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Abstract: This paper investigates a novel C0 nonconforming virtual element method (VEM) for
solving the Kirchhoff plate obstacle problem, which is described by a fourth-order variational
inequality (VI) of the first kind. In our study, we distinguish our approach by introducing new internal
degrees of freedom to the traditional lowest-order C0 nonconforming VEM, which originally lacked
such degrees. This addition not only facilitates error estimation but also enhances its intuitiveness.
Importantly, our novel C0 nonconforming VEM naturally satisfies the constraints of the obstacle
problem. We then establish an a priori error estimate for our novel C0 nonconforming VEM, with
the result indicating that the lowest order of our method achieves optimal convergence. Finally, we
present a numerical example to validate the theoretical result.
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priori error estimate
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1. Introduction

The Kirchhoff plate model is employed to characterize the bending behavior of thin
plates. It is based on thin plate theory and is suitable for structures with relatively small
thicknesses [1–3]. The model assumes that the thin plate remains planar during bending,
disregarding thickness variations and shear deformations, and solely focusing on the
bending and stretching behaviors of the plate [4]. It is widely utilized in engineering
fields such as aerospace, civil engineering, and automotive engineering. Mathematically,
the Kirchhoff plate problem is typically formulated as a fourth-order partial differential
equation (PDE) that describes the deflection of the plate [5]. The Kirchhoff plate obstacle
problem is a mathematical model utilized for investigating the behavior of thin plates in the
presence of obstacles or constraints, with significant implications in various engineering
and scientific fields such as structural mechanics [6] and material science.

The Kirchhoff plate obstacle problem addressed in this paper can be formulated as
a typical variational inequality (VI) of the first kind [7,8]. A VI is a mathematical concept
utilized to describe specific types of constrained optimization problems arising in situations
where the goal is to minimize a certain functional while adhering to constraints defined
by inequalities. VIs arise in various domains of mathematics and physics, such as the
investigation of PDEs, optimization, and game theory [9–12]. They offer a robust frame-
work for modeling and analyzing problems with constraints and have been extensively
researched in the field of nonlinear functional analysis. In general, there is no exact solution
to VIs, so it is crucial to develop effective numerical methods for solving them. Partic-
ularly, for the plate obstacle problem, which arises in various engineering and physical
applications, understanding the numerical solution of these problems helps in practical
engineering designs and simulations. Furthermore, developing efficient algorithms for
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solving the plate obstacle problem can lead to improvements in computational efficiency
and accuracy. Investigating different numerical methods and their performance can help in
designing better algorithms for similar types of problems [13–15]. Therefore, investigating
the numerical solution of the plate obstacle problem is essential for advancing both the
theoretical understanding of numerical methods for PDEs and their practical applications
in various fields.

The virtual element method (VEM) is a numerical technique utilized for solving PDEs,
initially proposed in [16]. A key characteristic of the VEM is its capability to handle general
polygonal (or polyhedral) meshes and hanging nodes, which are commonly encountered
in practical engineering applications but pose challenges for traditional finite element
methods (FEMs) [17–19]. The VEM formulation allows for the utilization of different
polynomial degrees or even non-polynomial functions for approximating the solution
and its derivatives within an element, providing flexibility in balancing accuracy and
computational cost.

Additionally, the VEM allows for the incorporation of various types of boundary
conditions and material properties, making it suitable for a wide range of problems, such
as linear elasticity [20–22], Stokes or Navier–Stokes equations [23–25], Cahn–Hilliard equa-
tions [26], and so on. It also has the potential to achieve high accuracy while maintaining a
low computational cost, especially for problems with highly heterogeneous materials or
discontinuous solutions. Overall, the VEM is a promising approach for solving PDEs, offer-
ing a flexible and efficient numerical technique that can handle a wide range of practical
engineering problems. In the context of plate problems, Brezzi and Marini introduced the
conforming VEM in [27]. To relax continuity requirements, Zhao et al. developed the C0

nonconforming VEM for the plate problem in [28]. Subsequently, a Morley-type VEM with
fewer degrees of freedom was also formulated for handling fourth-order problems [29,30].

In recent years, VEMs have been successfully used for solving variational inequali-
ties [31–37]. Particularly, for the study of VIs in the plate problem, Wang and Zhao studied
conforming and nonconforming VEMs for plate friction contact problems [38]. Compared
to the conforming VEM, the nonconforming VEM relaxes the continuity requirements and
reduces the degrees of freedom. The C0 and fully nonconforming VEMs for the first kind
of VI problems were studied in [39]. As a continuation of the aforementioned method,
this study investigates the application of a C0 nonconforming VEM to solve the Kirchhoff
plate obstacle problem, which is expressed by a fourth-order VI of the first kind. For the
conventional lowest-order C0 nonconforming VEM, which initially lacked internal degrees
of freedom, our novel approach involves introducing new internal degrees of freedom. This
addition not only simplifies error estimation but also improves its intuitiveness. Crucially,
our novel C0 nonconforming VEM naturally satisfies the constraints of the obstacle problem.
Subsequently, we establish an a priori error estimate for our novel C0 nonconforming VEM.
The outcome of this error estimate reveals that the lowest order of our method achieves
optimal convergence. Finally, we present a numerical example to verify the results of the
theoretical analysis.

