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Abstract: The paper concerns a nonlinear second-order system of coupled PDEs, having the principal
part in divergence form and subject to in-homogeneous dynamic boundary conditions, for both 6(t, x)
and ¢(t, x). Two main topics are addressed here, as follows. First, under a certain hypothesis on
the input data, f,, f,, w,, w,, &, ¢, 6y, xp, @o, and &y, we prove the well-posedness of a solution
0,0, ¢,& which is (8(t,x),a(t,x)) € Wy*(Q) x Wy2(Z), (¢(tx),&(tx)) € WyA(Q) x Wy*(Z),
v = min{q, p#}. According to the new formulation of the problem, we extend the previous results,
allowing the new mathematical model to be even more complete to describe the diversity of physical
phenomena to which it can be applied: interface problems, image analysis, epidemics, etc. The
main goal of the present paper is to develop an iterative scheme of fractional-step type in order to
approximate the unique solution to the nonlinear second-order system. The convergence result is
established for the new numerical method, and on the basis of this approach, a conceptual algorithm,
alg-frac_sec-ord_u+varphi_dbc, is elaborated. The benefit brought by such a method consists of
simplifying the computations so that the time required to approximate the solutions decreases
significantly. Some conclusions are given as well as new research topics for the future.

Keywords: boundary value problems for nonlinear parabolic PDE; dynamic boundary conditions;
fractional step method; convergence of numerical scheme; numerical algorithm; phase changes

MSC: 35K55; 35K60; 65N06; 65N12; 80A99

1. Introduction

Let O C R", n < 3, be a bounded domain with a C? boundary 9Q) and [0, T] as a
generic time interval. We consider the nonlinear second-order system of coupled PDEs

d d .
P 0t %) +4, 5 0(t %) — Pzle(K1 (t,x,60(t,x)) V9(t,x))
= p3f1(t,x)

‘72%(P(t,X) — g,div (Kz (t,x, 9(t,x)) V(P(t,x))

=4, [9(t,x) — ¢*(£,x)] + p,0(t,x) + g5 £, (£, %)
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subject to in-homogeneous dynamic boundary conditions in both unknown functions 6
and ¢, ie.,

0 )
G—i—pl&G—ArG—i—pSG =w, (t,x)

Pzain
5 3 on %, 2)
G35y ® T 159~ Br¢ + 459 = W, (1, %)
and with the initial conditions
6(0,x) =0p(x), @(0,x) = @o(x) in Q, 3)

where Q = (0,T] x O, £ = (0,T] x 30, 0(+, %), o(t, %), %e(s,.) (6, in short), V0 — 0.,
Vo(t,x) = ¢, (t,x) (Ve = ¢, inshort) p, g, n = n(x), which are the same as in [1], while

*  PuPaPsPasPsris 9205940 5, and g are positive values;

* K (s,y,0(s,y)) and K, (s,y, ¢(s,y)) are the mobility functions (attached to the solution
0(s,y), ¢(s,y), (s,y) € Q, of (1); and (1), respectively; see [2] for more details);

e f(t,x) € LP(Q) and f,(t,x) € LI(Q) are given functions (see [1,3-16] for

more details).
1

1—Lo2-1
o w(tx)w,(tx) €W, ¥ 7(L),p > 2are given functions;
2

2-3 . d
d 0y € Woo p(Q),Wlth PZEGO*AFQO‘I“pg,QO :wl(O,x),

2

2-2 D
and ¢p € Ws 7(Q), with q3a—nq)0 — Ao+ q,00 = w,(0,x).

Remark 1. Besides classical meanings, like the density of heat sources or sinks of heat, the pairs
of given functions { f1, f»} and {wy,w,} in (1) and (2), respectively, can be also interpreted as
distributed and boundary control, respectively, which opens a wide field of applicability for the
nonlinear parabolic systems (1) and (3), such as optimal control problems.

The basic tools in our approach are as follows:

*  The Leray-Schauder degree theory (see [17] and references therein);
*  The LP-theory of linear and quasi-linear parabolic equations [18];

*  Green’s first identity

—/ydivzdx:/Vy-zdx—/y%zd'y
o) Q o0

for any scalar-valued function y and z, a continuously differentiable vector field in n
dimensional space;

*  The Lions and Peetre embedding Theorem (see [17], p. 18) to ensure the existence

of a continuous embedding W;'Z(Q) C L"(Q), p > 2, where the real number y, is
defined as follows:

any positive number > 3p if ;19 — ni+2 <0,
e 2 1 2

n-+2-—2p p n+2



Axioms 2024, 13, 286

30f18

and, fork € {1,2,---}and 1 < p < oo, W]I,f’Zk(Q) denotes the Sobolev space on Q:

Wk’Zk = Lp iﬂ LP for 2 < 2k
y T (Q)=qy € (Q).atraque (Q), for2r+gq < ,

i.e., the spaces of functions whose t-derivatives and x-derivatives up to the order k
and 2k, respectively, belong to L7 (Q);

e Also, we shall use the set C1*(Q) (C'?(Q)) of all continuous functions in Q (in Q)
having continuous derivatives u;, uy, Uyy in Q (in Q), as well as the Sobolev spaces
Wg(Q), W;f’g/ 2(%) (see [17,19] and reference therein);

*  As far as the techniques used in the paper are concerned, it should be noted that we
derive the a priori estimates in LP(Q) and L¥ (X).

