.033 0.101 0.008 0.033 0.041
Cd 0.004 0.003 0.001 0.003 0.003 0.002 0.000 0.002 0.008 0.003 0.002 0.002

Cu+Ag+Fe 3.126 3.047 0.029 3.078 2.986 2.875 0.031 2.965 1.202 1.007 0.075 1.091
Pb+Cd 0.004 0.003 0.001 0.003 0.003 0.002 0.000 0.002 1.188 0.984 0.081 1.066

Bi 0.925 0.904 0.008 0.914 0.989 0.959 0.011 0.957 1.204 1.010 0.084 1.099
Bi+Sb+As 0.925 0.904 0.008 0.914 0.989 0.959 0.011 0.957 1.204 1.010 0.084 1.099

Total M 4.034 3.968 0.026 3.994 3.947 3.867 0.023 3.924 3.549 3.022 0.235 3.256
S 3.028 2.963 0.025 3.002 3.120 2.988 0.035 3.060 3.470 2.871 0.264 3.145
Te - - - - - - - - 0.001 - 0.000 0.001
Se 0.007 - 0.001 0.005 0.065 0.006 0.015 0.016 0.092 0.027 0.024 0.053

S(+Te+Se) 3.032 2.966 0.026 3.006 3.133 3.053 0.023 3.076 3.507 2.943 0.264 3.198
Charge M 5.946 5.850 0.042 5.896 5.922 5.808 0.037 5.874 7.145 6.071 0.478 6.562
Charge S 6.063 5.932 0.051 6.012 6.266 6.106 0.046 6.152 7.014 5.885 0.528 6.396

mean 5.965 5.939 0.011 5.954 6.057 6.014 0.013 6.013 7.037 6.005 0.502 6.479
diff. 0.014 −0.204 0.091 −0.116 −0.185 −0.437 0.079 −0.278 0.292 0.004 0.087 0.166

diff (%) 0.2 −3.4 1.5 −1.9 −3.1 −7.2 1.3 −4.6 4.8 0.1 1.5 2.6

Note: <dl, below minimum limit of detection. For detailed data, see Table S2.

Table 4. Summary EPMA data for trace Cu-Bi sulfosalts (kupčíkite and paděraite) in the Zhibula Cu
skarn (sample 180).

Pb Bi Cu Ag Fe Cd S Se Te Total Pb Bi Ag Cu Fe Cd S Se Te eV%

Kupčíkite Formula (to 19 atoms)

Ku-1 0.46 64.90 13.33 0.21 2.33 0.23 19.81 0.63 <dl 101.9 0.035 4.941 0.031 3.337 0.664 0.033 9.832 0.127 - −1.3
Ku-2 0.52 64.37 13.09 0.19 2.14 0.29 19.72 0.65 <dl 100.97 0.040 4.949 0.028 3.310 0.616 0.041 9.883 0.132 - −2.3
Ku-3 0.26 64.17 13.39 0.11 2.00 0.27 19.57 0.68 <dl 100.45 0.020 4.956 0.016 3.400 0.578 0.039 9.851 0.139 - −2.1
Ku-4 <dl 64.22 13.08 0.13 2.19 0.34 19.66 0.70 <dl 100.32 - 4.954 0.019 3.318 0.632 0.049 9.885 0.143 - −2.5
Ku-5 0.21 64.21 13.73 0.19 2.17 0.26 19.61 0.64 <dl 101.02 0.016 4.918 0.028 3.458 0.622 0.037 9.791 0.130 - −1.3
Ku-6 <dl 63.82 13.52 <dl 2.32 0.20 19.45 0.71 <dl 100.02 - 4.929 - 3.434 0.671 0.029 9.792 0.145 - −1.3
Ku-7 0.39 63.95 13.68 0.15 2.26 0.22 19.77 0.63 <dl 101.05 0.030 4.879 0.022 3.432 0.645 0.031 9.832 0.127 - −2.1
Ku-8 0.04 64.06 13.54 0.14 2.21 0.22 19.67 0.60 <dl 100.48 0.003 4.920 0.021 3.420 0.635 0.031 9.848 0.122 - −2.0
Ku-9 <dl 64.39 13.35 0.09 2.34 0.26 19.46 0.68 <dl 100.57 - 4.966 0.013 3.386 0.675 0.037 9.783 0.139 - −0.6