The remainder of this paper is structured as follows. Section 2 outlines the plate
obstacle problem and its variational formulation. Section 3 focuses on C0 nonconforming
VEMs for solving the target problem. In Section 4, we provide a priori error analysis,
illustrating that the lowest-order VEM achieves optimal convergence order. In Section 5
presents a numerical example to verify the results of the theoretical analysis. Finally, in
Section 6, we provide a summary of this paper.

2. Plate Obstacle Model

In this section, we initially present the plate obstacle model and its variational form.
Subsequently, we provide detailed pointwise relations of the model.



Axioms 2024, 13, 322 3 of 17

2.1. Model Problem and Its Variational Inequality

Consider an open, bounded two-dimensional domain D, and let α be a positive
integer. We utilize the notations ∥ · ∥α,D and | · |α,D to represent the norm and seminorm,
respectively, of the Sobolev space Hα(D). When α = 0, Hα(D) reduces to the standard
Lebesgue space L2(D) with norm | · |D and the associated L2 inner product (·, ·)D . For the
sake of brevity, we omit the subscript in cases where D = Ω. For any nonnegative integer
k, Pk(D) represents the space of polynomial functions with degree at most k. We denote
the unit outward normal to the boundary of D as n and the unit tangential vector as t. If
v ∈ H1(D), ∂nv and ∂tv denote the normal and tangential derivatives on the boundary,
respectively.

Our focus is on the plate obstacle problem, which is expressed as a first-kind fourth-
order elliptic variational inequality [40,41]. Given a downward force f in the center of
an elastic thin plate with a fixed and non-rotatable boundary, there exists an obstacle ψ
beneath the plate. When the force f causes deformation of the thin plate, the bounded
region Ω can be divided into two parts: the contact area Ω0 and the non-contact area Ω+,
as shown in Figure 1. This equilibrium problem, involving the upper plate covering the
obstacle ψ, can be described by a variational inequality in PROBLEM P. 

 

 

 

                                      𝑓 

 

 

 

 

 

 Ω+        Ω0        Ω+     𝜓 

Figure 1. The obstacle problem P.

In the context of a thin plate occupying the space Ω × (−d/2, d/2), where Ω ⊂ R2 is
a bounded polygonal domain and d > 0 represents the small thickness of the plate, the
boundary of Ω is denoted by Γ. Assume the material to be isotropic and linearly elastic,
characterized by a positive Young’s modulus E and a positive Poisson’s ratio with ν < 0.5.
Within this setting, let D0 f denote the normal force density acting on the plate, and let D0
represent the bending rigidity. Generally, the bending rigidity depends on the material
properties of the plate and its thickness. For a thin plate, the bending rigidity can be
expressed as

D0 =
Ed3

12(1 − ν2)
,

Let us consider the following elliptic variational inequality for the Kirchhoff plate obstacle
problem.

TARGET PROBLEM T . For a given right-hand side l ∈ L2(Ω) and obstacle ξ ∈ H2(Ω)
with the constraint ξ ≤ 0 on Γ, we seek to find u ∈ S that satisfies the following equation:

A(u, v − u) ≥ (l, v − u) ∀ v ∈ S , (1)

where
S = {v ∈ H2

0(Ω); v ≥ ξ in Ω}.

Here, the bilinear form is

A(u, v) =
∫

Ω

[
∆u ∆v + (1 − ν) (2 ∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v)

]
dx. (2)
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The bilinear form A(·, ·) in TARGET PROBLEM T is characterized by both boundedness
and coercivity, meaning that there exist constants λ1 and λ2 such that

A(u, v) ≤ λ1|u|2|v|2 ∀ u, v ∈ H2(Ω), (3)

A(v, v) ≥ λ2|v|22 ∀ v ∈ H2(Ω), (4)

where λ1 = 1+ ν and λ2 = 1− ν [28]. According to the theory of VI, it has been established
that TARGET PROBLEM T is well posed [42,43].

For our target problem, we posit that u lies within the space H3(Ω) [43,44]. To
streamline the bilinear form, we give the following auxiliary matrix-valued function [41]:

ϵ = −(1 − ν)∇2u − ν tr(∇2u)I, (5)

where I denotes the second-order identity matrix and tr(·) represents the operation of
computing the trace of matrices. The notation ∇v indicates the gradient of v, while ∇2v
signifies the Hessian of v. The normal and tangential components of ϵn are defined as
ϵn = ϵn · n and ϵt = ϵn − ϵnn, respectively.

