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1. Introduction

The renowned Donaldson–Uhlenbeck–Yau theorem, commonly abbreviated as the
DUY theorem, reveals a profound connection between stable bundles and Hermite–Yang–
Mills metrics. Research into the DUY theorem gained momentum in the 1980s, driven by
numerous eminent mathematicians, as documented in works such as [1–5]. Over the past
two decades, this theorem has continuously piqued the interest of numerous researchers,
as evidenced by various publications ([6–20] and references within). On 9 September
2021, Mochizuki was awarded the Breakthrough Prize in Mathematics for his remarkable
contributions to the field of twistor D-modules. Remarkably, the DUY theorem, applied
to well-filtered flat bundles, facilitated the resolution of Kashiwara’s conjecture regarding
twistor D-modules [21]. In some sense, this shows that the DUY theorem not only has a
vigorous vitality, but also plays a key role in some developments of modern mathematics.

A twisted quiver bundle R is a collection of some vector bundles, associated with the
vertex set and the arrows, connected by morphisms twisted by the collection of bundles.
In 2003, Álvarez-Cónsul and García-Prada [22] proved a DUY theorem for holomorphic
twisted quiver bundles over the ordinary compact Kähler manifold. Later, Zhang [23]
generalized their results to the compact almost-Hermitian manifold. Recently, the DUY
theorem for quiver bundles has been extensively studied by Hu and Huang [24] to the
compact generalized Kähler manifold. In summary, they showed that the stability of the
holomorphic quiver bundle and the existence of Hermite–Yang–Mills metric over some
compact Hermitian manifolds are equivalent. When the base manifold is non-compact,
jointly with C. Zhang and X. Zhang, the fourth author [18] established a generalized
DUY theorem on the Higgs bundles over a special non-compact and non-Kähler manifold,
which generalized Simpson’s non-compact Kähler case [4]. Later, Shen–Zhang–Zhang [15]
generalized the result in [18] to the non-compact affine Gauduchon manifold.

A Higgs bundle over a Riemann surface consists of a holomorphic vector bundle and
a holomorphic section of the endomorphism bundle twisted by the canonical bundle of the
manifold [2]. The class of Higgs bundle is included in the category of holomorphic twisted
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quiver bundle, in which the quiver is formed by only one vertex and only one arrow. In this
paper, we will extend the result obtained in [18] to the holomorphic twisted quiver bundles
over the same base manifold as in [18]. Let M be a compact Hermitian manifold and g be
an Hermitian metric with the canonical Kähler form ω. The Hermitian metric g is called
Gauduchon if it satifies ∂∂̄ωdimC(M)−1 = 0. When the Hermitian manifold M is compact,
according to [25], there must exist a Gauduchon metric g̃ in the conformal class of each
metric g. Gauduchon manifolds are a very important class of non-Kähler manifolds and
play a significant role in the study of non-Kähler geometry. From now on, we will always
suppose that the Hermitian manifold (M, ω) is Gauduchon unless otherwise specified.
Following [4,18], we first introduce the three conditions:

Condition 1. The volume of the non-compact manifold (M, ω) is finite.
Condition 2. There exists an exhaustion function φ which satisfies φ ≥ 0 and

√
−1Λω∂∂̄φ

bounded.
Condition 3. There is an increasing function ξ : [0,+∞) → [0,+∞) with ξ(0) = 0
and ξ(x) = x for x > 1, such that if f is a bounded positive function on M with√
−1Λω∂∂̄ f ≥ −κ then

sup
M

| f | ≤ Constant(κ) · ξ(
∫

M
| f |dVolg).

In addition, if
√
−1Λω∂∂̄ f ≥ 0,

√
−1Λω∂∂̄ f = 0 immediately.

The non-compact Gauduchon manifold (M, ω) satisfying all of Conditions 1–3 def-
initely exists. For example, if M1 is a compact Gauduchon manifold and M2 is a kind
of non-compact Kähler manifold satisfying the Conditions 1–3, then M := M1 × M2 is
a non-compact Gauduchon manifold that satisfies all of Conditions 1–3. In [4], Simpson
listed a lot of examples of non-compact Kähler manifolds satisfying Conditions 1–3.

Under the above conditions, we can prove the following theorem.

Theorem 1. Let the base manifold (M, ω) be non-compact Gauduchon and satisfy Conditions
1–3. We also assume |dωn−1|g ∈ L2(M). Let Q = (Q0, Q1) be a quiver, and R = (E, Ẽ, Q, ϕ, J)
be the J-holomorphic twisted quiver bundle over the base manifold (M, ω), where E = ⊕v∈Q0 Ev

and Ẽ = ⊕a∈Q1 Ea. Fix a background Hermitian metric K = {Kv}v∈Q0 on R. For every vertex
v ∈ Q0, assume that every metric Kv defined on each holomorphic bundle Ev satisfies

√
−1Λω FKv ≤ 0, sup

M
|Λω FKv |Kv < +∞, sup

M
|ϕ|Kv < +∞.

Furthermore, assume the sets σ and τ are two collections of positive real numbers σv and τv. If
R = (E, Ẽ, Q, ϕ, J) is analytic (σ, τ)-stable associated to the Hermitian metric K, there exists a
(σ, τ)-Hermite–Yang–Mills metric H = {Hv}v∈Q0 on the quiver bundle R, i.e., for every vertex
v ∈ Q0, every metric Hv on the bundle Ev satisfies

σv
√
−1Λω FHv + ∑

a∈h−1(v)

ϕa ◦ ϕ∗Hv
a − ∑

a∈t−1(v)

ϕ∗Hv
a ◦ ϕa = τv · IEv ,

where IEv is the identity morphism from Ev to itself.

Remark 1. There is also an inverse proposition of the above theorem. From the Chern–Weil
formula [4] and the arguments in [22], we can check that the (σ, τ)-Hermite–Yang–Mills metric
H = {Hv}v∈Q0 on the quiver bundle R implies the quiver bundle R is analytic (σ, τ)-stable
associated to the given Hermitian metric H.

Remark 2. The proof of the theorem relies on the flow method and the Uhlenbeck–Yau’s continuity
method. Despite the methods used here being similar to [18], some changes should be carefully
considered. The algebraic structure of the quiver bundle brings us a lot of difficulties in PDE
analysis, and the proof rather depends on the construction of the weakly L2

1 quiver sub-bundles. We
construct a new quantity ν (39) by the maximum and minimum of eigenvalues of morphisms, which
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is different from [18]. We also believe such a method can be used to extend the theorem obtained
in [15] to the holomorphic twisted quiver bundle setting.