Ku-10 <dl 64.21 13.70 0.08 2.53 0.10 19.71 0.70 <dl 101.03 - 4.892 0.012 3.432 0.721 0.014 9.788 0.141 - −1.4
Ku-11 0.23 64.64 13.23 <dl 2.39 0.12 19.57 0.75 <dl 100.93 0.018 4.970 - 3.345 0.688 0.017 9.809 0.153 - −1.1
Ku-12 0.51 63.34 13.27 <dl 1.94 0.06 19.34 0.63 <dl 99.09 0.040 4.961 - 3.418 0.569 0.009 9.873 0.131 - −2.4
180Ku-

13 0.77 63.99 13.45 <dl 1.76 0.11 18.98 0.79 <dl 99.85 0.061 5.032 - 3.478 0.518 0.016 9.730 0.164 - −0.1

Ku-14 0.68 63.30 13.69 <dl 1.51 0.14 18.90 0.77 <dl 98.99 0.054 5.008 - 3.562 0.447 0.021 9.747 0.161 - −0.9
Ku-15 0.06 63.09 13.41 0.13 1.34 0.08 18.85 0.72 <dl 97.68 0.005 5.048 0.020 3.529 0.401 0.012 9.832 0.152 - −2.2
Ku-16 0.85 63.77 13.79 <dl 1.51 0.17 19.32 0.79 <dl 100.2 0.067 4.966 - 3.532 0.440 0.025 9.808 0.163 - −2.3
Ku-17 0.08 63.29 13.07 0.10 1.93 0.11 18.92 0.70 <dl 98.2 0.006 5.028 0.015 3.415 0.574 0.016 9.798 0.147 - −0.9
Ku-18 0.14 64.28 13.99 <dl 1.97 0.09 19.67 0.72 <dl 100.86 0.011 4.923 - 3.523 0.565 0.013 9.820 0.146 - −2.3
Min. <dl 63.09 13.07 <dl 1.34 0.06 18.85 0.60 <dl 97.68 4.879 3.310 0.401 0.009 9.730 0.122 - −2.5
Max. 0.85 64.90 13.99 0.21 2.53 0.34 19.81 0.79 <dl 101.90 0.067 5.048 0.031 3.562 0.721 0.049 9.885 0.164 - −0.1
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Table 4. Cont.

Pb Bi Cu Ag Fe Cd S Se Te Total Pb Bi Ag Cu Fe Cd S Se Te eV%

Mean 0.29 64.00 13.46 0.08 2.05 0.18 19.44 0.69 100.20 0.02 4.96 0.01 3.43 0.59 0.03 9.82 0.14 −1.6
SD 0.26 0.48 0.26 0.04 0.32 0.08 0.31 0.06 1.05 0.02 0.05 0.01 0.07 0.09 0.01 0.04 0.01 0.7

Paděraite Formula (to 42 atoms)

Pad-1 7.25 62.26 11.48 0.36 0.51 0.12 18.64 0.98 0.13 101.73 1.310 11.153 0.125 6.762 0.342 0.040 21.765 0.465 0.038 −1.8
Pad-2 7.29 61.92 11.58 0.28 0.39 0.05 18.57 0.96 0.18 101.22 1.324 11.146 0.098 6.855 0.263 0.017 21.789 0.457 0.053 −2.3
Pad-3 7.58 61.70 11.66 0.30 0.38 0.09 18.31 1.02 0.19 101.23 1.383 11.159 0.105 6.935 0.257 0.030 21.586 0.488 0.056 −0.9
Pad-4 7.35 61.07 11.35 0.27 0.68 0.09 18.32 1.09 0.15 100.37 1.344 11.075 0.095 6.769 0.461 0.030 21.657 0.523 0.045 −1.6
Pad-5 7.25 61.87 11.36 0.25 0.47 0.09 18.08 1.01 0.16 100.54 1.337 11.311 0.089 6.829 0.322 0.031 21.546 0.489 0.048 0.1
Pad-6 7.58 61.76 11.16 0.24 0.47 0.12 18.48 0.98 0.22 101.01 1.384 11.182 0.084 6.645 0.318 0.040 21.811 0.470 0.065 −2.1
Pad-7 7.12 61.70 11.20 0.25 1.09 0.07 18.06 0.99 0.08 100.56 1.306 11.224 0.088 6.700 0.742 0.024 21.415 0.477 0.024 1.7
Pad-8 6.92 61.91 12.87 0.21 0.50 <dl 18.14 0.92 0.18 101.65 1.250 11.090 0.073 7.581 0.335 - 21.181 0.436 0.053 1.7
Pad-9 6.85 61.93 12.47 0.25 0.27 <dl 18.45 0.97 0.16 101.35 1.238 11.095 0.087 7.347 0.181 - 21.546 0.460 0.047 −1.3
Pad-
10 7.37 61.15 12.80 0.11 0.39 0.06 18.64 0.97 0.16 101.65 1.319 10.846 0.038 7.466 0.259 0.020 21.551 0.455 0.046 −2.0