Let us introduce the double-dot inner product between ϱ and ϵ as ϵ : ϱ = ∑2
i,j=1 ϵijϱij

and define the corresponding norm |ϱ| = (ϱ : ϱ)1/2, where ϱ and ϵ are second-order
tensors. We note that for a scalar function v and a symmetric matrix-valued function ϱ, the
following integration-by-parts formula holds:∫

D
v∇ · (∇ · ϱ) dx =

∫
D
∇2v : ϱ dx −

∫
∂D

∇v · (ϱn) ds +
∫

∂D
v n · (∇ · ϱ) ds, (6)

Utilizing the definition (5) of ϵ, we can express (2) as

A(u, v) = −
∫

Ω
ϵ : ∇2v dx,

or split it as

A(u, v) = ∑
T∈Th

AT(u, v) = ∑
T∈Th

−
∫

T
ϵ : ∇2v dx,

where Th denotes a decomposition of Ω. Alternatively, we can express (1) as

−
∫

Ω
ϵ : ∇2(v − u) dx ≥

∫
Ω

l(v − u) dx. (7)

2.2. Pointwise Relations of the Solution

To comprehend the behavior of the solutions and conduct numerical analysis, it is
essential to have the following lemma regarding pointwise relations.

Lemma 1. Given the regularity condition u ∈ H3(Ω) for the solution of TARGET PROBLEM T ,
the following results hold within the domain Ω:

−∇ · (∇ · ϵ)− l ≥ 0, u − ξ ≥ 0,
(
−∇ · (∇ · ϵ)− l

)
(u − ξ) = 0. (8)

Proof. By utilizing (6) and considering that v − u = ∂n(v − u) = 0 on Γ, we can rewrite
(7) as ∫

Ω

(
−∇ · (∇ · ϵ)− l

)
(v − u) dx ≥ 0. (9)

Consider (9), where we let v = u +O ∈ K for any O ∈ C∞
0 (Ω) with O ≥ 0. This leads to

the inequality ∫
Ω

(
−∇ · (∇ · ϵ)− l

)
O dx ≥ 0 ∀O ∈ C∞

0 (Ω), O ≥ 0,
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so
−∇ · (∇ · ϵ)− l ≥ 0 in Ω. (10)

Partition Ω into two regions, one without contact and one with contact, according to the
following scheme:

Ω+ = {x ∈ Ω : u(x) > ξ(x)},

Ω0 = {x ∈ Ω : u(x) = ξ(x)}.

Given any Q(x) ∈ C∞
0 (Ω) such that 0 ≤ Q(x) ≤ 1, it follows that Q(x)ξ + (1−Q(x))u ∈ S.

Substituting v with Q(x)ξ + (1 −Q(x))u in (9) yields∫
Ω

(
−∇ · (∇ · ϵ)− l

)
Q(x)(ξ − u) dx ≥ 0 ∀Q(x) ∈ C∞

0 (Ω), 0 ≤ Q(x) ≤ 1.

And then∫
Ω+

(
−∇ · (∇ · ϵ)− l

)
Q(x)(ξ − u) dx ≥ 0 ∀Q(x) ∈ C∞

0 (Ω), 0 ≤ Q(x) ≤ 1,

and thus
−∇ · (∇ · ϵ)− l ≤ 0 in Ω+. (11)

By combining (10) and (11), we conclude that

−∇ · (∇ · ϵ)− l = 0 in Ω+.

Consequently, the following results are derived:

−∇ · (∇ · ϵ)− l = 0 in Ω+ = {x ∈ Ω; u(x) > ξ(x)},

−∇ · (∇ · ϵ)− l ≥ 0 in Ω0 = {x ∈ Ω; u(x) = ξ(x)},(
−∇ · (∇ · ϵ)− l

)
(u − ξ) = 0 in Ω.

3. C0 Nonconforming VEM

In this section, building upon the concepts outlined in [28,38], we present the C0

nonconforming VEM for solving TARGET PROBLEM T . Let {Th}h be a collection of de-
compositions acquired by dividing Ω into polygonal elements. We define hT = diam(T),
he = diam(e), and h = max{hT ; T ∈ Th}. The following assumptions are made [45].

A1. For every h and each T ∈ Th, a constant γ > 0 exists such that the following
conditions hold:

• T is star-shaped in relation to a ball with a radius greater than or equal to γhT ;
• The ratio of the shortest edge to hT is larger than γ.