This paper is structured as follows. Section 2 revisits fundamental definitions re-
lated to twisted quiver bundles, analytical stability of the bundle, and other pertinent
concepts. Section 3 outlines essential findings on the perturbed heat flow. Section 4 aims to
demonstrate the long-term existence behavior of the perturbed heat flow. In Section 5, we
leverage the perturbed heat flow to initially tackle the Dirichlet problem of the perturbed
equation on a compact Gauduchon manifold. Once a consistent zero-order estimate is
achieved, we proceed to solve the perturbed equation on a non-compact Gauduchon mani-
fold. Finally, Section 6 employs Uhlenbeck and Yau’s continuity method to substantiate the
primary theorem.

2. Notations

The fundamental setup and notation utilized consistently throughout this paper are
introduced in this section. For a comprehensive understanding of J-holomorphic twisted
quiver bundles, please refer to [23].

A quiver comprises a pair Q = (Q0, Q1) along with two maps, h and t, that both assign
vertices to arrows. The elements of Q0 are vertices, while Q1 contains the arrows. For each
arrow a in Q0, the vertex ha designates the head, and ta designates the tail of that arrow.

Definition 1. A J-holomorphic twisted quiver bundle, defined over the base (M, ω), is characterized
by a 5-tuple (E, Ẽ, Q, ϕ, J), where:

(1) E represents a collection of holomorphic vector bundle Ev over the base (M, ω), each associated
with a vertex v from the set Q0;

(2) Ẽ comprises a collection of holomorphic vector bundles Ẽa over the base (M, ω), each corre-
sponding to an arrow a from the set Q1;

(3) ϕ is a collection of morphisms ϕa that map from Eta ⊗ Ẽa to Eha, with the additional condition
that Ev0 is zero for all vertices v in Q0 except for a finite number, and similarly, ϕa = 0 is
zero for all arrow a in Q1 except for a finite number;

(4) J denotes a collection of bundle almost complex structures, each defined on the principal bundle
of complex linear frames associated with the vector bundles Ev.

An Hermitian metric H on a J-holomorphic twisted quiver bundle R = (E, Ẽ, Q, ϕ, J)
is defined as a set of Hermitian metrics Hv assigned to each non-zero vector bundle Ev
associated with a vertex v in Q0. Given collections of real numbers σ and τ with elements
σv and τv for each v ∈ Q0, a J-holomorphic twisted quiver bundle R is said to admit a
(σ, τ)-Hermite–Yang–Mills metric H = {Hv}v∈Q0 if the following equation holds for all
non-zero Ev:

σv
√
−1Λω FHv + ∑

a∈h−1(v)

ϕa ◦ ϕ∗Hv
a − ∑

a∈t−1(v)

ϕ∗Hv
a ◦ ϕa = τv · IEv , (1)

where Λω denotes the contraction with the Kähler form ω, FHv is the curvature of Chern
connection DHv associated with the metric Hv on Ev, and ϕ∗Hv

a represents the adjoint of the
morphism ϕa with respect to the metric Hv.

Fix a background Hermitian metric K = {Kv}v∈Q0 on the quiver bundle R over the
base manifold (M, ω), the degree on Ev is defined as [4]

deg(Ev, Kv) =
1

Vol(M)

∫
M

trace(
√
−1Λω FKv)dVolg,
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where FKv denotes the curvature of the Chern connection DKv associated with the metric
Kv on each bundle Ev. According to the Chern–Weil theory [4], for any satured subsheaf E′

v
of Ev, the analytic degree is given by

deg(E′
v, Kv) =

1
Vol(M)

∫
M

(
trace(

√
−1πvΛω FKv)− |∂̄Ev πv|2Kv

)
dVolg, (2)

where πv denotes the projection onto E′
v w.r.t. the metric Kv.

The analytic (σ, τ)-degree and (σ, τ)-slope of the twisted quiver bundle R are defined
as weighted combinations of the degrees and ranks of the vector bundles Ev associated to
each vertex v of the quiver Q0. Specifically, the (σ, τ)-degree is given by

degσ,τ(R, K) = ∑
v∈Q0

(σv deg(Ev, Kv)− τvrank(Ev)),

where σv and τv are real numbers associated to each vertex v. The (σ, τ)-slope is then
defined as the ratio of the (σ, τ)-degree to the total weighted rank:

Sσ,τ(R, K) =
degσ,τ(R, K)

∑v∈Q0
σvrank(Ev)

.

The twisted quiver bundle R is called analytic (σ, τ)-(semi)stable with respect to K if for
all proper quiver subsheaves R′ of R,

Sσ,τ(R′, K) < (≤)Sσ,τ(R, K).

In the context of twisted quiver bundles, it allows one to define moduli spaces of
(σ, τ)-stable twisted quiver bundles, which have nice geometric properties [26]. The above
condition is a generalization of the stability condition for vector bundles, which plays
an important role in the study of moduli spaces of vector bundles and other geometric
objects. Over the past few years, the exploration of moduli spaces of vector bundles and
various geometric objects has attracted considerable interest and focus (see [27–35] and
references therein).

3. Preliminary Results

Let M be an Hermitian manifold with complex dimension n. Let R = (E, Ẽ, Q, ϕ, J)
be a J-holomorphic twisted quiver bundle over M and H0 = {H0,v}v∈Q0 be a Hermitian
metric on the twisted quiver bundle R. For each v ∈ Q0 and non-negative constant ε, we
will analyze the following perturbed heat flow

H−1
v

∂Hv

∂t
= − 2

σv
Φε,v, (3)

where
Hv := Hv(t)

and

Φε,v := Φε,v(Hv) = σv
√
−1Λω FHv + ∑

a∈h−1(v)

ϕa ◦ ϕ∗Hv
a

− ∑
a∈t−1(v)

ϕ∗Hv
a ◦ ϕa − τv · IEv + εσv log(H−1

0,v Hv).
(4)

When ε = 0, the perturbed heat flow (3) is nothing but the flow considered in [23].
For simplicity, we set

hv := hv(t) = H−1
0,v Hv(t).
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If we select local complex coordinates {zi}n
i=1 for M, then ω is expressed as

ω =
√
−1gi j̄dzi ∧ dzj.

Firstly, we define the complex Laplacian by

∆̃ f = −2
√
−1Λω ∂̄∂ f = 2gi j̄ ∂2 f

∂zi∂z̄j ,

where (gi j̄) stands for the inverse of the metric matrix (gi j̄). Secondly, we we refer to
the Beltrami–Laplace operator as ∆. It is commonly acknowledged that the relationship
between these two Laplacians is given by

(∆̃ − ∆) f = ⟨V,∇ f ⟩g,

where V represents a well-defined vector field on the manifold M.
We initially establish the following proposition, which shall serve as a foundation in

proving the long-time existence of the flow (3).