In the following, we denote by C several positive constants, being understood that the
extra dependencies are set out on occurrence.

2. Well-Posedness of Solutions to the Nonlinear Second-Order System (1)-(3)

In order to approach the nonlinear second-order systems (1)—(3), we use the same idea
as in V. Berinde, A. Miranville, and C. Morosanu [1]. In this regard, let { = 6 and { = ¢ be
further variables such that {(0, x) = 6y, (0, x) = @o on 90}, while for the remaining data
in (1)-(3), we keep the same meanings formulated at the beginning. Correspondingly, the
boundary conditions in (2) are approached in the sequel by

0=u

d 0 on X%, 4)
pza—ne P Ara+ psa = w, (¢, x)
p=3

0 0 on X%, (5)
‘73$(P+q2§€_ AL +4,8 = w,(t, x)

22
where (0, x) = {o(x), €(0,x) =¢o(x),x € 00, and {,&, € We " (0Q2), p > 2.
Accordingly, problems (1)—(3) can be rewritten suitably as follows:

0 0
pl ge(t, x) - pza |:K1 (t/ X, 9)936,:| GX]'XZ‘

d .
= Al(t,x,9,9x,.) - qlggojL p3f1(t/x) inQ

0(t,x) = a(t,x) on%

0 d
pza—ne—i—pl&a—Ara—i-psvc:wl(t,x) onX

6(0,x) = 6p(x) on ()

a(0,x) = ap(x) x € 90},
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) 0
gy 0 (0%) = s 5| (Ko (62, 0) 9 |

%

= As(t,%, 9, ¢x;) + 4,[0— 9] +p,0(t, x)+q. £, (t,x) inQ

@(t,x) =¢(t,x) onX )
0 d

q3$¢+q2§€_Ar§+qe§:wz(t/x) onX

#(0,x) = po(x) on Q)

¢(0,x) = go(x) x € 00,

where (see [18])

60 —ie(tx)i'—l n
x/'x,'_axjaxi ’ 7 /]_ [ARRN ALY

A (t,3,0(t, %), 6x. (£, 1)) = (K (1,%,0)05, by, 4

90 ox; [K1 (t,x,@)@xi], i=1,...,n,

and
2

Pjx; = mw(t,x), ij=1...m,

J 0 )
Ao (t,x, @(t,x), @x,(t,x)) = 39 {Kz(t, x,q))cpxi} (Pxi"‘g {Kz(t, X, @)¢x |, i=1,..., 1.
1

The Validity of an Auxiliary Nonlinear Second-Order Boundary Value Problem
We consider the following auxiliary nonlinear parabolic problem derived from (7):

qz%@(t,x) — g,div (K2 (t,x, @(t x)) Vq)(t,x)>
=q,[®(t,x) — D°(t,x)] + h(t, x) in Q
D(t,x) = &(t, x) on s
0 o ®)
q3$q}+%§€_Afg+q6§:wz(t/x) on X
®(0,x) = Dy(x) on O
(0,x) = Go(x) x € Q).

Definition 1. Any solution (®(t,x),&(t, x)) of problem (8) is called the classical solution
if it is continuous in Q, has continuous derivatives Oy, Oy, Dyx in Q and {4, {x, {xx 0n %, satisfies
the equation (8)1 at all points (t,x) € Q, and satisfies conditions (8)23 and (8)4 5 on the lateral
surface . of the cylinder Q and for t = 0, respectively.

Our main results regarding the existence, uniqueness, and regularity of solutions to
problem (8) (practically, well-posedness of the solutions to the nonlinear second-order
boundary value problem (1) or (7)) are as follows.

Theorem 1. Suppose (P(t,x),&(t,x)) € CL2(Q) x CV*(X) is a classical solution of problem (8),
and for positive numbers M, My, my, My, My, M3, My, and Ms, one has the following:
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L. |®(t,x)| < M forany (t,x) € Q, and for any z(t, x), the map K, (t, x,z) is continuous and
differentiable in x; its x-derivatives are measurable bounded, and it satisfies the uniformly parabolic
conditions (see [18]), and

0 < K2y <K, (t,x,@(tx)) <Ky, for (t,x)€Q, ©)

ibaz (t,x,®(t,x),z(t,x))| + ’8?13 a;(t,x,®(t,x),z (t,x))H (1+4z])

i=1
(10)

+|@(t,x)| < Mo (1+[2])%.