Denote the set of all the edges of Th as Dh, let Di
h represent the set of all internal edges,

and D∂
h = Dh\Di

h. For any e ∈ Di
h, let Ie := T+ ∪ T−, where it represents the intersection

of element T+ and T−. nT stands for the unit outward normal vectors pointing from T+ to
T− for any T ∈ Th, and ne represents a unit normal of an edge e ∈ Dh. The orientation of
ne is selected arbitrarily but remains consistent from T+ to T− for every e = ∂T+ ∩ ∂T−.
This orientation aligns with the outward normal of Ω for boundary edges. The jump of a
function ω across the edge e = ∂T+ ∩ ∂T− is given by

[ω] := ω+ − ω−,
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where ω+ denotes the part of ω that lies within T+ and ω− denotes the part within T−.
For any e ∈ D∂

h, we define [ω] := ω. The jump can be similarly defined for vector-valued
functions. Additionally, we introduce the broken Sobolev space for any positive constant m.

Hm(Th) := {v ∈ L2(Ω); v|T ∈ Hm(T) ∀ T ∈ Th},

with the broken Hm-norm
∥v∥2

m,h := ∑
T∈Th

∥v∥2
m,T ,

and the broken Hm-seminorm
|v|2m,h := ∑

T∈Th

|v|2m,T .

Following [28,38], we define the finite-dimensional space Vh and, for clarity, present
subspaces of H2(Th).

H2,nc(Th) =

{
vh ∈ H1

0(Ω) ∩ H2(Th);
∫

e
[∂nvh] ds = 0 ∀e ∈ Eh

}
.

3.1. Construction of the C0 Nonconforming VEM

In this subsection, the C0 nonconforming virtual element (VE) method for solving
TARGET PROBLEM T is developed. In obstacle problems, achieving high regularity in
solutions is challenging, even when the force l = 0, the obstacle function ξ, and the
boundary of the region are sufficiently smooth. As a result, optimal convergence orders
cannot be attained with high-order methods. Therefore, our focus in this study is on
utilizing lowest-order VEMs with k = 2.

Local construction of VT
h . For any element T ∈ Th with m edges, the local virtual

element space VT
h is defined as follows:

VT
h :=

{
v ∈ H2(T); ∆2v ∈ P0(T), v|e ∈ P2(e), ∆v|e ∈ P0(e) ∀e ⊂ ∂T

}
. (12)

The degrees of freedom (d.o.f.s) associated with the space VT
h are as follows:

• D1 : The value of the function v at the vertex of the element T; (13)

• D2 :
1
he

∫
e

v ds ∀ e ⊂ ∂T; (14)

• D3 :
∫

e
∂nnnv ds ∀ e ⊂ ∂T; (15)

• D4 :
1
|T|

∫
T

v dx. (16)

Figure 2 illustrates the DOFs in (13)–(16), and the total number of DOFs is given by

NT,nc
dof = 3m + 1.

Lemma 2. Assuming T is a convex polygon, the degrees of freedom in (13)–(16) are unisolvent for
VT

h .

Proof. Since the dimension of VT
h equals the total number of DOFs in (13)–(16), showing

that all DOFs uniquely determine a function in VT
h is sufficient to prove uniqueness.

Assuming that all DOFs of v are zero, it is sufficient for us to prove that v is equal to 0. For
each edge e of the element T, we know that v|e ∈ P2(e) and v|∂T ∈ C0(∂T). And since the
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degrees of freedom in (13) and (14) are all zero, we can derive that v|∂T = 0. Using the
twice Green’s formula, we have∫

T
|∆v|2 dx =

∫
T

v∆2v dx +
∫

∂T
∆v

∂v
∂nT

ds −
∫

∂T
v

∂∆v
∂nT

ds =
∫

T
v∆2v dx +

∫
∂T

∆v
∂v

∂nT
ds.

Since VT
h is defined in (12), it follows that ∆2v ∈ P0(T) and ∆v|e ∈ P0(e). Given that the

degrees of freedom in (15) and (16) are all zero, the right-hand side of the above equation
evaluates to zero. Consequently, we have ∆v = 0 on T. On the boundary of the element T,
it holds that v = 0, thus leading to the conclusion that v ≡ 0.

Figure 2. The DOFs of the lowest-order C0 nonconforming VE on VT
h .

The global construction of Vh. The global space for C0 nonconforming virtual ele-
ments with k = 2 is characterized by

Vh := {v ∈ H2,nc(Th); v|T ∈ VT
h ∀ T ∈ Th}. (17)

The global DOFs are as follows:

• D̃1 : The value of the function v at the vertex of the mesh; (18)

• D̃2 :
1
he

∫
e

v ds for all edges of the mesh; (19)

• D̃3 :
∫

e
∂nnnv ds for all edges of the mesh; (20)

• D̃4 :
1
|T|

∫
T

v dx for all elements of the mesh. (21)

For each element T ∈ Th, suppose that χi represents the operator corresponding to
the i-th local degree of freedom, as defined in (13)–(16), where i = 1, 2, . . . , NT,nc

dof . The
construction implies that for any sufficiently smooth function g, there exists a unique
interpolation gI ∈ VT

h satisfying

χi(g − gI) = 0, i = 1, 2, . . . , NT,nc
dof .

