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Abstract: Autonomous underwater vehicles (AUVs) are now widely used in both civilian and military
applications; however, wireless charging underwater often faces difficulties such as disturbances
from ocean currents and errors in device positioning, making proper alignment of the charging
devices challenging. Misalignment between the primary and secondary coils can significantly impact
the efficiency and power of the wireless charging system energy transfer. To address the issue of
misalignment in wireless charging systems, this paper proposes a multiple transfer coil wireless
power transfer (MTCWPT) system based on backpropagation (BP) neural network control combined
with nonsingular terminal sliding mode control (NTSMC) to enhance further the system robustness
and efficiency. To achieve WPT in the ocean, a coil shielding case structure was equipped. In
displacement experiments, the proposed multi-transmitting coil system could achieve stable power
transfer of 40 W and efficiency of over 78.5% within a displacement range of 8 cm. The system
robustness was also validated. This paper presents a new AUV energy supply solution based on
MTCWPT. The proposed MTCWPT system can significantly improve the navigation performance
of AUVs.

Keywords: autonomous underwater vehicles; multiple transfer coil wireless power transfer;
BP neural network; nonsingular terminal sliding mode control

1. Introduction

Underwater wireless charging is an innovative approach designed to provide a contin-
uous energy supply to underwater devices. With the increase in the number of underwater
operations and exploration activities, including deep-sea research, underwater pipeline
maintenance, and seabed resource exploration, there is a growing demand for an efficient
and reliable underwater energy supply [1–3]. Wet-mate charging, which requires precise
coordination with autonomous underwater vehicles (AUVs) and uses wet connectors that
are unreliable, expensive, and have a limited lifespan, is the conventional method [4].
In contrast, underwater wireless charging offers a solution that eliminates the need for
physical connections [5,6], significantly enhancing the safety, flexibility, and efficiency of
underwater operations.

Wireless charging technology can be divided into three categories based on its working
principle: magnetic field coupling, electric field coupling, and electromagnetic radiation.

Inductive power transfer (IPT) technology, whose principle is similar to that of tra-
ditional transformers, generates an alternating magnetic field through the action of al-
ternating current on the primary coil. The alternating magnetic field passes through
the secondary coil, inducing electromotive force and achieving wireless transmission of
electrical energy [7].

The principle of capacitive power transfer (CPT) is similar to that of capacitors. Metal
electrode plates are placed on the primary and secondary sides, and an alternating electric
field is generated by applying an AC voltage to the primary electrode plate. The secondary
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metal electrode couples with the primary side through this alternating electric field to
achieve wireless transmission of electrical energy [8].

Electromagnetic radiation (ER) wireless charging technology uses electromagnetic
waves to transmit electrical energy, converting electrical energy into antenna microwaves.
It uses array antennas or other forms of antennas to dissipate and release microwave energy
and then converts microwaves back into electrical energy achieving wireless transmission
of electrical energy [9].

Compared with IPT, CPT usually considers the use of large-area electrode plates or
higher operating frequencies to achieve high-power transmission. However, the greater
the operating frequency in seawater, the greater is the eddy current loss. The ER also needs
to work in high-frequency mode. The conductivity of the seawater medium will absorb
most of the high-frequency electromagnetic wave energy, resulting in low transmission
efficiency; therefore, IPT technology is simpler and more practical underwater. Regarding
IPT technology, Refs. [10–19] have mainly conducted further research on coupling devices,
compensation networks, power control methods, and other aspects.