Pad-
11 7.26 61.15 12.44 0.28 0.45 0.05 18.45 0.96 0.16 101.20 1.310 10.940 0.097 7.318 0.301 0.017 21.515 0.455 0.047 −1.2

Pad-
12 6.93 61.22 12.56 0.29 0.42 0.11 18.18 1.02 0.19 100.92 1.258 11.018 0.101 7.433 0.283 0.037 21.328 0.486 0.056 0.0

Min. 6.85 61.07 11.16 0.11 0.27 <dl 18.06 0.92 0.08 100.37 1.238 10.846 0.038 6.645 0.181 - 21.181 0.436 0.024 −2.3
Max. 7.58 62.26 12.87 0.36 1.09 0.12 18.64 1.09 0.22 101.73 1.384 11.311 0.125 7.581 0.742 0.040 21.811 0.523 0.065 1.7
Mean 7.23 61.64 11.91 0.26 0.50 0.07 18.36 0.99 0.16 101.12 1.314 11.103 0.090 7.053 0.339 0.024 21.558 0.472 0.048 −0.8

SD 0.23 0.37 0.63 0.06 0.20 0.03 0.20 0.04 0.03 0.44 0.045 0.120 0.020 0.330 0.137 0.009 0.180 0.022 0.010 1.3

Note: <dl, below minimum limit of detection.

Table 5. Summary EPMA data for Bi chalcogenides in the Zhibula Cu skarn.

Cu Ag Cd Pb Bi S Te Se Total Cu Ag Pb Cd Cu+Ag Pb+Cd Bi Total
M S Te Se S(+Te+Se)

Tetradymite (sample 180, n = 15) Formula (to 5 atoms)

Max. 0.13 0.22 0.14 0.13 59.51 5.05 37.21 2.17 101.65 0.015 0.014 0.004 0.009 0.022 0.009 1.971 1.983 1.090 2.012 0.191 3.077
Min. <dl <dl <dl <dl 56.83 4.16 34.33 0.74 98.51 - - - - - - 1.910 1.923 0.917 1.862 0.065 3.017
SD 0.02 0.04 0.03 0.03 0.73 0.28 0.80 0.40 0.99 0.003 0.003 0.001 0.002 0.005 0.002 0.014 0.014 0.052 0.042 0.036 0.014

Mean 0.08 0.06 0.04 0.05 58.39 4.69 35.48 1.44 100.24 0.009 0.004 0.002 0.003 0.012 0.004 1.928 1.945 1.010 1.919 0.126 3.055

Note: <dl, below minimum limit of detection. For detailed data, see Table S3.

Table 6. Summary EPMA data for Au-Ag tellurides in the Zhibula Cu skarn.

S Se Cu Ag Hg Te Bi Au Total S Se Te S+Se+Te Cu Ag Hg Bi Au Total
M

Hessite (sample 8, n = 7) Formula (to 3 atoms)

Max. 0.11 0.19 0.53 63.82 0.22 40.83 0.07 0.32 102.53 0.011 0.008 1.097 1.111 0.028 1.988 0.004 0.001 0.006 2.005
Min. 0.04 0.00 <dl 59.35 <dl 37.37 <dl <dl 100.53 0.005 0.002 0.984 0.995 - 1.886 - - - 1.886
SD 0.02 0.05 0.11 1.49 0.04 1.12 0.01 0.09 0.69 0.002 0.002 0.037 0.038 0.009 0.032 0.001 0.000 0.001 0.038

Mean 0.07 0.08 0.36 62.93 0.10 38.20 0.02 0.07 101.73 0.007 0.003 1.008 1.019 0.014 1.964 0.002 - 0.001 1.981

Hessite (sample 374, n = 4) Formula (to 3 atoms)

Max. 0.20 0.26 <dl 64.14 0.22 37.91 0.07 0.34 102.82 0.021 0.011 0.991 1.016 - 2.000 0.004 0.001 0.006 2.007
Min. 0.12 0.12 <dl 63.36 0.12 36.23 <dl <dl 100.38 0.012 0.005 0.967 0.993 - 1.978 0.002 - - 1.984
SD 0.03 0.06 - 0.28 0.04 0.69 0.00 0.07 0.93 0.003 0.003 0.010 0.010 - 0.011 0.001 0.000 0.002 0.010

Mean 0.16 0.19 <dl 63.75 0.15 37.19 0.02 0.18 101.64 0.017 0.008 0.981 1.005 - 1.989 0.003 0.000 0.003 1.995

Note: <dl, below minimum limit of detection. For detailed data, see Table S4.