+Z

1]1

i(kx,®(tx),z(t x))

]

I,. For any sufficiently small ¢ > 0, functions ®(t, x) and K, (t, x, ®(t, x)) satisfy the relations

[l oo <M,y Ky (8%, @) P, [l < My, i=1,.
where

_ max{p,4} p#4 s max{p,2} p#2
4+¢ p=4, 2+¢ p=2.

2 2 15 1

Then, Vh(t,x) € LP(Q), @ € Weo ' (Q0), Eo(x) € W " (T), w0, € Wy 7 7 (%), with
p # 3, and there exists a unique solution (®, &) € W1 2(Q) x W;'Z(Z) to (8) that satisfies

”(DHW;Z(Q) + H§||Wr172(z)
3p—2 3p—2

Fhaoll oz 190l + 1200z,

< c{1+ el
ce)

-2
Wa, 7 (Q)

(11)

3p—2 3p—2
A -2 + 1021l 3p-2 5y + 20, Hw::ﬁ/zf%(z) }
where C > 0 is independent on ®, {, h, and w,.
If (@1, ¢Y), (92, &2) are solutions to (8), corresponding to (®},&}), (®F,&3) € Wi_%(Q) X
Wooi% (0Q)), hl, K2, w%, and wf, respectively, such that

1 2

Iwi20)

1 2 < 1
Hg HW;rz(Z)r ”C ”W;/Z(Z) < Ms, (13)

then the following holds

max |<I>1 d>2| + max |§1—§2|

(tx)eQ (tx)ex
<C eCTmax{ max |®y — max ,
<G (na: Q\ 0 — | ICo &l (14)
max |ht h2|, max |w2 —w§| ,
(t,x)eQ (t,x)ex

where C; > 0, C > 0 are independent on {<I>1,§1,h1, w;,fb(l), C(l]} and {CDZ, &2, h?, wf, @32, 5(2)}.
In particular, the uniqueness of the solution to (8) holds.

Corresponding to a different formulation than the one presented in (2), results similar
to those in Theorem 1 were established in [1,2,13,17-19]. Here, we omit details of the proof.
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3. The Validity of the Problem (6) and (7) in the Class Wy*(Q) x W,*(Z),

WE(Q) x WE(Z)

Definition 2. Any solution (6, x, ¢,¢) of the nonlinear second-order boundary value problem (6)
and (7) is called the classical solution if it is continuous in Q, has continuous derivatives 6y,
Ox, Oxx, @1, Px, Pxx in Q and &y, &y, dxx, Ct, Gx, Gxx ON X, satisfies the equation (6), and (7)1 at
all points (t,x) € Q as well as the conditions (6)23-(7)2,3 and (6)45-(7)as for (t,x) € X and for
t = 0, respectively.

Here, we approach the systems (6) and (7) in the spirit given by Hadamard’s well-
posedness conditions (see [17], p. 46). Therefore, the main results regarding the existence,
uniqueness, and regularity of solutions to (6) and (7) (practically, the well-posedness of the
solutions to the problem (1)—(3)) are as follows:

Theorem 2. Suppose { (6,), (¢,¢)} € [C12(Q) x C12(%)] 2 is a classical solution of problems
(6) and (7), and for positive numbers

M, Mo, Ml, Mz, M3, M4, and N, N(), Nl/ Nz, N3, N4,
one has the following:

L. |6(t,x)| < M, and for any t, x, z, the function K, (t, x,0) is continuous and differentiable with
respect to x, 0; its x-derivatives and 0-derivatives are bounded-measurable, it satisfies the uniformly
parabolic conditions (see [19]), and

0 < K1, <K, (tx,0) <Kl,, for (tx)e€Q,

& d
2[|K (t,x,0)04 |+‘ae( (t,x,G)Bxl.)}(1+|z|)
=1 (15)
+Z K, (t,x,0)0x,)| < Mo(1+ |z])*.
ij=1
L. For every e > 0, functions 6(t, x) and K, (t, x, 0) satisfy
101l s < M, 1K, (8, %,0)05, [l g < My, i=1,.,1m,

where

_ [max{p4} p#4 _ [max{p2} p#2
"= 44+e¢ p=4, °T 24+  p=2

J1. |e(t,x)| < N, and for any t,x, z, function K, (t, x, @) is continuous and differentiable with

respect to x, @; its x-derivatives and @-derivatives are bounded-measurable, it satisfies the uniformly
parabolic conditions (see [19]), and

0<K2, <K,(tx ) <K2,, for (tx)e€Q,

n d
2[|K tx(p(pxl|+’ 40( K, (t,x, 9)px,)

} (14 |2])
(16)

+ )
ij=1

< No(1+ |z])%

d
— (K, (t,x, 9)@ i)
E)x]- 2 x

J2. For every € > 0, the functions ¢(t, x) and K, (t, x, ) satisfy
[0lls0) = N K (6% @) @il gy < Npy i=1,0m,
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where the quantities r and s are defined in I .