Proposition 1. For each v ∈ Q0, let Hv = Hv(t) be a solution of the flow (3), then

(
∂

∂t
− ∆̃)[ ∑

v∈Q0

1
σv

|Φε,v|2Hv
] ≤ 0. (5)

and
(

∂

∂t
− ∆̃){e2εttrace(Φε,v)} = 0. (6)

Proof. After direct calculation, we conclude:

∂

∂t
Φε,v = σv

√
−1Λω∂Ev ∂H0,v(h

−1
v

∂hv

∂t
)

− ∑
a∈h−1(v)

(ϕa ◦ H−1
ta

∂Hta

∂t
⊗ IẼa

◦ ϕ∗Ha
a − ϕa ◦ ϕ∗Ha

a ◦ H−1
v

∂Hv

∂t
)

− ∑
a∈t−1(v)

(H−1
v

∂Hv

∂t
ϕ∗Ha

a ◦ ϕa − ϕ∗Ha
a ◦ H−1

ha
∂Hha

∂t
⊗ IẼa

◦ ϕa)

+ εσv
∂

∂t
log(hv)

(7)

and

∆̃|Φε,v|2Hv
= −2

√
−1Λω ∂̄∂trace{Φε,vH−1

v Φ̄t
ε,v Hv}

= −2
√
−1Λω ∂̄trace{∂Φε,vH−1

v Φ̄t
ε,v Hv − Φε,vH−1

v ∂Hv H−1
v Φ̄t

ε,vHv

+ ΦH−1
v ∂̄Φε,v

t
Hv + Φε,v H−1

v Φ̄t
ε,v Hv H−1

v ∂Hv}
= 2Re⟨−2

√
−1Λω∂Ev ∂Hv Φε,v, Φε,v⟩Hv + ⟨[2

√
−1Λω FHv , Φε,v], Φε,v⟩Hv

+ 2|∂Hv Φε,v|2Hv
+ 2|∂Ev Φε,v|2Hv

.
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Using the above formulas, we conclude that

(
∂

∂t
− ∆̃)[ ∑

v∈Q0

1
σv

|Φε,v|2Hv
] = − ∑

v∈Q0

2
σv

|∇Hv Φε,v|2Hv

− 2 ∑
a∈Q1

(
|ϕ∗Ha

a
Φε,ha

σha
|2Hha

+ |Φε,ta

σta
ϕ∗Ha

a |2Hta

− 2⟨ϕa ◦
Φε,ta

σta
⊗ IẼa

◦ ϕ∗Ha
a ,

Φε,ha

σha
⟩Hha⊗Hta

)
− 2 ∑

a∈Q1

(
|ϕa

Φε,ta

σta
|2Hta

+ |
Φε,ha

σha
ϕa|2Hha

− 2⟨ϕ∗Ha
a ◦

Φε,ha

σha
⊗ IẼ∗

a
◦ ϕa,

Φε,ta

σta
⟩Hha⊗Hta

)
+ ∑

v∈Q0

2ε

σv
⟨ ∂

∂t
log(hv), Φε,v⟩Hv

≤ 0,

where the last inequality used the flow Equation (3) and the following inequality [18]

⟨ ∂

∂t
log(hv), h−1

v
∂hv

∂t
⟩Hv ≥ 0.

By taking the trace on the both sides of (7), we can derive the equality (6).

Below, we recollect the Donaldson’s distance [1,23] pertaining to the space of Hermi-
tian metrics.

Definition 2. For any two Hermitian metrics H and K on the bundle E, we formulate the Donald-
son’s distance between them as

σ(H, K) := trace(H−1K) + trace(K−1H)− 2rank(E).

Supposing H = {Hv}v∈Q0 and K = {Kv}v∈Q0 represent two collections of Hermitian metrics on
the twisted quiver bundle R, we can express the Donaldson’s distance on R in the following manner:

σ(H, K) := ∑
v∈Q0

σvσ(Hv, Kv),

where σv is a weighting factor associated with each vertex v.

It is apparent that σ(H, K) is non-negative, and it equals zero if and only if H is equal
to K. Additionally, a sequence of metrics H(t) converges a limiting metric H in C0 sense if
and only if the supremum of the Donaldson’s distances sup σ(H(t), H) approaches zero as
t tends to the limit.

Proposition 2. Let H(t) = {Hv(t)}v∈Q0 , K(t) = {Kv(t)}v∈Q0 represent two sets of Hermitian
metrics defined on the twisted quiver bundle R. Assuming that for each v in Q0, the metrics Hv(t)
and Kv(t) solve the flow Equation (3), then it follows that

(
∂

∂t
− ∆̃)σ(H(t), K(t)) ≤ 0.

Proof. For brevity, we represent using

hv = Kv(t)−1Hv(t).
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Direct calculations yield

(
∂

∂t
− ∆̃)

(
∑

v∈Q0

σv(trace hv + trace h−1
v )

)
= −2 ∑

v∈Q0

σv

(
trace(−

√
−1Λω∂Ev hvh−1

v ∂Kv hv) + trace(−
√
−1Λω∂Ev h−1

v hv∂Kv h−1
v )

)
− 2 ∑

a∈Q1

trace
(

ϕ∗Ka
a ◦ ϕa ◦ hta + hta ◦ ϕa ◦ h−1

ta ⊗ IẼa
◦ ϕ∗Ka

a ◦ hha

− ϕ∗Ka
a ◦ hha ⊗ IẼ∗

a
◦ ϕa − ϕa ◦ ϕ∗Ka

a ◦ hha

)
− 2 ∑

a∈Q1

trace
(

ϕ∗Ha
a ◦ ϕa ◦ h−1

ta + h−1
ta ◦ ϕa ◦ hta ⊗ IẼa

◦ ϕ∗Ha
a ◦ h−1

ha

− ϕ∗Ha
a ◦ h−1

ha ⊗ IẼ∗
a
◦ ϕa − ϕa ◦ ϕ∗Ha

a ◦ h−1
ha

)
+ 2ε ∑

v∈Q0

trace{hv(log(H−1
0,v Hv)− log(H−1

0,v Kv)) + h−1
v (log(H−1

0,v Kv)− log(H−1
0,v Hv))}

≤ 0,

where we used the facts [1]

trace(−
√
−1Λω∂Ev hvh−1

v ∂Kv hv) ≥ 0, trace(−
√
−1Λω∂Ev h−1

v hv∂Kv h−1
v ) ≥ 0,

the summations on a ∈ Q0 are non-negative [23], and the following fact [18]

trace{hv(log(H−1
0,v Hv)− log(H−1

0,v Kv)) + h−1
v (log(H−1

0,v Kv)− log(H−1
0,v Hv))} ≥ 0.

The proof of the subsequent proposition is omitted, as it resembles the proof given for
Proposition 2.

Proposition 3. Consider H = {Hv}v∈Q0 , K = {Kv}v∈Q0 to be two collections of Hermitian
metrics defined on the twisted quiver bundle R. For each v ∈ Q0, Hv and Kv are solutions of the
(1), then we have

∆̃σ(H, K) ≥ 0.

The following proposition will be used as a bridge to connect the stability of the bundle
and the C0-estimate. The proof of such proposition is mainly based on [18]. Hence, we only
sketch the proof here.