However, in the complex environment of underwater wireless charging applications,
there may be lateral or longitudinal displacement of the coils between the transmitter
and receiver, which reduces the output power and efficiency [10]. Many scholars have
conducted extensive research on this issue. The docking system developed by the Woods
Hole Institute of Oceanography (WHOI) in Massachusetts, USA, for the Odyssey class
underwater robot [11] uses deep-sea mooring equipment supported by surface buoys, as
shown in Figure 1a. It provides a protective garage around the underwater robot and does
not require additional hardware modifications. This concept is implemented in the REMUS
docking stations [12] and the EURODOCKER [13], as shown in Figure 1b. Refs. [11,12]
proposed a complete docking method for underwater charging, but the solutions in [11,12]
require complex equipment and have high costs.
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In 2017, researchers at Zhejiang University in China modified an annular magnetic
coupling device placed on an AUV using hollow coils wound around the exterior of the
AUV to reduce the weight of the magnetic core of the AUV [3]. However, this configuration
makes the internal equipment of the AUV susceptible to electromagnetic interference from
the magnetic field, necessitating the installation of aluminum plates within the coils for
magnetic shielding. In 2018, researchers at the University of Michigan adopted a segmented
design for the annular magnetic coupling device, dividing the secondary side into three
identical receiving devices, with the primary side having three identical I-shaped magnetic
cores. Three-phase electricity is used for the excitation current in the transmitter, with the
excitation current amplitudes and frequencies of the three devices being the same, but
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shifted by 120◦ [2]. Based on the bipolar magnetic coupling device, a team from Harbin
Institute of Technology proposed an orthogonal coil bipolar magnetic coupling device [14].
In 2019, Hiroyasu Kifune and others from Tokyo University of Marine Science and Technol-
ogy proposed an optimized coil layout for underwater WPT systems, achieving over 74%
transfer efficiency without the need for coil position adjustment [15]. Lee and others studied
the effects of high pressure and axial misalignment on the operation of electromagnetic
couplers in deep-sea environments by building a 400 W prototype inductive coupler with
a pot core [16]. Wang and others designed a loosely coupled wireless system for a 50 kg
manned AUV, transmitting 500 W of power with 88% efficiency over a gap distance varying
from 6 to 10 mm [17].

However, the various schemes mentioned above are limited to single coil transfer.
Single coil wireless power transfer cannot enhance the magnetic field in a certain direction
in a directional manner. Therefore, when the secondary coil is offset, a large amount of
magnetic leakage is inevitable in single coil wireless power transfer. These magnetic leaks
interfere with the operation of AUVs and generate a large amount of eddy current loss
in seawater. However, multicoil wireless power transfer can enhance the magnetic field
in a certain direction, so it is necessary to conduct research on multicoil wireless energy
transfer in the field of underwater wireless power transfer.

This paper introduces a multiple transfer coil WPT (MTCWPT) system with three
advantages: resistance to efficiency loss and output reduction due to misalignment, con-
centration of the magnetic field on the receiving coil to reduce magnetic leakage and eddy
current losses, and robustness through nonsingular sliding mode control. The system
achieves a transfer power of 40 W within an 80 mm offset range at an input voltage of 25 V,
maintaining an efficiency of over 78.5%.

2. Materials and Methods
2.1. Coil Design
2.1.1. The Impact of Seawater on Wireless Power Transfer

The permeabilities of air and seawater are almost the same, but there is a significant
difference in conductivity between air and seawater. The alternating electromagnetic field
generated by the high-frequency alternating current in the coil will ultimately result in
eddy current losses. Eddy current loss is an important issue in power systems because it
can lead to energy waste and equipment heating, thereby affecting the stability and safety
of the power system. Figure 2 shows a simplified electric field model for underwater radio
energy transfer.
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According to Figure 2, the expression for eddy current loss during underwater wireless
energy transfer can be listed as follows:

Peddy =
∫

K f B2δ2dV (1)

In Equation (1), Peddy is the eddy current loss power, K is a constant, f is the frequency
of the electromagnetic field, B is the magnetic induction intensity, δ is the resistivity of
seawater, and V is the volume of seawater.

Equation (1) shows that the eddy current loss of underwater wireless energy transfer is
mainly affected by the magnetic induction intensity B and the frequency f of the alternating
magnetic field. Therefore, the frequency of underwater wireless energy transfer should not
be too high. However, a low transfer frequency can also reduce the transfer capacity of
wireless energy transfer. After comprehensive consideration, in this article 100 kHz was
selected as the frequency for underwater wireless energy transfer.