2

2-2 2-2 1— 1
Then, Vf, € LF(Q), 6y € W "(Q), ao(x) € Weo "(0Q), w, € W, ¥ 7(E), and

1 1

2-2 2-2 1-Lp-1
Vf, € L1(Q), o € Weo "(Q), Eo(x) € Weo " (3Q), w, € W, " (), and there exists a

unique solution 6 € W;'Z(Q), ¢ € WiA(Q) (v = min{q, u}), &, & € W;'Z(Z) to (6) and (7),
p,q # 3 that satisfies

HGHW;’Z(Q) + HQDHW}Z(Q) + HD‘HW;J(Z) + ||€ngr2(z)

3p-2 3p-2
SClI+ 6ol o2 Hlgoll 52 +laol o2 +[Goll ;
Woo 7 (Q) We 1(Q) Weo © (002) W 7 (30)) (17)

4

il gy + el + ot o gay  +leal

W, P () w

1 2 1
2p” P(

5)

where the constant C > 0 is independent of 0, ¢, C, &, f1, f2, w1, and wo.
If (01, al, @1, 1), (62,2, 2, &2) are two solutions to (6) and (7) corresponding to

2—

2— 2-2 2—
(60, 29, 90, So). (63, 45, 95, 23) € Wes '

Q) x W2 (000) x WA () x WA P (a00),

1

1—,
(fe, £5), (ff. ) € LP(Q) x L1(Q), wh, wh, wh,wh € W, " (%), respectively, such that

||91||w;'2(Q)' ||92||W;,2(Q) < M, ||D¢1||W;,2(E)r ||“2||w,1,'2(2) < My,
10 ey 1920z < No 1€y 1Elpaey <Ns
then the following estimate holds:
Jax 6" — 67| + Jnax ot —a?| + Jax 9! — ¢?| + Jnax; gt — &
< CyeTmax{ Jmax 16— 6], max|ab o],
Jnax |96 — 95, o 126 — &5, (19)
e L L

max |w® —wP|, max |w® — w? },
(t,x)62| 1 ! (t,x)eZ' 2 2|

where the positive constants C; > 0, C > 0 are independent of

{040l 91,81, £, !, 03, b, b, €5 } and {62,02, 9,2, f2, wt, 63,3, 93, 3 .

In particular, the uniqueness of the solution to problems (6) and (7) holds.

Proof of the Theorem 2. Here, we apply the Leray—Schauder principle in order to prove
the first part of the result established by Theorem 2. On this line, we consider suitable the
Banach space

BS = Wi (Q) x 17(2),

endowed with the norm || - ||zs, given by

1(@,9)llgs = llvllLr (@) + loxllLr() + 19llLr(z),
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and a nonlinear operator S : BS x [0,1] — BS, defined by
(6,0) = S(v,3,A) = (9(0, 5,1),a(0, m)), V(v,3) € BS, YA € [0,1], (20)

where (6, a) is the unique solution to the following linear boundary value problem (see (6)):

d d '
p1§9(t/ x) — |‘/\p2 (K, (t,x,0)vy,) — (1 — /\)55] Oxx;

avx].

d .
= A[Ai(tx0,00) — 0, @) + . fi(£%)] inQ

0(t,x) = a(t, x) onx 1)
d d

pza—n€+p1&a—Ara+p5tx = Aw, (t,x) onX

6(0,x) = Abp(x) on )

a(0,x) = Aag(x) xeTl,

where @ represents the unique solution to the nonlinear parabolic boundary value prob-
lem (8) corresponding to h(t, x) = p,v(t, x) + q5f,(t, x), ie.,

d d
1, &qD(t/ x) - qs@ (Kz (t, X, @)Cbx’.) cDx]-x,-

= Ao(t,x, ®,®y,) +q,[® — D] + p,o(t,x) +q,f,(t,x) inQ,

®(t,x) = (b %) ons -
Ty, 98— AL+ ,8 =, (1) on ¥

(0, x) = ¢po(x) on O

¢(0,x) = Go(x) xeT.

Let us recall that

fi(t,x) € LF(Q), f,(t,x) € L(Q) and w,(t,x), w,(t,x) € W, ¥’ %(Z)

are given functions, while p and g satisfy the relation (4) in [1].

Since p < g (see [1]), then h(t,x) = p,v(t, x) +q5f,(t,x) € LP(Q). Using Theorem 1
(see (22)), we obtain that ® € WFZ,'I(Q) and, thus, —qlgé(t,x) + p.f,(t,x) € LP(Q).
The L,-theory guarantees that the linear parabolic equation (21) has a unique solution
RS W}%’l (Q). Accordingly, the operator S introduced in (20) is well defined.