EPMA data for tetradymite are listed in Table 5. Tetradymite is stoichiometric
Bi1.93Te1.92S1.01Se0.13 (15 data) with detectable Cu (0.08 wt.%), Ag (0.06 wt.%), Cd (0.04 wt.%),
and Pb (0.05 wt.%). The ratios of Bi/(Te+Se+S) for Zhibula tetradymite are 0.62–0.65, as
plotted in Figure 6f. We note the presence of 0.74–2.17 wt.% Se in Zhibula tetradymite.

Silver–(Au) tellurides are dominated by hessite (Table 6). Analysis of hessite gives
the formula Ag1.97Te1.00S0.01Se0.01 (n = 11). Traces of Cu (average 0.17 wt.%), Hg (average
0.12 wt.%), Bi (average 0.02 wt.%), Se (average 0.12 wt.%), and Au (average 0.11 wt.%)
are noted. Despite its relative abundance in the samples, the fine grain size of petzite
prohibited acquisition of high-quality compositional data.
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Figure 9. Ternary Cu(+Fe)—Bi*–Pb*(+Cd) plot for cuprobismutite homologues and paděraite (af-
ter [9]) showing the composition of Zhibula specimens. Data of paděraite are from [9,25], and
kupčíkite are from [8].

Carrollite associated with bornite contains 12.16–18.18 wt.% Cu, 26.07–36.24 wt.%
Co, 9.91–11.25 wt.% Ni, and 0.05–4.07 wt.% Fe, giving the calculated formula Cu0.59–0.90
Fe0.00–0.23 Co1.39–1.88 Ni0.52–0.60 S3.97–4.02 (Table S5). Analyzed grains also contain measurable
concentrations of Bi (0.10–0.17 wt.%), Te (0.02–0.07 wt.%), and Se (<dl~0.08 wt.%).

Pyrrhotite contains measurable Ni (mean 0.83 wt.%) and Co (mean 0.14 wt.%) (Table S6).
Pyrrhotite is non-stoichiometric and has a generic formula of Fe1-xS (0 < x < 0.125; e.g., [26]).
The x value of Zhibula pyrrhotite averages 0.108. Exsolved pentlandite in pyrrhotite
has low Fe (mean 35.23 wt.%) and high Ni (mean 26.94 wt.%) with a mean formula of
Fe4.86Ni3.54Co0.35S8.23. Pentlandite contains minor Co (1.30–3.22 wt.%), Se (0.05–0.09 wt.%),
and negligible Te (<dl~0.03 wt.%).

Galena contains significant concentrations of Ag (mean 1.14 wt.%) and Bi (mean
2.31 wt.%), as well as detectable Se (mean 0.20 wt.%), Cu (mean 0.25 wt.%), Te (mean
0.05 wt.%), and Cd (mean 0.05 wt.%) (Table S7). Small grain size hampered efforts to obtain
reliable compositional data for seleniferous galena (galena–clausthalite solid solution;
Figure 3e).

Two markedly different types of sphalerite are observed (Table S7). The first (in sample
321) is characterized by high Fe (average 12.59 wt.%) and Cd (average 1.34 wt.%), low Zn
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(average 51.24 wt.%), and measurable average contents of Co (0.08 wt.%) and Ni (0.05 wt.%).
The second features low Fe (mean 1.24 wt.%) and Cd (mean 0.22 wt.%), high Zn (mean
64.01 wt.%), with detectable Co (mean 0.26 wt.%), traces of In (mean 0.02 wt.%), and Hg
(mean 0.05 wt.%), but without detectable Ni.

4.3.2. LA-ICP-MS Trace Element Data

In an attempt to corroborate the concentrations of elements of interest in common
sulfides, trace element analysis by LA-ICP-MS was undertaken on selected grains of
chalcopyrite and bornite (Table S8).

Bornite from two samples confirms the notable enrichment in Bi (846–27,467 ppm, av-
erage 7351 ppm), Ag (264–901ppm, average 462 ppm), Se (143–543 ppm, average 302 ppm),
and Te (3.0–283 ppm, average 63 ppm). Two samples (374 and 8) display distinct Bi and Se
contents (Figure 10a,b). Additionally, a positive correlation between Ag and Te is noted
(Figure 10c).
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In comparison, chalcopyrite shows much lower concentrations of Bi (<dl~75 ppm,
average 8.8 ppm), Ag (0.17–14 ppm, average 2.8 ppm), Te (0.31–5.0 ppm, average 1.8 ppm),
and Se (90–234 ppm, average 139 ppm). We note, however, higher In concentrations in
chalcopyrite (1.7–6.3 ppm) than in bornite (0.03–3.3 ppm).