2.1.2. Single Coil Comparison

The coupling coils used in wireless charging mainly include planar spiral coils and
spatial spiral coils. The shape of the spatial spiral coil is cylindrical, and it is installed on the
equipment in a vertical structure, occupying a large space. The shape of the planar spiral
coil is flat, and it is installed on the equipment in a flat structure, occupying little space. In
this article the wireless charging coil structure applied to AUVs was mainly studied. Due
to the limited space inside AUVs and underwater AUV charging devices, a planar spiral
coil was chosen as the research object. The commonly used planar spiral coils have two
structures: circular and rectangular, as shown in Figure 3.
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To compare the advantages and disadvantages of circular and rectangular planar coils,
3D simulation models of planar circular coils and rectangular coils were established in the
finite element simulation software Maxwell. The simulation model is shown in Figure 4.
The parameters of the simulation model in Figure 4 have been provided in Table 1. To
avoid errors when comparing the two coils, the sizes of the two coils are set to be consistent
when establishing the coil model, and the wire diameter, number of turns, and turn spacing
of the two coils are also kept the same. Simulations were conducted under different offset
conditions, and the coupling coefficient varied with the offset, as shown in Figure 5.

Table 1. Parameters of the simulation model of the planar spiral coils.

Coil Shape Outer Diameter (cm) Coil Width (cm) Number of Windings

circular 10 2 20
rectangle 10 2 20
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Through simulation data, it was found that under the same size, the decrease in the
coupling coefficient between circular coils with an offset is significantly greater than that
between rectangular coils with an offset. The larger the coupling coefficient, the smaller is
the magnetic leakage. Underwater wireless energy transfer should consider coil losses, and
due to the influence of seawater media, high-frequency alternating magnetic fields will
generate much larger eddy currents in seawater than in air, which will result in significant
eddy current losses. The smaller the magnetic leakage, the smaller is the eddy current
loss generated during wireless energy transfer. At the same size, the eddy current loss
generated by transmitting electrical energy between circular coils is significantly greater
than that generated by transmitting electrical energy between rectangular coils. Therefore,
this article mainly focuses on the study of rectangular coils.

2.1.3. Design of Multi Coil Coupler

When there is a large offset between the primary and secondary sides, the coupling
coefficient inevitably decreases, leading to an increase in magnetic leakage and eddy
current losses. Currently, there are two main methods to solve this problem: increasing
the primary coil and using multi coil transfer. However, increasing the primary coil will
inevitably generate more leakage magnetic flux, which will also increase eddy current
losses. Therefore, in this study, it was decided to use multiple coils for transfer.

In the wireless charging system designed in this paper, transmitting coils 1, 2, 3, and 4
are all square coils with dimensions of 120 mm × 120 mm, as illustrated in Figure 6.
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Figure 6. Single transmitting coil.

One critical issue in multicoil wireless charging is that coupling between transmitting
coils generates a substantial amount of reactive power. This leads to an increase in the
primary-side current, which, in turn, increases coil losses. To decouple the transmitting
coils as much as possible, portions of the coils need to overlap. For the ease of subsequent
calculation and design, the overlapping portion is fixed at 40 mm. Additionally, to reduce
magnetic leakage, ferrite is introduced, as illustrated in Figure 7. The system receiving coil
is shown in Figure 8 and the parameters of the transmitting and receiving coils are given
in Table 2.
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Table 2. Parameters of the receiving coil and transmitting coil.

Name Note Dimension

DF Distance between ferrites 80 mm
Wd Transmitting coil width 23 mm
WT Width of the transmitter 200 mm
NT Number of turns of the transmitting coil 14
Wrd Receiving coil width 23 mm
WR Width of the receiver 120 mm
NR Number of turns of the receiving coil 28
f 0 Transfer frequency 100 kHz

Definitions: k12 is the coupling coefficient between coil 1 and coil 2, k13 is the cou-
pling coefficient between coil 1 and coil 3, k14 is the coupling coefficient between coil 1
and coil 4, k23 is the coupling coefficient between coil 2 and coil 3, k24 is the coupling
coefficient between coil 2 and coil 4, and k34 is the coupling coefficient between coil 3 and
coil 4. Given that the four coils are symmetrically distributed, the coupling coefficients
k12 = k23 = k34 = k14 and k13 = k24. Thus, during the design phase, only decoupling
designs for parameters k12 and k13 need to be focused on. Figure 9 shows the trends of
changes in coupling coefficients k12 and k13 as the dimensions of the magnetic core and the
width of the coils vary.
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Figure 9 indicates that the width of the coils has a minimal impact on the coupling
coefficient between diagonal coils, while it significantly affects the coupling between
adjacent coils. The dimensions of the magnetic core influence both diagonal and adjacent
coil coupling; the coupling between diagonal coils decreases with decreasing core size.
However, when the core size is reduced to below 50 mm × 50 mm, its effect on the coupling
between transmitting coils becomes negligible. Since adjacent coils can be decoupled by
adjusting their width, when designing magnetic coupling devices, priority is given to
reducing the magnetic core size to decrease the coupling coefficients between diagonal
coils. After comprehensive consideration, the designed magnetic coupling device had a coil
width of 23 mm and core dimensions of 50 mm × 50 mm.
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In Figure 10, M1, M2, M3, and M4 represent the mutual inductance between coils 1,
2, 3, and 4 and the receiving coil. The vertical distance between the transmitting coil and
the receiving coil is 20 mm. The magnetic coupling device designed in this article can
ensure a large mutual inductance between the transmitting coil and the receiving coil under
any offset condition of the secondary side within an offset range of 80 mm in the x and y
direction, thus ensuring the anti-offset capability of the system.
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2.2. Circuit Design