Subsequently, the following approximation results are valid.

Lemma 3 ([28]). For every element T ∈ Th and every function g belonging to the Sobolev space
Hs(T), where 2 ≤ r ≤ 3, there exist functions gI ∈ VT

h and gπ ∈ P2(T) satisfying

∥g − gI∥m,T ≤ Chr−m|g|r,T , m = 0, 1, 2, (22)

∥g − gπ∥m,T ≤ Chr−m|g|r,T , m = 0, 1, 2. (23)
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Construction of Ah. Following the approach outlined in [28,38], we construct a
discrete bilinear form Ah that is both symmetric and computable. Utilizing (6), we obtain

AT(p, v) = −
∫

T
∇ · (∇ · ϵ(p))v dx −

∫
∂T
(ϵ(p)n) · ∇v ds +

∫
∂T
(∇ · ϵ(p)) · n v ds (24)

for any p ∈ P2(T) and v ∈ VT
h . Using the local DOF of v as defined in (13)–(16), the terms

on the right-hand side of (24) can be computed straightforwardly.
Prior to establishing Ah(·, ·), we initially introduce a projection operator ΠT : VT

h →
P2(T) ⊂ VT

h , defined as{
AT(ΠTη, q) = AT(η, q) ∀q ∈ P2(T) ∀η ∈ VT

h ,
Π̂Tη = η̂,

∫
∂T ∇ΠTηds =

∫
∂T ∇ηds.

Here, we define the quasi-average η̂ as the average value computed from the values at the
m vertices bi of T, given by

η̂ =
1
m

m

∑
i=1

η(bi).

Verification of the fact that
ΠTv = v ∀v ∈ P2(T).

is straightforward. Furthermore, consider

ST(v, w) =
Nnc,T

dof

∑
i=1

h−2
i χi(v)χi(w),

where hi represents the characteristic length associated with each degree of freedom χi.
Subsequently, we establish

AT
h (u, v) := AT(ΠTu, ΠTv) + ST(u − ΠTu, v − ΠTv) ∀u, v ∈ VT

h . (25)

We can observe that the bilinear form AT
h satisfies the following properties:

• Polynomial consistency: ∀vh ∈ VT
h ,

AT
h (vh, p) = AT(vh, p) ∀p ∈ Pk(T); (26)

• Stability: The constants β∗ > 0 and β∗ > 0 exist, which are independent of h and T,
such that

β∗AT(vh, vh) ≤ AT
h (vh, vh) ≤ β∗AT(vh, vh) ∀vh ∈ VT

h . (27)

It should be emphasized that (3) and (4) remain valid for functions in VT
h .

AT(uh, vh) ≤ λ1|uh|2,T |vh|2,T ∀uh, vh ∈ VT
h ,

AT(vh, vh) ≥ λ2|vh|22,T ∀vh ∈ VT
h .

Consider that | · |2,h defines a norm on the space H2,nc(Th) [38]. Moreover, (3) and
(4) remain valid for functions in H2,nc(Th). The stability (27) of Ah(·, ·) and the continuity
requirement (3) of A(·, ·) straightforwardly imply the continuity

AT
h (uh, vh) ≤ β∗λ1|uh|2,T |vh|2,T ∀ uh, vh ∈ VT

h . (28)

Define the bilinear form
Ah(uh, vh) = ∑

T∈Th

AT
h (uh, vh). (29)
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By the same argument as in [28], the stability (27) and continuity (28) lead to

Ah(uh, vh) ≤β∗λ1|uh|2,h|vh|2,h ∀uh, vh ∈ Vh, (30)

Ah(vh, vh) ≥β∗λ2|vh|22,h ∀vh ∈ Vh. (31)

Construction of the right-hand side lh.
Define lh ∈ (Vh)

′ such that

⟨lh, vh⟩ = ∑
T∈Th

∫
T

PT
0 lv̂h dx ∀vh ∈ Vh.

Consequently, the approximation property is given by

∥l − lh∥(Vh)′ ≤ Ch∥l∥0, (32)

where ∥l − lh∥(Vh)′ = sup
vh∈Vh

(l,vh)−⟨lh ,vh⟩
|vh |2,h

.

3.2. C0 Nonconforming VE Scheme

After establishing the VE space, Ah and lh, we can now introduce the C0 nonconform-
ing VE scheme for solving the plate obstacle problem, denoted as TARGET PROBLEM T .

TARGET PROBLEM Th . Find uh ∈ Sh such that

Ah(uh, vh − uh) ≥ ⟨lh, vh − uh⟩ ∀vh ∈ Sh, (33)

where
Sh = { vh ∈ Vh; D̃i(vh) ≥ D̃i(ξ), i = 1, 2, 4.}. (34)

4. Error Estimation

In this section, we derive a priori error estimation of the C0 nonconforming VEM
applied to solve for TARGET PROBLEM Th .