Proposition 4. Let R denote a twisted quiver bundle endowed with a fixed Hermitian metric
K = {Kv}v∈Q0 over the non-compct Gauduchon manifold (M, ω). Consider a collection of
Hermitian metrics on R given by H = {Hv}v∈Q0 and define sv as sv := log(K−1

v Hv). Suppose
that the base manifold (M, ω) admits an exhaustion function φ satisfying

∫
M |∆̃φ|ωn

n! < +∞.
Moreover, we also assume that the norm of the exterior derivative of ωn−1 with respect to the metric
g is in L2(M), that sv is bounded, and that ∂Ev derivative of sv is square-integrable. Then, the
following inequality holds:

∑
v∈Q0

( ∫
M

trace(Φv(Kv)sv)
ωn

n!
+

∫
M

σv⟨Ψ(s)(∂Ev s), ∂Ev sv⟩Kv

ωn

n!

)
≤

∫
M

trace(Φv(Hv)sv)
ωn

n!
,

(8)
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where

Φv(Kv) = σv
√
−1Λω FKv + ∑

a∈h−1(v)

ϕa ◦ ϕ∗Kv
a − ∑

a∈t−1(v)

ϕ∗Kv
a ◦ ϕa − τv · IEv

and

Ψ(x, y) =

{
ey−x−1

y−x , if x ̸= y;

1, if x = y.

Proof. Direct calculations yield

∑
v∈Q0

∫
M

trace
(

Φv(Hv)− Φv(Kv))sv

)
≥ ∑

v∈Q0

∫
M

σv

〈√
−1Λω∂Ev(h

−1
v ∂Kv hv), sv)

〉
Kv

= ∑
v∈Q0

σv

∫
M
⟨Ψ(sv)(∂Ev sv), ∂Ev sv⟩Kv .

(9)

For the first inequality in (9), we have utilized the following fact (see [22], Lemma 3.5)

∑
v∈Q0

⟨ ∑
a∈h−1(v)

(ϕa ◦ ϕ∗Hv
a − ϕa ◦ ϕ∗Kv

a )− ∑
a∈t−1(v)

(ϕ∗Hv
a ◦ ϕa − ϕ∗Kv

a ◦ ϕa), sv⟩ ≥ 0 (10)

The second equality in (9) is a consequence of ([18], Proposition 2.6).

4. The Perturbed Heat Flow on Hermitian Manifolds

In this section, we delve into the question of whether long-term solutions exist for the
perturbed heat flow (3) of the twisted quiver bundle R defined on the compact Hermitian
manifold M (which may or may not have a non-empty boundary). When M is a manifold
without boundary, we take into account the perturbed heat flow described below:{

H−1
v

∂Hv
∂t = − 2

σv
Φε,v(Hv),

Hv(0) = H0,v.
(11)

Assuming M is a compact manifold featuring a non-empty and smooth boundary, we
delve into the following Dirichlet boundary value problem, considering a fixed collection
of Hermitian metrics H̃ = {H̃v}v∈Q0 defined on the boundary ∂M:

H−1
v

∂Hv
∂t = − 2

σv
Φε,v(Hv),

Hv(0) = H0,v,
Hv|∂M = H̃v.

(12)

The flow (3) exhibits definitive parabolic characteristics, and as a result, the established
parabolic theory ensures the existence of a solution for a brief period of time.

Proposition 5. For any T > 0 that is small enough, (11) and (12) both possess a smooth solution
H(t) = {Hv(t)}v∈Q0 , which is well-defined within the interval 0 ≤ t < T.

Subsequently, building upon the arguments presented in ([1], Lemma 19), our objective
is to demonstrate the enduring existence of the perturbed heat flow.

Lemma 1. Assuming a smooth solution H(t) = {Hv(t)}v∈Q0 of either (11) or (12) is defined
on the interval 0 ≤ t < T < +∞, the metric H(t) will converge in C0 sense to a continuous
non-degenerate metric H(T) on the quiver bundle R as the limit t → T is approached.
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Proof. Utilizing the continuity property at t = 0, for any ϵ > 0, we can determine a δ such
that the supremum of the Donaldson’s distance over M of the difference between H(t0)
and H(t′0) remains below ϵ whenever t0 and t′0 are within the interval (0, δ). Utilizing
Proposition Proposition 2 along with the maximum principle, we can deduce that

sup
M

σ(H(t), H(t′)) < ϵ

holds true for all t, t′ greater than T − δ.
The above fact signifies that the sequence H(t) is uniformly Cauchy, implying that

H(t) → H(T), where H(T) is continuous.
Alternatively, according to Proposition 1, we are aware that |Φε,v(Hv)|Hv is uniformly

bounded. We also notice that

| ∂

∂t
(log trace hv)|Hv ≤ 2|Φε,v(Hv)|Hv ,

and
| ∂

∂t
(log trace h−1

v )|H ≤ 2|Φε,v(Hv)|Hv ,

hence we can infer that the sequence σ(H(t), H(0)) is uniformly bounded on the space
M × [0, T); thereby, the metric H(T) is absolutely non-degenerate.

By employing a similar argument as presented in ([1], Lemma 19) and ([36], Lemma 3.3),
it is straightforward to prove the subsequent lemma.

Lemma 2. Let M be a compact Hermitian manifold, either without a boundary or potentially with
a non-empty boundary. Consider the collection of Hermitian metrics H(t) = {Hv(t)}v∈Q0 for
0 ≤ t < T on the twisted quiver bundle R over the base manifold M (subject to Dirichlet boundary
conditions). Assume that H0 = {H0,v}v∈Q0 is the initial data on the bundle R. If, as t approaches
T, the metric H(t) converges in the C0 sense to the metric H(T) (non-degenerate continuous) on
the bundle R, and if the supremum of |Λω FHv(t)|H0,v is uniformly bounded across all values of t,
then the metric Hv(t) is bounded in C1 and furthermore in Lp

2 (for any 1 < p < +∞) across all
values of t.

Now, we are ready to demonstrate the existence of the flow for extended periods
of time.

Proposition 6. Equations (11) and (12) possess a unique solution H(t) that persists for all times.

Proof. Proposition 5 establishes the short-term existence of a solution. Assume that a
solution H(t) exists for a limited time interval, namely 0 ≤ t < T < +∞. According to
Lemma 1, the metric H(t) converges in C0 norm to a limiting metric H(T) (non-degenerate
and continuous) on the twisted quiver bundle R as t approaches T. As t is finite, (5) signifies
that supM |Λω FHv(t)|H0,v is uniformly bounded in the interval [0, T). Furthermore, by
Lemma 2, the metric Hv(t) is uniformly bounded in C1 norm and also in Lp

2 norm (for any
1 < p < +∞) across all values of t. Applying Hamilton’s methodology [37], we can infer
that Hv(t) → Hv(T) in C∞ norm, thus enabling the extension of the solution H(t) beyond
T. Consequently, (11) and (12) admit a solution H(t) that persists for all time. Utilizing the
maximum principle and Proposition 2, we establish the uniqueness of this solution.