5. Discussion
5.1. A New Skarn Occurrence of Kupčíkite and Paděraite, the First Report from China

The present study introduces a new occurrence of kupčíkite and paděraite, minerals
that are for the first time reported from a Chinese locality. Kupčíkite is a member of the
cuprobismutite homologous series of copper–bismuth sulfosalts [8,14]. Paděraite is not
a member of the cuprobismutite homologous series, but is chemically and structurally
related to it [6,9,25,27]. Structural relationships between paděraite and the cuprobismutite
homologous series were postulated by Mumme [27], and later illustrated as nanoscale inter-
growths between paděraite and cuprobismutite in Ciobanu et al. [6]. Cook and Ciobanu [9]
postulated that paděraite belonged to a closely related homologous series with potential
links to cuprobismutite series via the substitution Cu + Bi → 2Pb. Topa and Makovicky [25]
discussed hypothetical intergrowths between paděraite and cuprobismutite homologues.

The cuprobismutite homologous series, Cu8Me4(N–1)+2
(quasi)octBi8sq.pyrS4N+16, (oct =

octahedral; sq. pyr. = square pyramidal; where Me = Bi, Ag, Fe; [5,14]) comprises three
named minerals with layered structures and predictable compositional variation via the
homologue number N = (N1 + N2)/2; N1 and N2 relate to the incremental quasi-octahedral
layer. Kupčíkite, Cu3.4Fe0.6Bi5S10, was first described from type locality (TL), the Felber-
tal scheelite deposit, Hohe Tauern, Austria [8] and is the simplest N = (1,1) homologue
(Figure 9). This corresponds structurally to the synthetic phase Cu4Bi5S10 of Mariolacos [28].
It differs, however, from the synthetic equivalent in that it also contains Fe, an element
that seems to be essential for mineral stability in the geological environment. Kupčíkite
contains more Fe than other cuprobismutite homologues, but typically only minor Ag or
Cd, if any. Compositional data for kupčíkite from black shale-hosted hydrothermal Ni-
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Bi-As mineralization at Čierna Lehota, Slovakia show a significant Pb content (2.73 wt.%),
yielding the formula (Cu3.92Fe0.24Bi4.60Pb0.19Ag0.04Sb0.01S9.58) [11]. Kupčíkite from granitic
pegmatites in Karkonosze Massif, southwestern Poland has traces of Zn (~0.20 wt.%)
(Cu6.67Fe1.22Zn0.10Bi9.99S20.03) [12]. The Zhibuka kupčíkite is stoichiometric with Fe content
(Fe = 0.59 apfu), comparable to the TL specimen, but also contains Se (0.14 apfu).

Paděraite was first described by Mumme and Žák [7] from Băiţa Bihor (Romania) with
the empirical composition Cu5.9Ag1.3Pb1.6Bi11.2S22. Mumme [27] proposed the structural
formula Cu6AgPbBi12S22. Paděraites from Swartberg (South Africa) and Ocna de Fier (Ro-
mania) yield different empirical formulae: Cu7.36Pb1.31Bi11.32S22 and Cu7.11Ag0.36Pb1.2Bi11.28
S22.05, respectively [9,10]. Due to the different Cu and Ag contents, Topa and Makovicky [25]
distinguished between Ag-bearing paděraite (Băiţa Bihor) and Ag-free, Cu-enriched
paděraite (Swartberg). Their structural formula can be expressed as Cu7(X0.33Pb1.33Bi11.33)
∑13S22, where X is either Cu or Ag. Zhibula paděraite (Figure 9; Table 4) is also Ag-bearing, al-
beit with much lower Ag than the examples from Baita Bihor or Ocna de Fier, i.e., Ag = 0.09 apfu,
compared to 0.2–0.3 and 0.3–0.4 apfu, respectively. It also contains relatively high content
of Se (0.47 apfu) and minor Te (0.05 apfu). Notably, Zhibula paděraite differs from the
other three specimens in that it contains Fe (0.34 apfu), an element that requires further
constraints in terms of how it is incorporated into the crystal structure.