Theorem 1. Let u ∈ H3(Ω) ∩ H2
0(Ω) be the solution of TARGET PROBLEM T and uh be the

solution of TARGET PROBLEM Th . Assuming that ξ ∈ H3(Ω), l ∈ L2(Ω) and ∇ · (∇ · ϵ) ∈
L2(Ω), we have

|u − uh|2,h ≤ Ch, (35)

where the constant C depends only on l, ξ, u and constants λ1, λ2, β∗, β∗.

Proof. Decompose the error e into two components eI and eh:

e = u − uh = u − uI + uI − uh = eI + eh,

where eI and eh are defined accordingly. By applying (26), (31) and (33),

β∗λ2|eh|22,h ≤Ah(eh, eh) = Ah(uI , eh)−Ah(uh, eh) ≤ Ah(uI , eh)− ⟨lh, eh⟩
= ∑

T∈Th

(
Ah

T(uI − uπ , eh) +Ah
T(uπ , eh)

)
− ⟨lh, eh⟩

= ∑
T∈Th

(
Ah

T(uI − uπ , eh) +AT(uπ , eh)
)
− ⟨lh, eh⟩

= ∑
T∈Th

(
Ah

T(uI − uπ , eh) +AT(uπ − u, eh)
)
+ ∑

T∈Th

AT(u, eh)− (l, eh)

+ (l, eh)− ⟨lh, eh⟩
=R1 + R2 + R3, (36)
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where

R1 = ∑
T∈Th

(Ah
T(uI − uπ , eh) +AT(uπ − u, eh)), (37)

R2 = (l, eh)− ⟨lh, eh⟩, (38)

R3 = ∑
T∈Th

AT(u, eh)− (l, eh). (39)

Applying the continuity of the bilinear forms Ah
T and AT , we have

R1 ≤ λ1(β∗|uI − uπ |2,h|eh|2,h + |uπ − u|2,h|eh|2,h).

Using (32), we find
R2 ≤ ∥l − lh∥(Vh)′ |eh|2,h.

Thus, we obtain

|eh|22,h ≤ C
(
|uI − uπ |2,h + |uπ − u|2,h + ∥l − lh∥(Vh)′

)
|eh|2,h + R3. (40)

Additionally, we have

|u − uI |2,h + |u − uπ |2,h + ∥l − lh∥(Ṽh)′
≤ Ch.

To estimate R3, we partition Th into the following three parts:

T +
h = {T ∈ Th : T ⊂ Ω+},

T 0
h = {T ∈ Th : T ⊂ Ω0},

T b
h = Th \ (T +

h ∪ T 0
h ),

where T 0
h denotes the set of elements in the contact domain and T +

h signifies the set of all
elements in the non-contact domain.

By (6), we have

R3 =− ∑
T∈Th

∫
T

ϵ : ∇2eh dx − (l, eh)

= ∑
T∈Th

∫
∂T

eh nT · (∇ · ϵ) ds − ∑
T∈Th

∫
T

eh∇ · (∇ · ϵ) dx

− ∑
T∈Th

∫
∂T
(ϵnT) · ∇eh ds − (l, eh)

=E1 + E2 + E3, (41)

where

E1 = ∑
e∈Dh

∫
e

eh[ne · (∇ · ϵ)] ds, (42)

E2 = − ∑
T∈Th

∫
∂T
(ϵnT) · ∇eh ds = − ∑

e∈Dh

∫
e

ϵne · [∇eh] ds, (43)

E3 =
∫

Ω
µeh ds. (44)

Here, we denote µ = −∇ · (∇ϵ)− l.
We now proceed to estimate E1. Given u ∈ H3(Ω), ∇ · ϵ ∈ L2(Ω), and ∇ · (∇ · ϵ) =

−l ∈ L2(Ω), we can infer that ∇ · ϵ ∈ H(div); consequently, [ne · (∇ · ϵ)] = 0 on Dh
i.

Additionally, since eh = 0 on Γ, we have E1=0.
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Next, we analyze E2. Given u ∈ H3(Ω), we have ϵ ∈ [H1(Ω)]2×2, leading to [ϵne] = 0
for all e ∈ Dh

i. Since eh|e ∈ P2(e), ∂teh is continuous. Thus,

E2 = − ∑
T∈Th

∫
∂T
(ϵnT) · ∇eh ds = − ∑

e∈Dh

∫
e

ϵne · [∇eh] ds = − ∑
e∈Dh

∫
e

ϵn[∂neh] ds. (45)

Following the argument in [28] and considering eh ∈ Vh ⊂ H2,nc(Th), we find∫
e
[∂neh]ds = 0 ∀e ∈ Dh,

which yields ∫
e

ϵn[∂neh] ds =
∫

e
(ϵn − PT

0 ϵn)[∂neh − Pe
0(∂neh)] ds

≤ ∥ϵn − PT
0 ϵn∥0,e∥[∂neh − Pe

0(∂neh)]∥0,e.