In the remainder of this section, our focus shall be on the enduring presence of the
perturbed heat flow (3) for the twisted quiver bundle R residing over a non-compact
Hermitian manifold M. Here, we postulate the existence of an exhaustion function φ ≥ 0
such that

√
−1Λω∂∂̄φ is bounded, satisfying Condition 2 for M. Given a fixed number ρ,

let Mρ represent the compact subspace defined by {x ∈ M | φ(x) ≤ ρ}, with boundary
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∂Mρ. Let H0 be the initial metric defined on the twisted quiver bundle R over the base
manifold M. We shall consider the Dirichlet boundary condition as follows:

H(t)|∂Mρ
= H0|∂Mρ

. (13)

Based on Proposition 6, we are aware that, for every Mρ, the flow (3) subject to the afore-
mentioned Dirichlet boundary condition and with the initial metric H0 admits a distinct
long-term solution H(t) for 0 ≤ t < +∞.

Proposition 7. Let us assume that H(t) represents a long-term solution to the perturbed heat flow
(3) defined on Mρ and complies with the Dirichlet boundary condition (13), then we have

| log hv|H0,v(x, t) ≤ C1

ε ∑
v∈Q0

max
Mρ

|Φv(H0,v)|H0,v , ∀(x, t) ∈ Mρ × [0,+∞), (14)

where C1 is a constant independent of ε.

Proof. After direct computation, we find that

∑
v∈Q0

⟨H−1
v

∂Hv

∂t
, log hv⟩H0,v = ∑

v∈Q0

⟨− 2
σv

Φε,v(Hv), log hv⟩H0,v

= ∑
v∈Q0

⟨− 2
σv

Φv(H0,v), log hv⟩H0,v + ∑
v∈Q0

⟨− 2
σv

(Φε,v(Hv)− Φv(H0,v)), log hv⟩H0,v

≤ ∑
v∈Q0

2
σv

|Φv(H0,v)|Hv | log hv|Hv

+ ∑
v∈Q0

⟨
√
−1Λω(∂Ev(h

−1
v ∂H0,v hv)) + εσv log hv, log hv⟩H0,v ,

(15)

where we have used the inequality (10).
Alternatively, it is straightforward to verify that

∑
v∈Q0

⟨H−1
v

∂Hv

∂t
, log hv⟩H0,v = ⟨h−1

v
∂hv

∂t
, log hv⟩H0,v =

1
2

∂

∂t ∑
v∈Q0

| log hv|2H0,v

and

∑
v∈Q0

⟨
√
−1Λω∂Ev(h

−1
v ∂H0,v hv), log hv⟩H0,v ≥ −1

2
∆̃( ∑

v∈Q0

| log hv|2H0,v
).

Then

1
4
(

∂

∂t
− ∆̃)( ∑

v∈Q0

| log hv|2H0,v
)

≤ −ε ∑
v∈Q0

σv| log hv|2H0,v
+ ∑

v∈Q0

2
σv

|Φ(H0,v)|H0,v | log hv|H0,v

≤ −εC2 ∑
v∈Q0

| log hv|2H0,v
+ C3 ∑

v∈Q0

|Φ(H0,v)|H0,v | log hv|H0,v ,

which together with the maximum principle implies (14).

For later use, we first recall the following lemma.

Lemma 3 ([4], Lemma 6.7). Let u(x, t) be a function defined on the space Mρ × [0, T] that fulfills
the conditions (

∂

∂t
− ∆̃

)
u ≤ 0, u|t=0 = 0,
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and also satisfies supMρ
u ≤ C4. Consequently, we deduce that

u(x, t) ≤ C4

ρ
(φ(x) + C5t),

where C5 represents the bound of ∆̃φ as stipulated in Condition 2.

Herein, we postulate that for all v ∈ Q0, the norm |Φv(H0,v)|H0,v is bounded on the
Hermitian manifold M. Given any compact subset Ω ⊂ M, we can find a constant ρ0
such that the set Ω ⊆ Mρ0 . Consider Hρ(t) = {Hρ,v(t)}v∈Q0 and Hρ1(t) = {Hρ1,v(t)}v∈Q0

as long-term solutions to the perturbed heat flow (3), satisfying the Dirichlet boundary
condition (13) for ρ0 < ρ1 < ρ. Define u = σ(Hρ(t), Hρ1(t)). According to Proposition 7,
u is uniformly bounded and serves as a subsolution for the heat operator with u(0) = 0.
Applying Lemma 3, we obtain

σ(Hρ(t), Hρ1(t)) ≤ C4
(ρ0 + C5T)

ρ
(16)

on Mρ0 × [0, T]. Consequently, Hρ forms a Cauchy sequence on the space Mρ0 × [0, T] as
ρ → ∞. For each v ∈ Q0, Proposition 7 guarantees the uniform C0 bound of Hρ(t), and local
C1 estimates can be derived analogously to ([18], Proposition 3.5). Furthermore, utilizing
the standard Schauder estimate for parabolic equations, we can derive local uniform and
smooth estimates for Hρ,v(t) for each v ∈ Q0. Notably, the parabolic Schauder estimate
only yields a uniform and smooth estimate for hv(t) on Mρ0 × [ι, T] with ι > 0, where the
estimate depends on ι−1. To address this, we can apply the maximum principle to obtain
a local uniform bound on the curvature |FHρ,v |Hρ,v for each v ∈ Q0, followed by standard
elliptic estimates to obtain locally uniform and smooth estimates. This step is omitted here
due to its similarity to ([38], Lemma 2.5). By selecting a subsequence with ρ → ∞, the
metric Hρ(t) converges in C∞

loc-topology on the twisted quiver bundle R to a long-term
solution H(t) of the perturbed heat flow (3) on M × [0, ∞). In summary, we arrive at the
following theorem.

Theorem 2. Let R denote a J-holomorphic twisted quiver bundle, endowed with a fixed Her-
mitian metric H0, over a Hermitian manifold M that fulfills the Condition 2. Assuming that
supM |Φv(H0,v)|H0,v is finite, it can be demonstrated that, throughout the entire M, the perturbed
heat flow (3) admits a long-term solution H(t) that satisfies the following bound:

sup
(x,t)∈M×[0,+∞)

| log hv|H0(x, t) ≤ C1

ε ∑
v∈Q0

max
M

|Φv(H0,v)|H0,v . (17)

5. Finding Solutions to the Perturbed Equation

Initially, we address the Dirichlet problem pertaining to the perturbed equation,
thereby arriving at the subsequent theorem.