Figure 11 presents a schematic diagram of the MTCWPT system. The charging struc-
ture transfers electrical energy from the four transmitting coils L1, L2, L3, and L4 to the
receiving coil. The enclosure of the WPT device is waterproof. Each transmitting coil is
powered by an H-bridge inverter circuit, and the direction of the magnetic field is regulated
by the depicted control circuit.
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Coils 1, 2, 3, and 4 are each coupled with a secondary coil, creating four energy
channels, designated energy channels 1, 2, 3, and 4, respectively.

In this study, all the energy channels employ the LCC/S compensation topology, and
the overall circuit diagram is illustrated in Figure 12. In Figure 12, M1, M2, M3 and M4
represent the mutual inductances between coils 1, 2, 3, and 4 and the secondary coil.
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The transmitter is tuned through an LCC compensation network, while the receiver is
tuned through an S compensation network. The circuit parameters are typically designed
according to the following equations:

Lf1 = L1 − 1
ω0

2C1

Lf2 = L2 − 1
ω0

2C3

Lf3 = L3 − 1
ω0

2C5

Lf4 = L4 − 1
ω0

2C7

(2)


C2 = 1

ω0
2Lf1

C4 = 1
ω0

2Lf2

C6 = 1
ω0

2Lf3

C8 = 1
ω0

2Lf4

(3)
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LR =
1

ω02C9
(4)

P1 = U1 M1
RLeqLf1

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

)
P2 = U2 M2

RLeqLf2

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

)
P3 = U3 M3

RLeqLf3

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

)
P4 = U4 M4

RLeqLf4

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

) (5)

In Equations (2)–(5), ω0 is the resonant frequency of the circuit; L1, L2, L3, and L4 are
the inductances of coil 1, coil 2, coil 3, and coil 4, respectively; Lf1, Lf2, Lf3, and Lf4 are the
compensation inductances of the primary compensation circuit; C1, C2, C3, C4, C5, C6, C7,
and C8 are the compensation capacitances of the primary compensation circuit; LR is the
inductance of receiving coil R; C9 is the compensation capacitance of the secondary circuit;
P1, P2, P3, and P4 are the input powers of the compensation circuit for coil 1, coil 2, coil
3, and coil 4, respectively; M1, M2, M3, and M4 are the mutual inductances between coil
1 and the secondary coil, coil 2 and the secondary coil, coil 3 and the secondary coil, and
coil 4 and the secondary coil, respectively; RLeq is the equivalent resistance of the load and
rectifier circuit.

2.3. SV-Based Excitation Method

As shown in Figure 13, we divided the transmitting coil into two groups of BP coils:
BP coil BP1 composed of coil 1 and coil 2, and BP coil BP 2 composed of coil 3 and coil 4.
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As shown in Figure 14, when secondary coil R is displaced in the y-direction relative to
the transmitting coil through spatial vector decomposition, BP1 and BP2 can be considered
the stator of a two-phase motor, with the Rreceiver acting as the rotor. The electrical
equivalent circuit of the WPT system in Figure 14 shows the receiver misalignment angle
derived, based on the receiver longitudinal position relative to the transmitter. In this
representation, the receiver misalignment angle is analogous to the rotor position [19].