Subsequently, following the same steps as in [1,2,17,18], we obtain (17) and (19) in
Theorem 2.

The uniqueness of solution {6, ¢} follows from (19) by taking f* = f/, f7 = f?,
wf = w;f ,and w;‘ = wf , and thus, the proof of Theorem 2 is complete. [
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4. Approximating Scheme—Convergence

Following the same steps as in [17,18], we associate to the nonlinear system (6) and (7)
the following numerical scheme:

d 0 :
PO (%) + 4,597 (1,%) — pociv (K, (£ x,6°(t, %)) VO (1, %))
= pafi(t x) in Qf
O pe 9 e : e ¢ (23)
pZa—HG P50 — Ao+ poat =w, (t,x) on X
0° (ie, x) = 0° (ie,x), 6°(0,x) = 6p(x) on ),
a(ie, x) = 0°(ie, x) on 0Q),

d .
9,5, 7" (%) — q,div (K, (1,3, 9° (%)) Vo' (1,))

=q,¢°(t,x) + p,0°(t, x) + g5 f,(t, x) in Qf

d d .

‘73%?““12&56 — NS+ q,8° = w,(tx) in X¢ (24)
¢f(ie, x) = z(g, ¢° (ig, x)) on (),

& (ie, x) = ¢°(ie, x) on 90,

with z(e, ¢° (ig, x)) being the solution of Cauchy problem:
Z(s)+4q,22(s) =0 s€0,¢
z(0) = ¢° (ig, x) on

(25)
¢ (0,x) = @o(x) on O

¢ (0,x) = &o(x) on 0Q),

fori =0,1,---, M, — 1, where ¢ stands for the left-hand limit of ¢*.

Detailed discussions with respect to the advantage of (23)—(25) can be found in the
works [3,4,15,17,18].

Next, we are interested in the convergence of the sequence {(9‘9, af), (¢f, 5‘“’)} of solu-

tions to (23) and (24) to { 6,a),(¢,8) }—the solution of problems (6) and (7) (see [3,17,18,20]
for more details).

For later use, we set

W, = L2([0, T]; H(Q)) nW([0, T|; (H'(Q2))) and
W, = L2((0, T); H'(902)) n W2([0, T); (H!(3902))).
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Definition 3. By a weak solution to the nonlinear system (6) and (7), we mean the pair of
functions {(G,zx), (o, {;’)} € W, x Wy, 8 = aand ¢ = § on X, which satisfy (6) and (7) in the
following sense:

P1/<§t@,¢1> dtdx+q1/(;¢,¢l> dtdx+P2/K1(t,X,9)V9~chldtdx
Q o) )

9
+p1/(attx,q>2) dtd7+/sz~V¢2dtd7+q6/rx¢2dtd7
z z z

(26)
= P3/f1¢1dtdx+/wl¢2dtd%
Q by
0

ql/(@tq)'(’bl) dtdx+q3/Kz(t'xr(i’)V§0'V¢1 dtdx

Q Q

5]

+q1/(at§,¢2> dtd,y—'—/vg'V¢2dtd7+%/§¢2dtd’y

- - > (27)

:q4/((p—q)3)4)1 dtdx+p4/9<p1 dtdx+q5/f2<p1 dtdx+/w2  dtd-,
Q Q Q b

V(¢ ¢2) € L2([0, T]; H(Q)) x L2([0, T); H' (9€Y)),
with ¢p1 = ¢p on L and 6(0,x) = 6p(x), ¢(0,x) = @o(x) on QL

Definition 4. By a weak solution to the nonlinear system (23) and (24), we mean the pair of
functions {(98, a®), (¢, ge)} € Woe x Wee, 05 = af and ¢f = &5 on 55, i € {0,1,.., M; — 1},
which satisfy (23) and (24) in the following sense:

d d
P, / <8t9€’¢1) dtdx +q, / (at(ps,qbl) dtdx
Q Q

py [ K, (t,%,6) V6" Vg dt dx
Q

(28)

0

—|—p1/<attx£,¢2> dtd’y+/V¢x€-V¢2 dtd7+q6/a€¢2dfd7
£ z X

- / Fugu didx + / w, ¢ di dv,
0 )
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(0
‘72/ (at¢8,<p1) dtdx +q, /Kz(trxffPs)qug-quldtdx
Q 0

s, [ ()t [ Ve Tguday g, [ ey
J J J (29)

=, [ o pudrax+p, [Oprdtdx . [ fiprdidx+ [w,gadtdy,
o 2 a 2

V(g1 ¢2) € L2([0, T} HH(Q)) > L2([0, T]; H' (902)),
and 6° (0,x) = 6p(x), ¢° (0,x) = ¢o(x) on QL

In (26)—(29), we denote by the same symbol / the duality between
Q

L2([0, T); H'(Q2)) and L2([0, T}; (H}(Q))’).