Theorem 3. Let R represent a J-holomorphic twisted quiver bundle, equipped with a fixed Hermi-
tian metric H0 = {H0,v}v∈Q0 , over the compact base manifold M possessing a non-empty boundary
∂M. There exists a unique Hermitian metric H = {Hv}v∈Q0 on the twisted quiver bundle R that
satisfies the conditions {

Φε,v(Hv) = 0,
Hv|∂M = H0,v,

(18)

for all ε ≥ 0. If ε > 0, it follows that

max
x∈M

|sv|H0,v(x) ≤ C1

ε ∑
v∈Q0

max
M

|Φv(H0,v)|H0,v . (19)
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Moreover,
∑

v∈Q0

∥∂Ev sv∥L2(M) ≤ C(ε−1, Φv(H0,v), Vol(M)), (20)

where sv = log(H−1
0,v Hv). Additionally, if the initial metric H0 on the twisted quiver bundle R

adheres to the following condition

trace(Φv(H0,v)) = 0, (21)

then it implies ∑v∈Q0
σvtrace(sv) = 0 and the metric H on R also fulfills the condition (21).

Proof. According to Proposition 6, the existence of a long-term solution H(t) to the per-
turbed heat Equation (12) is established. Utilizing Proposition 1 and the fact |∇ζ|2 ≥
|∇|ζ||2, we derive (

∂

∂t
− ∆̃

)[
∑

v∈Q0

1
σv

|Φε,v(Hv)|Hv

]
≤ 0. (22)

If the initial metric H0 fulfills the condition (21), then by (6) and the maximum principle, it
follows that

∑
v∈Q0

trace(Φε,v(Hv)) = 0.

Consequently,
∑

v∈Q0

σvtrace(log(H−1
0,v Hv(t))) = 0

holds, and the metric H(t) satisfies the condition (21) for all t ≥ 0.
Pursuant to ([39], Chapter 5, Proposition 1.8), we aim to solve the Dirichlet problem

on M given by:
∆̃χ = −|Φv(H0,v)|H0,v , χ|∂M = 0. (23)

We define ς(x, t) =
∫ t

0 |Φε,v(Hv)|Hv(x, ϱ)dϱ − χ(x). From (22) and (23), and the boundary
condition satisfied by Hv, it is evident that for t > 0, |Φε,v(Hv)|Hv(x, t) vanishes on the
boundary of M. Consequently,(

∂

∂t
− ∆̃

)
ς(x, t) ≤ 0, ς(x, 0) = −χ(x), ς(x, t)|∂M = 0.

Employing the maximum principle, we obtain∫ t

0
|Φε,v(Hv)|Hv(x, ϱ)dϱ ≤ sup

y∈M
χ(y), (24)

for any x ∈ M and 0 < t < +∞.
Assuming t1 ≤ t ≤ t2 and letting h̄v(x, t) = H−1

v (x, t1)Hv(x, t), it is straightforward
to derive

∂

∂t
log trace(h̄v) ≤ 2|Φε,v(Hv)|Hv .

By integration, we arrive at

trace(H−1
v (x, t1)Hv(x, t)) ≤ r exp (2

∫ t

t1

|Φε,v(Hv)|Hv dϱ).

Analogously, we obtain a similar estimate for trace(H−1
v (x, t)Hv(x, t1)). Thus,

σ(Hv(x, t), Hv(x, t1)) ≤ 2r(exp (2
∫ t

t1

|Φε,v(Hv)|Hv dϱ)− 1). (25)
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Utilizing (24) and (25), we infer that the metric H(t) on the twisted quiver bundle R
approaches a continuous metric H∞ in the C0 topology as t tends to infinity. According
to Lemma 2, it is known that for each vertex v ∈ Q0, the metric Hv(t) is uniformly
bounded in C1

loc and also in Lp
2,loc (1 < p < +∞). Furthermore, it is established that for

each vertex v ∈ Q0, the quantity |H−1
v

∂Hv
∂t | is uniformly bounded. Leveraging the elliptic

regularity, we can deduce that there exists a subsequence Hv(t) converging to Hv,∞ in the
C∞

loc-topology. Applying (24), we recognize that Hv,∞ is the desired metric that satisfies the
boundary condition. Finally, the uniqueness is guaranteed by the maximum principle and
Proposition 3.

If ε > 0, the implication in Proposition 7, stated in (14), leads to (19). According to the
definition, it is straightforward to verify that

|∂Ev sv|2H0,v
≤ C6⟨Ψ(s)(∂Ev sv), ∂Ev sv⟩H0,v ,

where C6 is a constant that depends solely on the L∞-bound of sv.
Utilizing the identity (8) from Proposition 4 and the Equation (18), we arrive at

∑
v∈Q0

∫
M
|∂Ev sv|2H0,v

ωn

n!
≤ C6 ∑

v∈Q0

∫
M
⟨Ψ(sv)(∂Ev sv), ∂Ev sv⟩H0,v

ωn

n!

= C6 ∑
v∈Q0

∫
M
(−trace(Φv(H0,v)sv)− εσv|sv|2H0,v

)
ωn

n!

≤ C7

ε ∑
v∈Q0

sup
M

|Φv(H0,v)|2H0,v
· Vol(M).

(26)

Consequently, (26) directly leads to the conclusion of (20).

Let M be a non-compact Gauduchon manifold, and assume {Mρ} forms an exhaustive
sequence of compact subdomains of the manifold M. Given a J-holomorphic twisted quiver
bundle R over the base manifold M and a collection of Hermitian metrics H0 defined on
R, Theorem 3 ensures the solvability of the Dirichlet problem on Mρ, yielding a Hermitian
metric Hρ(x) = {Hρ,v}v∈Q0 on R that satisfies{

Φε,v(Hρ,v) = 0, ∀x ∈ Mρ,
Hρ,v(x)|∂Mρ

= H0,v(x).

To extend the solution to the entire manifold M, we rely on a priori estimates, primarily
the C0-estimate. For each v ∈ Q0, let hρ,v = H−1

0,v Hρ,v. By Theorem 3, for all v ∈ Q0 we have

sup
x∈Mρ

| log hρ,v|H0,v(x) ≤ C1

ε ∑
v∈Q0

max
Mρ

|Φv(H0,v)|H0,v .

For any compact subset Ω ⊂ M, there exists a constant ρ0 such that Ω ⊂ Mρ0 . Following
similar arguments to those in ([18], Proposition 3.5), we obtain local uniform C1-estimates,
specifically, for any ρ > ρ0, there exists

sup
x∈Ω

|h−1
ρ,v∂H0,v hρ,v|H0,v ≤ C8, (27)

where C8 is a uniform constant independent of ρ. Applying the perturbed equation
Φε,v(Hv) = 0 and standard elliptic theory, we can derive uniform local higher order
estimates. By selecting a subsequence, for each v ∈ Q0, Hρ,v converges in C∞

loc-topology to
a metric H∞,v that solves the perturbed equation Φε,v(Hv) = 0 on the entire manifold M.
This completes the proof of the following theorem.
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Theorem 4. Given a J-holomorphic twisted quiver bundle R with a fixed Hermitian metric H0
over the non-compact Gauduchon manifold M, if sup

M
|Φv(H0)|H0,v < +∞, then for any ε > 0,

there exists a metric H = {Hv}v∈Q0 on R such that

Φε,v(Hv) = 0,

sup
x∈M

| log H−1
0,v Hv|H0,v(x) ≤ C1

ε ∑
v∈Q0

sup
M

|Φv(H0,v)|H0,v , (28)

and
∥∂Ev(log H−1

0,v Hv)∥L2 ≤ C(ε−1, Φv(H0,v), Vol(M)). (29)

If the initial data H0 fulfils the condition (21), then

∑
v∈Q0

σvtrace log(H−1
0,v Hv) = 0

and H also fulfils the condition (21).