The interest in these rare minerals stems from the fact they are often intergrown with
one another and with other Bi sulfosalts, particularly in skarn deposits rich in Bi minerals,
such as those from Baita Bihor and Ocna de Fier [5,6,9,25]. In such skarn occurrences, the
two minerals are enclosed within members of the bismuthinite derivative series, either
aikinite or bismuthinite, respectively. Co-crystallization between cuprobismutite homo-
logues is supported by micron and nanoscale intergrowths observed at Ocna de Fier [6,9],
whereas Topa and Makovicky [25] propose replacement of hodrushite by paděraite in the
Baita Bihor example.

The Zhibula skarn is outstanding in that kupčíkite and paděraite, although associ-
ated, do not display such lamellar intergrowths with one another at either the micron- or
nanoscale (Figures 7 and 8). Secondly, they are not associated with one of the bismuthinite
derivatives (only aikinite is present at Zhibula), but instead co-crystallize with tetradymite
(Figure 7a). Superimposed overprinting is evidenced by the observed replacement of
wittichenite (Figure 7c) and reshaping of mutual phase boundaries (scalloped and ragged
morphologies; Figure 7b,d). This implies that kupčíkite and paděraite can be attributed
to the prograde (diopside–andradite) skarn stage rather than the retrograde skarn stage
(hedenbergite–johannsenite) in proximal skarn from Zhibula. Temperatures in the range
400–600 ◦C were constrained from phase associations for this stage and are corroborated
by fluid inclusion data for the Zhibula skarn (405–667 ◦C; [22]). Likewise, the Ocna de Fier
skarn records temperatures of 400–600 ◦C and ~371 ◦C during prograde and retrograde
stages, respectively, as estimated from skarn associations [29].

Although few studies have mentioned the formation environments of Cu-Bi sulfosalts
and associated paděraite, we note their occurrence is generally in deposits characterized
by relatively high temperatures, including metamorphosed W deposits [8], granite-related
Cu-rich veinlets, and Li-Be-bearing granitic pegmatite at Swartberg ([10] and references
therein). Furthermore, based on fluid inclusion data (310–390 ◦C) for quartz from the Obari
mine, Japan, formation of cuprobismutite-group minerals took place above 300 ◦C [13].

5.2. Genetic Constraints—Trace Minerals and Metallogenic Implications

Exotic trace mineralogy comprising Bi-Te-Au associations are typical of many de-
posits [3] and are common in skarn deposits of various types [30]. In the latter case, skarn
orefield zonation can lead to specific ore assemblages, for example, as observed at Ocna de
Fier [29,31]. This is also the case of the Zhibula skarn where proximal and distal skarn differ
in terms of skarn mineralogy [23] and can be enriched in a range of exotic trace minerals,
also including the W-Mo associations in the distal skarn reported by Xu et al. [24].
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Mineralogical variability within calcic skarn deposits is an intrinsic characteristic of
metasomatism driving the interaction between magma-derived fluids and carbonaceous
protoliths ([29] and references therein). Therefore, skarn mineral associations will vary as a
function of different protoliths, fluid components, and physicochemical conditions (XCO2 ,
T, P, pH, etc.) (e.g., [32–34]). Similarly, ore mineral assemblages and accompanying trace
mineral signatures are also likely to exhibit variation in different skarns. Based on prior
results, including the work of Xu et al. [23], we here address the diversity of mineralization
styles observed at Zhibula and discuss the local environments represented by the three
distinct types of skarn ores.

The results presented here show that the proximal skarns (garnet- and pyroxene-
dominant) host distinct ore and trace mineral associations. They both share Cu sulfides and
trace Bi-Te minerals, although of different speciation. The distal skarn has its own distinct
characteristics. The schematic in Figure 11 shows the formation of the three associations,
“A1”, “A2” and “A3,” interpreted in terms of evolving f Te2–f S2 conditions.
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Figure 11. Stability diagrams in terms of logf S2 and logf Te2 for telluride and sulfide species at
400 ◦C and 300 ◦C, respectively (modified after [2,35]), and on the right, a cartoon illustrating
three different mineral assemblages (A1, A2, and A3) and their evolution within the Zhibula Cu
skarn. Abbreviations: Aik—aikinite; An—anorthite; Adr—andradite; Bn—bornite; Cli—carrollite;
Ccp—chalcopyrite; Di—diopside; Gro—grossular; Gn—galena; Hed—hedenbergite; Hem—hematite;
Hes—hessite; Jhn—johannsenite; Kup—kupčíkite; Mag—magnetite; Mlt—melonite; Pde—paděraite;
Pn—pentlandite; Ptz—petzite; Pyh—pyrrhotite; Tsm—tsumoite; Ttd—tetradymite; Ves—vesuvianite;
Wtc—wittichenite; Wo—wollastonite.