Convergence of the Numerical Scheme (23) and (24)

Here, we prove the convergence of the solution to the numerical scheme (23) and (24),
associated with the nonlinear systems (6) and (7). Therefore, the following holds:

22
Theorem 3. Assume that 6y, oo € W, " (Q), p > 2, with pZ%GO + A6y + ps6o = w1(0,x),
1 1

) 1-42-1
955, P0 + Ao+ 4,00 = w2(0,x) on dQ and w,, w, € W, ¥ V(). Let {(98, a®), (¢, Ce)}
be the solution of the approximating scheme (23) and (24). As ¢ — 0, one has

{(65(5),05()), (9°(5), &5(5)) } — { (67(5), 2" (5)), (9°(5),&7(5)) } -

strongly in L?(Q) x L?(9Q) foranys € (0, T],

where {(9*(5),&*(5)), (¢*(s),¢* (s))} € Wg x Wy is the weak solution of the nonlinear sys-
tems (6) and (7).

The inequalities (31)—(34) (listed below) are essential in proving the main result of the
present work—Theorem 3.

19 (G, 2) 1720y < 195 (i, ) 172y (31)
2% (e, 9% (ig, x)) < ¢F (ie,x)?, ae x €Q, (32)
Vo (ie, %)l 12y < [IVQ= (ie, x) [ 120 (33)
1z(e, %) — 9% (e, )| 120y < €L, (34)

i=0,1,.,M—1
Proof of Theorem 3. Following the same steps as in [17], we obtain the solution to prob-
lem (24) as ¢° € Wy?(Q5) NL®(Q%), Vi € {0,1,..., M — 1}.

Next, we give a priori estimates in Q%, Vi € {0,1,..., M — 1}. Multiplying (23); by
P4 ge and (24)1 by ¢f and using integration by parts, Green’s formula, and the relations (28)

1
and (29), we obtain
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b / o BB 2 / 0Py + p, [ 6°gidx
(@]

B pz/K (t,x, 9€)|ve€|2dx+p4 / Vra2dy + P p5/|a€|2d»y 35)
0

—p3/f16edx+ Py /w 6 d,

%/|¢§|2dx+’72/|‘:f|2d7
(@) 0Q)
2 €12 €12
/Ktx¢ WW¢|M+ZW/H%de+2m/M|mf )

i) dt/“” Izdx+P4/98 dst/fz(ﬁfdﬁ/wzéfdm
Q Q)

Using Holder’s inequality for the right-side terms Py Ps / f,6%dx, Py / w, 0% dy, g5 / f, @i dx,
AR Tt s

and / w,Cidy, we obtain
oQ)

—pg/flewx< ; / P Bl /Ifllzdx
p4 w, 0t dy < p4 |9£ 2d 2d
T < P5 7+ |w1| 7
qs/fz gidx < %/|¢§\2dx+;’—5/|f2|2dx,
A A P

/ wisdy < L / &5y + 5 / w0, P
Adding (35) and (36) and making use of the above, we obtain

&%E/wf 2dx —I—&%E/|¢x€\2d7+&sz1m/|V98|2dx
o
12 2 12 2 3 “ €12
+Z /|<pt| dx + & /w dy+ szdt/w@wx
P4/ g2 / £|2 / 52
|Vraf| d7+2dt |Vrge Py + T > | 161
<3 dt/ '@f'zd”z/ i
+h A /|f1|2dx+ [ /|f2\2dx

/|w1| t/x)d')’"" /‘wz|2d7/
2
ql P50 "0

(37)
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where the inequalities (15); and (16); are used, too.

29,

Multiplying now (24); by — g ¢° as shown above, we obtain

2

d d
q%/I(Peldeq%/\Cflzdwrfqa/K (t, %, ¢°)| Vo[ dx
Q

%
2 [ wiefay + 3 qé/wdv @)

o0

77‘74/|§0|2dx+ p4/98 £dxd‘_i%/fzq)dx—‘_ q4/wcpd’y

Again, using Holder’s inequality for the right-side terms / 0¢¢dx, / f, ¢ dx, and
0

/ w, ¢° dy, we have
Q)

2
—p4/9€ fdx < Z4P4/|9€|2dx+$f74/|¢8|2dx1
20 S}
7‘75/](290 dx < Z4q5/|(l’£|2dx+2 q5/|f2|2dx
2