6. Proof of Theorem 1

Let M be the special non-compact Gauduchon manifold, as stated in Theorem 1, and let
R represent a twisted quiver bundle over this manifold. Given a suitable background metric
K = {Kv}v∈Q0 defined on R that meets the conditions

√
−1Λω FKv ≤ 0, supM |Λω FKv |Kv <

+∞, and supM |ϕ|Kv < +∞, we can refer to ([18], Proposition 4.3) to solve the Poisson
equation on the non-compact Gauduchon manifold M:

√
−1Λω ∂̄∂ f = − 1

rank(Ev)
∑

v∈Q0

trace(Φv(Kv)).

Through the conformal transformation Kv = e f Kv, we discover that the metric Kv
fulfills the criterion

∑
v∈Q0

trace(Φv(Kv)) = 0. (30)

Examining the properties of the function f reveals that if R exhibits analytic (σ, τ)-stability
with respect to the Hermitian metric K, it necessarily maintains this stability with respect to
the transformed Hermitian metric K = {Kv}v∈Q0 . Consequently, without loss of generality,
we can presume that the initial metric K imposed on R already satisfies the condition
expressed in Equation (30).

According to Theorem 4, for each vertex v belonging to Q0 and any positive number ε,
the perturbed equation below can be solved:

Φε,v(Hε,v) := Φv(Hε,v) + εσv(log hε,v) = 0, (31)

where hε,v is defined as K−1
v Hε,v = esε,v and

Φv(Hε,v) = σv
√
−1Λω FHε,v + ∑

a∈h−1(v)

ϕa ◦ ϕ
∗Hε,v
a − ∑

a∈t−1(v)

ϕ
∗Hε,v
a ◦ ϕa − τv · IEv .

Given that the initial Hermitian metric K imposed on R fulfills condition (30), we
deduce that

∑
v∈Q0

σvtrace(log hε,v) = 0.

By employing similar reasoning to that presented in ([18], Lemma 6.1), we can effort-
lessly arrive at the subsequent lemma.
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Lemma 4. If hε,v ∈ Herm+(Ev, Kv) satisfies Φε,v(Hε,v) = 0 for some positive ε, we conclude that

σv max
M

| log hε,v|Kv ≤ C9( ∑
v∈Q0

σv∥ log hε,v∥L2 + C10),

where C9 and C10 only depends on ω and Kv.

When R exhibits analytic (σ, τ)-stability relative to the Hermitian metric K, we aim
to demonstrate that, by selecting a subsequence, Hε approaches a (σ, τ)-Hermite–Yang–
Mills metric H in the C∞

loc-topology as ε tends to 0. Leveraging the local C1-estimates
from (27) alongside standard elliptic theory, our focus narrows to deriving a uniform C0-
estimate. Thanks to Lemma 4, our task simplifies to establishing a consistent bound on
∑v∈Q0

σv∥ log hε,v∥L2 .
We will prove this by contradiction. If our claim does not hold, there must exist a

positive constant δ and a subsequence εi approaching 0 as i tends to infinity, satisfying

∑
v∈Q0

σv∥ log hεi ,v∥L2 → +∞.

Defining

sεi ,v = log hεi ,v, γi,v = ∥sεi ,v∥L2 , uεi ,v =
sεi ,v

γi,v
,

we deduce that ∑v∈Q0
trace(σvuεi ,v) = 0 and ∥uεi ,v∥L2 = 1. Then, invoking Lemma 4,

we obtain
max

M
|uεi ,v| ≤

C9

γi,v
( ∑

v∈Q0

σvγi,v + C10) < C11 < +∞. (32)

Step 1 We will demonstrate that for each v ∈ Q0, the L2
1 norms of uεi ,v are uniformly

bounded. Since the L2 norms of uεi ,v are already normalized to 1, our focus shifts to
proving that the L2 norms of ∇uεi ,v are uniformly bounded.

Relying on Proposition 4 and the perturbed Equation (31), we deduce that for every
uεi ,v, the following inequality holds:

∑
v∈Q0

(∫
M

trace(Φv(Kv)uεi ,v) + σv

∫
M

γi,v

〈
Ψ(γi,vuεi ,v)(∂Ev uεi ,v), ∂Ev uεi ,v

〉
Kv

)
≤ −εi ∑

v∈Q0

σvγi,v.
(33)

Consider the function defined as

γΨ(γx, γy) =

{
γ, if x = y,
eγ(y−x)−1

y−x , if x ̸= y.

Based on (32), we can assume (x, y) belongs to the domain [−C12, C12]× [−C12, C12].
It is straightforward to verify that

γΨ(γx, γy) →
{
(x − y)−1, if x > y,
+∞, if x ≤ y,

(34)
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which monotonically increases as γ approaches positive infinity. Let ζ be a smooth function
from R×R to R+ satisfying ζ(x, y) < (x − y)−1 when x > y. Utilizing (34) and adapting
arguments from ([4], Lemma 5.4), we arrive at

∑
v∈Q0

(∫
M

trace(Φv(Kv)uεi ,v) + σv

∫
M

〈
ζ(uεi ,v)(∂Ev uεi ,v), ∂Ev uεi ,v

〉
Kv

)
≤ 0,

(35)

for sufficiently large i. Specifically, we can choose ζ(x, y) = 1
3C12

. Therefore, when (x, y) ∈
[−C12, C12]× [−C12, C12] and x > y, 1

3C12
< 1

x−y . This means

∑
v∈Q0

( ∫
M

trace(Φv(Kv)uεi ,v) + σv

∫
M

1
3C12

|∂Ev uεi ,v|
2
Kv

)
≤ 0

for i ≫ 1. Then we have

∑
v∈Q0

∫
M
|∂Ev uεi ,v|

2
Kv

ωn

n!
≤ C13 ∑

v∈Q0

max
M

|Φv(Kv)|Kv · Vol(M).

Therefore, for each element v belonging to Q0, the sequence uεi ,v is bounded in the L2
1

norm. Consequently, we can select a subsequence, denoted as {uεij
,v}, which converges

weakly to u∞,v in L2
1. For simplicity, we retain the notation {uεi ,v} for this subsequence.