5.2.1. Au-Ag Telluride Associations in Bornite–Chalcopyrite Ores

A first association “A1” (column in Figure 11) comprises bornite and chalcopyrite with
minor carrollite, chalcocite, wittichenite, molybdenite, several tellurides (tsumoite, melonite,
hessite, and petzite), and electrum (Figures 2b,c, 4 and 5). This is constrained at relatively
high T, at least 400 ◦C, from conditions interpreted for host proximal garnet skarn [22]
and f O2–f S2 stability within the magnetite–pyrite field. Considering phase stabilities for
tellurides from Afifi et al. [2], the field for association “A1” at 400 ◦C is constrained from
the stability fields of Au tellurides versus that of native gold, as well as Ag and Ni telluride
versus sulfide, and the presence of galena instead of altaite (Figure 11a). Overall, the
co-existing mineral assemblage “A1,” consisting of bornite chalcopyrite, petzite–hessite,
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magnetite–hematite, and wittichenite, suggests that they formed at relatively high f Te2, f S2,
and f O2 conditions (Figures 4 and 11) [35].

Trace element signatures and textural relationships between Cu-Fe sulfides and co-
existing species further assist in characterizing association “A1.” Bornite has long been
reported to accommodate Bi (~0.20 wt.%) and Ag (0.2–2.0 wt.%) (e.g., [36–38]). In Zhibula,
bornite carries comparable concentrations of Bi (1021–21,419 ppm) and Ag (264–901 ppm),
consistent with a hypogene origin and analogous to other comparable occurrences. Bismuth
and Se, particularly the Bi in bornite, display two distinct groups (Figure 10a,b), probably
indicating the variation in formation temperatures, as higher Bi incorporation into bornite
occurs under elevated temperatures. Considering the intergrowth textures among bornite,
chalcopyrite, wittichenite, and hessite (Figures 4 and 5), they probably represent a hypogene
assemblage formed during the early high-temperature prograde skarn stage. Carrollite is
likely also part of this stage, whereas chalcocite and galena are attributable to the retrograde
stage (Figure 4a–c).

The unusual Bi-rich bornite-like phase (average 6.73 wt.%) observed in minor amounts
at Zhibula stands out against the “normal” low-Bi (0.20 wt.%) variety (Figure 4d–f). Similar
textures are reported from the Yangzhaiyu Au deposit, China, in which the brighter patches
in bornite contain up to 7.7 wt.% Bi [39]. These findings are, however, in agreement with
the experimental work of Sugaki et al. [40], which showed that bornite occupies a relatively
extensive field of solid solution at higher temperatures and can incorporate as much as
17.2 wt.% Bi at 420 ◦C and 11.4 wt.% Bi at 300 ◦C. Moreover, Nanri et al. [41] reported that
bornite solid solution can reach a maximum of 18.2 wt.% Bi at 500 ◦C. The observations
are also consistent with fluid inclusion data from co-existing quartz (250–420 ◦C, mean
~300 ◦C) [22]. The mechanism by which the two compositionally distinct bornites co-exist
is, however, unclear at present, and may possibly reflect unmixing of two distinct bornite
superstructures during cooling.

5.2.2. Bismuth Sulfosalt and Tellurides in Magnetite–Chalcopyrite Ore Prograde to
Retrograde Skarn Transition

Minor and trace minerals comprising Cu-Bi sulfosalts (wittichenite, aikinite, kupčíkite,
and paděraite), and tetradymite (Figures 6 and 7), hereafter called assemblage “A2” (column
in Figure 11), are hosted within magnetite–chalcopyrite ore recording lower temperatures
and a reducing event from higher to lower f O2, from diopside–andradite to hedenbergite–
johannsenite skarn (Figure 2d–h; [23]). Such an overprint is also expressed by a coarsening
of the Bi minerals within zoned garnet or new growth within magnetite, from mottled chal-
copyrite cores to marginal inclusions of Bi minerals (Figure 2f,g). Coarsening of Bi minerals
is also accommodated along mutual boundaries between magnetite and chalcopyrite (e.g.,
the tetradymite in Figure 2g). We note the presence of Se in tetradymite (0.74–2.17 wt.%),
as well as kupčíkite and paděraite.

Assemblage “A2” is shown within a narrow stability field formed at lower temperature
(~300 ◦C) and f Te2 (disappearance of Au-Ag tellurides and all other tellurides except
tetradymite), but higher f S2 than assemblage “A1” (Figure 11b). Nonetheless, as discussed
above, early paděraite and kupčíkite could have formed during prograde formation of
diopside–andradite skarn at ~400 ◦C.