Here, PT
m represents the L2-projection onto the space of m-order polynomials on the element

T. Utilizing the standard approximation estimates [46], for each edge e ∈ Dh, we obtain

∥ϵn − PT
0 ϵn∥0,e ≤ Ch

1
2
T |u|3,ωe ,

∥[∂neh − Pe
0(∂neh)]∥0,e ≤ Ch

1
2
T |eh|2,ωe .

This implies

∑
e∈Dh

i

∫
e
(−ϵn)[∂neh] ds ≤ Ch|u|3|eh|2,h. (46)

Let us analyze E3 step by step. We start with its definition:

E3 = ∑
T∈Th

∫
T

µ(uI − uh) dx = A1 + A2 + A3, (47)

where
A1 = ∑

T∈T +
h

∫
T

µ(uI − uh) dx,

A2 = ∑
T∈T 0

h

∫
T

µ(uI − uh) dx,

A3 = ∑
T∈T b

h

∫
T

µ(uI − uh) dx.

We can show that A1 = 0 by Lemma 1. In order to estimate A2, we define

PT
0 v :=

1
|T|

∫
T

v dx, RT
0 v := v − PT

0 v.

Since µ ≥ 0, we have PT
0 µ ≥ 0. Given the definition of Sh, we know that Di(uh) ≥

Di(ξ), i = 1, 2, 4. Additionally, Di(ξh) = Di(ξ), and 1
|T|

∫
T

v dx represents the fourth type of

degrees of freedom. Thus,
∫

T
(ξ I − uh) dx ≤ 0. This leads to

∫
T

µ(ξ I − uh) dx ≤
∫

T
RT

0 µRT
0 (ξ I − uh) dx

≤ ∥RT
0 µ∥0,T∥RT

0 (ξ I − uh)∥0,T .
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Note that in T ∈ T 0
h , where u = ξ, and given ξ ∈ H3(Ω), we have∫

T
µ(ξ I − uh) dx ≤ ∥RT

0 µ∥0,T∥RT
0 (ξ I − uh)∥0,T

≤ ChT∥µ∥0,T |ξ I − uh|1,T

≤ ChT∥µ∥0,T(|ξ I − ξ|1,T + |ξ − uh|1,T)

≤ ChT∥µ∥0,T(h2
T |ξ|3,T + |u − uh|1,T),

this implies

A2 = ∑
T∈T 0

h

∫
T

µ(uI − uh) dx = ∑
T∈T 0

h

∫
T

µ(ξ I − uh) dx

≤ Ch∥µ∥0

(
h2|ξ|3 + |u − uh|1,h

)
≤ Ch∥µ∥0

(
h2|ξ|3 + |u − uh|2,h

)
. (48)

Now, let us consider the last term

A3 = ∑
T∈T b

h

(∫
T

µ(uI − u + ξ − ξ I) dx +
∫

T
µ(u − ξ) dx +

∫
T

µ(ξ I − uh) dx
)

= ∑
T∈T b

h

(∫
T

µ[(u − ξ)I − (u − ξ)] dx +
∫

T
µ(ξ I − uh) dx

)
= A3,1 + A3,2, (49)

where

A3,1 = ∑
T∈T b

h

∫
T

µ[(u − ξ)I − (u − ξ)] dx,

A3,2 = ∑
T∈T b

h

∫
T

µ(ξ I − uh) dx.

We can estimate A3,1 as follows:∫
T

µ[(u − ξ)I − (u − ξ)] dx ≤ Ch3
T∥µ∥0,T |u − ξ|3,T . (50)

Let us now analyze A3,2∫
T

µ(ξ I − uh) dx ≤
∫

T
RT

0 µRT
0 (ξ I − uh) dx

≤
∫

T
RT

0 µRT
0 (ξ I − ξ) + RT

0 µRT
0 (ξ − u) + RT

0 µRT
0 (u − uh) dx. (51)

We estimate each of the three terms as follows:∫
T

RT
0 µRT

0 (ξ I − ξ) dx ≤ ChT∥µ∥0,T |ξ I − ξ|1,T ≤ Ch3
T∥µ∥0,T |ξ|3,T , (52)∫

T
RT

0 µRT
0 (u − uh) dx ≤ ∥µ∥0,T∥RT

0 (u − uh)∥0,T ≤ ChT∥µ∥0,T |u − uh|1,T , (53)∫
T

RT
0 µRT

0 (ξ − u) dx ≤ ∥RT
0 µ∥0,T∥RT

0 (ξ − u)∥0,T ≤ ChT∥µ∥0,T |ξ − u|1,T . (54)
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By the embedding theorem,

∇(ξ − u) ∈ H2 ↪→ C0,

and there exists D ⊂ T, which means that (D) > 0 such that

ξ = u D ,

∇ξ = ∇u D .