Recognizing that L2
1 is embedded into L2, we deduce that

1 = lim
i→∞

∫
M
|uεi ,v|

2
H0,v

=
∫

M
|u∞,v|2H0,v

.

This suggests that the L2 norm of u∞,v is unity, indicating its non-triviality.
Employing Equation (35) and adopting an analogous reasoning to that presented in

([4], Lemma 5.4), we arrive at the inequality

∑
v∈Q0

(∫
M

trace(Φv(Kv)u∞,v) + σv

∫
M

〈
ζ(u∞,v)(∂Ev u∞,v), ∂Ev u∞,v

〉
Kv

)
≤ 0. (36)

Step 2 By applying the arguments put forth by Uhlenbeck and Yau in [5], we devise a
subsheaf of quiver that opposes the analytic (σ, τ)-stability of R.

Drawing from Equation (36) and implementing the method outlined in ([4], Lemma 5.5),
we deduce that for every v ∈ Q0, the eigenvalues of u∞,v remain constant across almost
all points. Denote the distinct eigenvalues of u∞,v as µ1,v < µ2,v < · · · < µl,v. The
condition ∑v∈Q0

trace(σvu∞,v) = 0 and ∥u∞,v∥L2 = 1 dictate that l must fall within the
range 2 ≤ l ≤ r. For each eigenvalue µi,v (where 1 ≤ i ≤ l − 1), we formulate a function

Pi,v(x) : R → R

defined as

Pi,v =

{
1, if x ≤ µi,v,
0, if x ≥ µi+1,v.

Defining πi,v as Pi,v(u∞,v) and Ei,v as πi,v(Ev), according to ([4], p. 887), we obtain the
following facts:

1. πi,v ∈ L2
1;

2. π2
i,v = πi,v = π

∗H0,v
i,v ;

3. (IEi,v − πi,v)∂Ei,v πi,v = 0;
4. (IEi,ha − πi,ha) ◦ ϕa ◦ (πi,ta ⊗ IẼa

) = 0 for each a ∈ Q1.
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According to Uhlenbeck and Yau’s regularity theorem on the L2
1-subbundle from [5],

for each vertex v ∈ Q0, the set {πi,v}l−1
i=1 defines l − 1 coherent sub-sheaves of Ev. By

leveraging the reasoning presented in ([23], p. 288), which builds upon ([40], Theorem 0.2),
we are able to derive a series of good weakly quiver sub-bundles Ri of R.

Since
∑

v∈Q0

trace(σvu∞,v) = 0

and

u∞,v = µl,v · IEv −
l−1

∑
i=1

(µi+1,v − µi,v) · πi,v,

it holds

∑
v∈Q0

(σvµl,v · rank(Ev)−
l−1

∑
i=1

(µi+1,v − µi,v)σv · rank(Ei,v)) = 0. (37)

Denote by

µl,ṽ = max
v∈Q0

µl,v,
l−1

∑
i=1

(µi+1,v̂ − µi,v̂) = min
v∈Q0

l−1

∑
i=1

(µi+1,v − µi,v).

Then from (37), we have

∑
v∈Q0

σvµl,ṽrank(Ev) ≥ ∑
v∈Q0

l−1

∑
i=1

(µi+1,v̂ − µi,v̂)σvrank(Ei,v). (38)

Construct the quantity

ν = Vol(M)
(

µl,ṽ degσ,τ(R, K)−
l−1

∑
i=1

(µi+1,v̂ − µi,v̂)degσ,τ(Ri, K))
)

. (39)

On one hand, substituting (38) into χ, we have

ν ≥ Vol(M)
l−1

∑
i=1

(µi+1,v̂ − µi,v̂)

× ∑
v∈Q0

σvrank(Ei,v)(Sσ,τ(R, K)− Sσ,τ(Ri, K)).
(40)

On the other hand, from ([4], Lemma 3.2), we have the following Chern–Weil formula with
respect to the metric K on the twisted quiver bundle R

deg(Ei,v, Kv) =
1

Vol(M) ∑
v∈Q0

( ∫
M
⟨
√
−1Λω FH0,v , πi,v⟩Kv

−
∫

M
|∂Ev πi,v|2Kv

)
,

(41)
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Substituting (41) into (39), we have

ν = ∑
v∈Q0

∫
M

〈
σv
√
−1Λω FKv , µl,ṽIEv −

l−1

∑
i=1

(µi+1,v̂ − µi,v̂)πi,v

〉
Kv

+ ∑
v∈Q0

σv

l−1

∑
i=1

(µi+1,v̂ − µi,v̂)∥∂Ev πi,v∥2
L2

− ∑
v∈Q0

τv · Vol(M) ·
(

µl,ṽrank(Ev)−
l−1

∑
i=1

(µi+1,v̂ − µi,v̂)rank(Ei,v)
)

= ∑
v∈Q0

∫
M

〈
σv
√
−1Λω FKv , µl,v · IEv −

l−1

∑
i=1

(µi+1,v − µi,v)πi,v

〉
Kv

+ ∑
v∈Q0

σv

l−1

∑
i=1

(µi+1,v

− µi,v)∥∂Ev πi,v∥2
L2 − ∑

v∈Q0

τv · Vol(M) ·
(

µl,vrank(Ev)−
l−1

∑
i=1

(µi+1,v − µi,v)rank(Ei,v)
)

+ ∑
v∈Q0

∫
M
⟨σv

√
−1Λω FKv , (µl,ṽ − µl,v) · IEv + (

l−1

∑
i=1

(µi+1,v − µi,v)

−
l−1

∑
i=1

(µi+1,v̂ − µi,v̂))πi,v⟩Kv + ∑
v∈Q0

(
σv(

l−1

∑
i=1

(µi+1,v̂ − µi,v̂)−
l−1

∑
i=1

(µi+1,v − µi,v))

× ∥∂Ev πi,v∥2
L2

)
+ ∑

v∈Q0

τv · Vol(M) ·
(
(µl,v − µl,ṽ) · rank(Ev)

+ (
l−1

∑
i=1

(µi+1,v̂ − µi,v̂)−
l−1

∑
i=1

(µi+1,v − µi,v))rank(Ei,v)
)

≤ ∑
v∈Q0

∫
M

(
⟨Φv(Kv), u∞,v⟩Kv

+ ⟨σv

l−1

∑
i=1

(µi+1,v − µi,v)(dPi,v)
2(u∞,v)(∂Ev u∞,v), ∂Ev u∞,v⟩Kv

)
≤ 0,

(42)

where the differential dPi,v(x, y) : R×R → R is given by

dPi,v(x, y) =


Pi,v(x)− Pi,v(y)

x − y
, if x ̸= y;

P′
i,v(x), if x = y.

By integrating (40) and (42), we reach a contradiction with the analytic (σ, τ)-stability of
the bundle R. □
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