2o [, gty < "4/|¢|2 T+ %/Iwzlzdm
% 50

and then, from (38), we obtain
2q
T / |9 [Pdx + 9, / 6Py + 7 44, K2m / |V [Pdx
2
e / ety + 2 2, / &P )

c<q2,q3,q4,p4,q5>[ [0 Pax+ [ 1g7Rax+ [ If,Pax+ | Iwzlzd'r],
Q Q Q Q)

where the inequality (16); is used, too.
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Adding (37) and (39), we obtain
oLl [lopax+ BBy [jaePay + 5 [1gax+ (g, + %) [1g2ay
q, 2 q, 2 2. 2
Q Q) Q Q)
+ %KZm/|Vq)s]2dx+ % / |vrg€2d7]
Q Q)
qu £ Zd qu € Zd
+ 2 | |7dx + 2 |t [7dy
?/Wwww+}/W¢&w+q%/wwv
a0 230
&p2K1m/|ve€|2dx+ iqSsz/quFdx
g Q 9> Q
C(plfpz,r)yP4,P5,q1,q2/q3,q4,q5,qé)[/IG”dH/I(P”dx
o) 0
+/m2w+/mﬁu+/mmM+/mmm]
Q Q a0 20
Integrating the preceding on Qf, i = 0,1,2,..,M; — 1 (i.e, on [ig, (i + 1)e],
i=0,1,2,.., M — 1) and summing the inequalities obtained, we derive (see [18])

Py P 2 Py P
fjll\f’e-(T/x)lle(Q) q? et (T, )20y

1

0808 (T, 0) oy + (10 + %Méawmm
q
+ ?Ssz”V(PE—(Trx)H%Z(Q) + EHVF(:E—(T/'X>”L2(30)

T
v/
0

218122 ) + 21812 a0y

+ LIV 2o + %HveryaQ %anpag
2
+ L p KL 90 )+ 2L K%MV¢npm}
< 2B 100120 + £-5 laollEony + o0l + 5160 20y
+ 219601122 0 + 2 Ko | Vo 2
5 0llz2(q) T 5 fomin Polli2(0

T
+ C(PuszPsrP4/P5/‘71/‘721‘73r‘74/’75/‘76){ / 16122 3y + 119 122y |
0

1A oy + 12y + 10,22y + 0 sy

where the inequalities (31) and (33) are used.
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Applying the Gronwall inequality to the above inequality, we finally deduce

T
[ {19821 + 122 a0y + 196 By + 199 e
0 (40)
Vet |2 o) + V& Baon) bt < C,
where C > 0 is independent of € and M.
Owing to (23)3, (24)3, and (34), we obtain
Me—1
;} 16 (ie, x) — 6% (ie, x)||;2() < TL = Cy, (41)
=
Me—1
Y. g (e, x) — ¢ (ie,x)[| o) < C2, (42)
i=0
where C; > 0, C; > 0 are independent of M, and . Adding (40)-(42), we derive
T
L € T i3 (3 I3 €112
Vo294 [ L1651z ) + 165 2oy + IV6 o) + 196 3200
(43)

Vet |2 o) + V& 2oy bt < C,

where C > 0 is independent on M, and ¢, while %1 6° and VZZ ¢° stand for the variation of
6¢: [0, T] — L2(Q) and ¢¢ : [0, T] — L2(Q), respectively.

Now, multiplying (23); by 6%, integrating over [ig, (i + 1)¢], i = 0,1,---, M — 1,
and involving Cauchy-Schwartz’s inequalities, Holder’s inequality, Cauchy’s inequality,
Gronwall-Bellman'’s inequality, Green’s formula, as well as the relations (15); and (40), we
finally obtain the estimate

T
52 P1 £\2 & i/ €12
0/[ /9 dx+2/(at)d7+21<1mdt V6° [2dx
Q

Q Q)
(44)
€2 €2 <
2dt/|v“|d7+ 2dt/‘“|d7 ds < G,
for all € > 0, where the constant C > 0 does not depend on M; and «.

Combining (43) with (44), we obtain

T € T & 1

Ve V2 9+ [ 165120y + 1161 o
(45)

0512 0+ 185100 + I VO] ) + 199 o]t < C.

Since the injection of L?(Q)) into H~1(Q)) is compact and {6%(s)}, {¢%(s)} are bounded
in L2(Q) Vs € [0, T], we conclude that there exists a bounded variation function: 6*(s) €
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BV ([0, T}; H1(Q)), ¢*(s) € BV(]0, T]; H"1(Q)), respectively, and the subsequences 6¢(s),
¢°(s) (see [17]) such that

{ef(s) — 6% (s)

strongly in  H™}(Q) Vs € [0, T]. (46)
P(s) = ¢"(s)

A similar reasoning carried out for {af(s)} and {&%(s)} allows us to conclude
the convergence

{DCS(S) — a”(s)
strongly in H~1(dQ) Vs € [0, T]. 47)

¢°(s) = ¢7(s)

Furthermore, from (45) we deduce that

6° — 6*
weakly in H-1(Q) Vs € [0,T],

¢° ¢
(48)

af — o
. . weakly in H~'(9Q) Vselo,T).
&=

By the well-known embeddings,
HY(Q) C L2(Q) ¢ H1(Q) and H'(9Q) C L*(0Q) C H1(00)),
standard interpolation inequalities (see [17], p. 17) yield that V¢ > 0, 3C(¢) > 0 such that