According to the Bramble–Hilbert lemma, we have |ξ − u|1,T ≤ Ch2
T |ξ − u|3,T , so∫

T
RT

0 µRT
0 (ξ − u) dx ≤ Ch3

T∥µ∥0,T |ξ − u|3,T . (55)

Combining (47)–(55), we find

E3 ≤ C
(

h3∥µ∥0(|u|3 + |ξ|3) + h∥µ∥0|u − uh|2,h

)
,

which implies

R3 ≤ C
(

h|u|3|eh|2,h + h3∥µ∥0(|u|3 + |ξ|3) + h∥µ∥0|u − uh|2,h

)
,

and thus (40) can be expressed as

|eh|22,h ≤C
(
|uI − uπ |2,h + |uπ − u|2,h + ∥l − lh∥(Vh)′ + h|u|3

)
|eh|2,h

+ Ch3∥µ∥0(|u|3 + |ξ|3) + Ch∥µ∥0|u − uh|2,h.

Finally, applying the triangle inequality allows us to derive (35).

5. Numerical Example

In this section, we conduct a numerical experiment to verify the accuracy and conver-
gence properties of the C0 nonconforming VEM that we proposed above. For details on
how to implement the VEM, please refer to [47].

Example 1. We consider the following setup for the Kirchhoff plate obstacle problem (1):
Ω = (−0.5, 0.5) × (−0.5, 0.5), ν = 0.3, l = 0, ξ(x) = 1 − |x|2. The exact solution for
this problem is given by

u(x) =

{
C1|x|2(ln|x|) + C2|x|2 + C3(ln|x|) + C4, r0 < |x| < 2

1 − |x|2, |x| ≤ r0
, (56)

where r0 ≈ 0.18134452, C1 ≈ 0.52504063, C2 ≈ −0.62860904, C3 ≈ 0.01726640, and C4 ≈
1.04674630.

We determine the convergence orders by discretizing the problem using square meshes
with h =

√
2/2n (n = 3, · · · , 7) and polygon meshes. The results in Tables 1 and 2 indicate

that the C0 nonconforming method exhibits linear convergence, consistent with the findings
of Theorem 1. Here, the H2 relative error is computed as(

Ah(uI − uh, uI − uh)

Ah(uI , uI)

)1/2

.
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Additionally, we also provide graphs corresponding to Tables 1 and 2, as shown in
Figure 3. The results further validate the linear convergence of the C0 nonconforming VEM
for k = 2, aligning with the theoretical analysis in Theorem 1. In Figure 4, we present
a surface diagram depicting the numerical solution obtained from a general polygonal
mesh. The numerical solution obtained from the polygonal mesh closely aligns with the
real solution on a uniformly divided rectangular mesh at the same location, indicating the
effective use of virtual elements in general polygonal mesh computation.

Importantly, in Figure 5, we also plot the numerical solution uh minus the value of
the obstacle function ξ at each point. In these figures, we can observe that the value of the
numerical solution uh is greater than the value of ξ, which is consistent with the constraints
of our VI problem (1).

Table 1. Convergence orders of H2 relative errors on square meshes.

h
√

2/23
√

2/24
√

2/25
√

2/26
√

2/27

H2 relative error 2.587× 10−1 1.787× 10−1 1.019× 10−1 5.343× 10−2 2.720× 10−2

Convergence order - 0.534 0.810 0.931 0.974

Table 2. Convergence orders of H2 relative errors on polygonal meshes.

h 1.636× 10−1 9.306× 10−2 4.146× 10−2 2.223× 10−2 1.011× 10−2

H2 relative error 2.872× 10−1 1.973× 10−1 1.124× 10−1 5.920× 10−2 3.004× 10−2

Convergence order - 0.665 0.706 1.029 0.861
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(b) Polygon mesh

Figure 3. Relative errors of rectangular mesh and polygon mesh.
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(a) A CVT mesh (b) The numerical solution
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Figure 4. The numerical solution and exact solution.

Figure 5. The numerical solution minus the value of the obstacle function ξ.

6. Conclusions

In this paper, we investigate a novel C0 nonconforming VEM for solving the Kirchhoff
plate obstacle problem, which is formulated as a fourth-order variational inequality of
the first kind. Our approach introduces new internal degrees of freedom to address the
limitations of the traditional lowest-order C0 nonconforming VEM, leading to improved
error analysis and enhanced intuitiveness. Importantly, our method naturally satisfies the
constraints of the obstacle problem and achieves optimal convergence in error estimates.
Future work will focus on extending the method to handle different boundary conditions
and exploring more efficient VEMs.
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