5.2.3. Pyrrhotite–Chalcopyrite in Distal Skarn

A further reducing skarn assemblage comprising grossular garnet, vesuvianite, wol-
lastonite, and anorthite, which hosts pyrrhotite and chalcopyrite [23], hereafter called
association “A3” (Figure 11b), is represented by the distal skarn. Association “A3” is esti-
mated to form at the lowest f O2, f S2, and f Te2 conditions. Exsolution of lamellar pentlandite
from pyrrhotite is apparently favored by cooling from high temperatures (e.g., [42]), so we
used a temperature of 300 ◦C for the phase diagram shown in Figure 11b).

Although the mineral assemblages are different in each of the three skarn types,
the primary fluids and their sources are likely to be the same. For example, Co and Ni
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crystallize as carrollite and melonite in bornite–chalcopyrite ores from andradite skarn,
but are instead incorporated into high Co- and Ni-bearing pyrrhotite (mean 0.83 wt.% and
0.14 wt.%, respectively) and pyrrhotite (<dl~0.15 wt.% Co and 0.63–0.91 wt.% Ni) in the
distal (banded grossular) skarn.

In summary, the complex and varied ore mineral assemblages observed in the Zhibula
Cu skarn (Bi-bearing bornite, Au-Ag tellurides, Cu-Bi sulfosalts, Bi chalcogenides, Co-Ni
sulfides, and scheelite–powellite) reflect a complex magmatic–hydrothermal system, closely
related to the nearby Qulong porphyry Cu-Mo deposit [22–24]. The Zhibula deposit has
a characteristic metallogenic signature (Cu, Au, Ag, Te, Se, Bi, Co, W, and Mo). These
elements are common accessories in base metal skarns and occur within a variety of mineral
assemblages depending on the prevailing wall rocks and local physicochemical conditions.
Mineralogical investigation that is sufficiently detailed to establish the mode of occurrence
of minor minerals and their contained elements of interest is not only helpful to indicate
how the ore was formed and evolved but also provides fundamental information necessary
to achieve recovery and optimal beneficiation of these critical metals as by-products.

6. Summary and Conclusions

The Zhibula ±Cu skarn contains a group of conspicuous trace ore minerals, in-
cluding high Bi-bearing bornite (average 6.73 wt.%), Cu-Bi sulfosalts (wittichenite, aiki-
nite, kupčíkite, and paděraite), Au-Ag tellurides (hessite, petzite), and Bi chalcogenides
(tetradymite). During a decrease in temperature from 400 ◦C to 300 ◦C, the stability fields
for these Au and Ag tellurides changed and f Te2 was reduced, which can be clearly noted by
phase equilibrium between AuTe2 and gold. Similarly, logf S2 decreases from −7.4 to −11.4,
as marked by the relative prevalence of pyrrhotite relative to pyrite. Overall, the co-existing
mineral assemblage “A1,” consisting of bornite–chalcopyrite, petzite–hessite, magnetite
(±hematite), and wittichenite, suggests that they formed in relatively high f Te2, f S2, and
f O2 conditions. In contrast, the abundant Bi-Te associations in magnetite–chalcopyrite ore
(association “A2”) have formed during the retrograde sulfidation of pyroxene-dominant
skarn at lower f Te2 and higher f S2.

Kupčíkite (Cu3.43Fe0.59)4.02(Bi4.96Pb0.02Cd0.03Ag0.01)5.02(S9.82Se0.14)9.96 and paděraite
(Cu7(Cu0.05Ag0.09 Fe0.34Pb1.31Cd0.02Bi11.10)12.91(S21.56Se0.47Te0.05)22.08 from Zhibula skarn
do not form nanoscale intergrowths with one another.

The most reduced assemblage is chalcopyrite and pyrrhotite within the distal skarn at
the contact with marble (association “A3”). Cobalt and nickel occur as discrete minerals:
cobaltite, melonite, and pentlandite. The precious metal association is restricted to bornite–
chalcopyrite ores.

These trace ore mineral signatures (assemblages, their compositions and mutual
textures) suggest precipitation from a high-temperature magmatic–hydrothermal system.
Together with the skarn assemblages, trace ore mineralogy supports a genetic relationship
with the nearby Qulong porphyry Cu-Mo deposit and represents evidence for an evolution
of the ore-forming fluids from high f S2–f Te2 conditions, through a moderate S-fugacity,
towards relatively reduced, lower f S2, f O2, and f Te2 conditions. The observed evolution also
corresponds to a diverse suite of local environments controlled by lithology and structure.
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