{||9S(S) =07 (5)l12(q) < £116°(s) = 0" (8) | 1 (a) + C(O)6°(s) = 67 (s) | y-1(0r)
l9°(s) = 9" ($)ll12(00) < Ll9*(s) = @™ ()l () + CON9* () — @™ ()| 5-1(02) ~
(49)
{lle‘c’(S) — & (s) 1200 < Clla’(s) = a”(8)l|ana) + C(O[a*(s) = a™(s) [ 5-1000)
185(s) = &™) lr2ay < LIIE°(s) = &7 ()l gacy) + CONE(s) = S ()l -1 a2y »

Ve > 0and Vs € [0, T|, where C(¢{) — 0as ¢ — 0.
Finally, relations (46)—(49) permit us to conclude that the assertion conducted in (30)
holds true, ending the proof of Theorem 3. [

22
Corollary 1. Assume 6y, 9 € W, "(Q), p > 2, with pza%(?o(x) — Arby + psbo(x) =
1

1—-4L 02—
w, (0, x), q3%qoo(x) — Argo + g, 9o(x) = w,(0,x) on Q) and w,, w, € W, 7P (%), Then,
{(9*,&*), (q)*,fj*)} € Wy x Wy, 0% = a™ and ¢* = ¢* on %, is a weak solution of the nonlinear
second-order parabolic systems (6) and (7).

The general framework of the numerical algorithm to compute the approximate solu-
tion of problems (6) and (7) (practically, the approximate solution to the nonlinear second-
order boundary value problem (1)—(3)) via the fractional-step scheme may be demonstrated
as follows:

Begin alg-frac _sec-ord _u+varphi_dbc
i:=0 — 6y from (23)3 and ¢¢ from (25)3;
Fori:=0to M, —1do

Compute z(¢, -) from (25);

¢ lie ) = 2(e, )
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at(ig,-) = 6%(ig, -);
gt(ie, o) = ¢t (ie,-);
Compute (60°((i+1)e, ), 9°((i + 1)g, -)) solving the linear system
(23)1-2 + (24)1-2;
End-for;
End.

An example of numerical implementation to alg-frac _sec-ord _u+varphi_dbc, con-
sidering a particular case of parameters p,, p,, Vs, Py, Pss 91795, 93: 949595 K, = K, =1,
can be found in [18].

5. Conclusions

The main problem studied in this paper is a nonlinear second-order parabolic system
of coupled PDEs (1), with the principal part in divergence form for both unknown functions
u, ¢ and subject to in-homogeneous dynamic boundary conditions (2). Provided that the
initial and boundary data meet appropriate regularity as well as compatibility conditions,
it is proven the well-posedness of a classical solution to the nonlinear problem in this
new formulation (Theorem 2). Precisely, the Leray—Schauder principle, as well as the
L? theory of linear and quasi-linear parabolic equations, via Lemma 7.4 (see [18] and
reference therein), is applied to prove the qualitative properties of solutions 6(t, x), a(t, x),
¢(t,x),&(t, x). Moreover, the a priori estimates are made in L¥(Q) and L (X), which permit
us to derive regularity properties of higher order for 6, &, ¢, ¢, that is, (G(t, x),alt, x)) S
WEA(Q) x W), (p(t,x),E(t,x)) € WHA(Q) x WEA(E), v = min{g, u} (see [17))

Let us remark that, because of the presence of the terms K, (t x,6(t,x)) and
K, (t,x, ¢(t,x)), the nonlinear operator S in (20) does not represent the gradient of the
energy functional. Therefore, the new proposed second-order nonlinear systems (6) and (7)
cannot be obtained from the minimization of any energy cost functional, i.e., (1) is not a
variational PDE model.

Next, an iterative scheme of fractional-step type is introduced to approximate the prob-
lems (6) and (7). The convergence result is established for the proposed numerical scheme,
and a conceptual numerical algorithm, alg-frac _sec-ord _ut+varphi_dbc, is formulated in
the end. See [17] and references therein for an example of numerical implementation to the
conceptual algorithm alg-frac_sec-ord_u+varphi_dbc.

The qualitative results obtained here can be used later in the quantitative approaches
of the mathematical model (1)-(3) as well as in the study of distributed and/or boundary
nonlinear optimal control problems governed by such a nonlinear problem. Numeri-
cal implementation of the conceptual algorithm, alg-frac _sec-ord _u+varphi_dbc , as
well as various simulations regarding the physical phenomena described by nonlinear
second-order parabolic system (1), correspondingly, especially, to the different choice
of mobility functions K, (t,x,6(t, x)) and K, (t,x, ¢(t,x)), (see [2]), represent a matter for
further investigation.
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