The reference point for calculating the misalignment angle is the center of the BP1 coil
in the y-direction (coinciding with the center of the BP2 coil). This angle is derived from
the following equation:

θ =
Ryπ

b
(6)
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The variable Ry represents the distance from the center of the secondary coil in the
y-direction to the center of the transmitting BP1 coil, while b denotes the length of transmis-
sion device in the y-direction. Figure 15 depicts the vector diagram of the WPT system.
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After converting Figure 14 into a vector graph, Figure 15 can be obtained. The phase
shift between BP1 and BP2 is 2π/3 radians. The current vector received by secondary coil
R can be obtained through vector addition:

→
I = IBP1ej0 + IBP2ej 2π

3 (7)

Different values of IBP1 and IBP2 will generate different current vectors I. As shown in
Figure 15, the αβ coordinate system is a standing coordinate system. For ease of calculation,
we specify the direction of a as the direction of the BP1 current vector. The transmitter
current I can be mapped to Iα and Iβ in the αβ plane for further analysis through matrix T:

T =

[
1 − 1

2

0
√

3
2

]
(8)

[
Iα
Iβ

]
= T

[
IBP1
IBP2

]
(9)
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The dq coordinate system is a rotating coordinate system that is stationary relative
to the secondary coil. After components Iα and Iβ are transformed to αβ, the rotation
matrix R can be used to orient the system to the receiver reference coordinate system and
dq coordinate system, thereby deriving the d-axis component Id and q-axis component Iq
of the transmitter current:

R =

[
cos θ sin θ
− sin θ cos θ

]
(10)[

Id
Iq

]
= R

[
Iα
Iβ

]
(11)

By using the inverse T and R transformations, the transmitter current can be repre-
sented by its d-axis and q-axis components:[

IBP1
IBP2

]
= T−1R−1

[
Id
Iq

]
(12)

The d-axis current generates a magnetic flux aligned with the receiver, while the
q-axis current generates a magnetic flux perpendicular to the receiver. Ideally, a multicoil
transmitter should only generate a d-axis current, with the q-axis current being 0, to
reduce the magnitude of the transmitter current vector. By setting Iq = 0 and combining
Equation (12), the ideal excitation currents IBP1 and IBP2 can be written as functions of θ:IBP1 =

√
3 cos θ+sin θ√

3
Id

IBP2 = 2 sin θ√
3

Id
(13)

For displacement of secondary coil R in the x-direction relative to the transmitting
coil, transmitting coils L1 and L2 can be considered the stator of a two-phase motor, and
transmitting coils L3 and L4 can be considered the stator of another two-phase motor,
with the receiver acting as the rotor. The current vector required for the secondary coil is
generated through vector calculations.

The reference point for calculating the misalignment angle is the center of the BP1 coil
in the x-direction. This angle is derived from the following equation:

φ =
Rxπ

a
(14)

The variable Rx represents the distance from the center of the secondary coil in the
x-direction to the center of the transmitting coil 1, while a denotes the length of transmission
device in the x-direction.

2.3.1. BP1 Coil Current Vector Calculation

From the analysis of the equation in the previous section, the current vector that
secondary coil R is expected to receive from the BP1 coil is as follows:

IBP1 =

√
3 cos θ + sin θ√

3
Id (15)

BP coil BP1 is controlled similarly to previous analysis. According to Figure 16, the
ideal excitation currents I1 and I2 can be written as functions of φ:I1 =

√
3 cos φ+sin φ√

3
IBP1

I2 = 2 sin φ√
3

IBP1
(16)
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2.3.2. BP2 Coil Current Vector Calculation

Similarly, from the analysis in the previous section, the current vector that secondary
coil R is expected to receive from the BP2 coil is as follows:

IBP2 =
2 sin θ√

3
Id (17)

I3 =
√

3 cos φ+sin φ√
3

IBP2

I4 = 2 sin φ√
3

IBP2
(18)

According to Figure 12, the voltage of the secondary coil UR is as follows:

UR = −jω0(M1 I1 + M2 I2 + M3 I3 + M4 I4) (19)

The output voltage of the rectifier bridge UO is as follows:

Uout ≈ 0.9UR (20)

The output current of the rectifier bridge IO is as follows:

Iout ≈
0.9UR

rLeq + rR
(21)

Substituting Equations (15)–(19) into Equation (20) yields the Id required for a fixed
output voltage Uout, which is derived as follows:

Id =
3Uout

0.9ω0

[(√
3 cos θ + sin θ

)[
M1

(√
3 cos φ + sin φ

)
+ 2M2 sin φ

]
+ 2 sin θ

[
M3

(√
3 cos φ + sin φ

)
+ 2M4 sin φ

]] (22)

Substituting Equations (15)–(20) into Equation (21) yields the Id required for a fixed
output current Iout as follows:

Id =
3Iout

(
rR + rLeq

)
0.9ω0

[(√
3 cos θ + sin θ

)[
M1

(√
3 cos φ + sin φ

)
+ 2M2 sin φ

]
+ 2 sin θ

[
M3

(√
3 cos φ + sin φ

)
+ 2M4 sin φ

]] (23)

2.4. Mutual Inductance Measurement and Positioning
2.4.1. Mutual Inductance Measurement

Based on the circuit diagram in Figure 12, a simplified equivalent circuit diagram can
be drawn, as shown in Figure 17.
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In this design, an LCC-S compensation network is employed. Based on the properties 
of the LCC-S compensation network, the following can be determined: 

1
1

0 f1

2
2

0 f2

3
3

0 f3

4
4

0 f4

j

j

j

j

UI
L

UI
L

UI
L

UI
L

ω

ω

ω

ω

 =

 =


 =


 =


 (24) 

Combining Equation (24) with the circuit diagram allows us to derive the expressions 
for active powers P1, P2, P3, and P4 for energy channels 1, 2, 3, and 4: 

Figure 17. Equivalent circuit diagram.

In this design, an LCC-S compensation network is employed. Based on the properties
of the LCC-S compensation network, the following can be determined:

I1 = U1
jω0Lf1

I2 = U2
jω0Lf2

I3 = U3
jω0Lf3

I4 = U4
jω0Lf4

(24)

Combining Equation (24) with the circuit diagram allows us to derive the expressions
for active powers P1, P2, P3, and P4 for energy channels 1, 2, 3, and 4:

P1 = U1 M1
(RLeq+rR)Lf1

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

)
+ U1

2r1
ω0

2Lf1
2

P2 = U2 M2
(RLeq+rR)Lf2

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

)
+ U2

2r2
ω0

2Lf2
2

P3 = U3 M3
(RLeq+rR)Lf3

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

)
+ U3

2r3
ω0

2Lf3
2

P4 = U4 M4
(RLeq+rR)Lf4

(
U1 M1

Lf1
+ U2 M2

Lf2
+ U3 M3

Lf3
+ U4 M4

Lf4

)
+ U4

2r4
ω0

2Lf4
2

(25)

To facilitate the calculation during mutual inductance measurement, by design, let
Lf1 = Lf2 = Lf3 = Lf4 = Lf. Due to the extremely small internal resistance of the coil relative
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to the load resistance, it can be neglected during the calculation process; through the two
equations above, we can solve for the following:

M1 = ω0
2Lf

3P1Uout
0.9U1[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

M2 = ω0
2Lf

3P2Uout
0.9U2[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

M3 = ω0
2Lf

3P3Uout
0.9U3[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

M4 = ω0
2Lf

3P4Uout
0.9U4[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

(26)

2.4.2. Position Prediction Based on BP Neural Network

Regarding the issue of the positioning of the primary and secondary coils, many
studies are currently being conducted. This paper utilizes four transmitting coils posi-
tioned differently coil1, coil2, coil3, and coil4 to replace the four auxiliary coils for coil
positioning [20].

As shown in Figure 18, based on the Neumann equation, the expression for mutual
inductance between coil A and coil B is as follows:

M =
µ0

4π

∮
l1

∮
l2

dl1·dl2
R

(27)
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After converting Equation (27) to the Cartesian coordinate system, we obtain the
following:

M =
u0

4π

∮
l2

∮
l1

dx1dx2 + dy1dy2 + dz1dz2√
(x1 − (x2 + x))2 + (y1 − (y + y2))

2 + (z1 − z)2
(28)

where (x1, y1, z1) are the coordinates of the center of coil A and (x2, y2, z2) are the coordinates
of the center of coil B.

When the relative offset between the positions of the transmitting and receiving coils
changes, the mutual inductance between the coils also changes. The coordinates of the
receiving coil (x, y, z) can be considered as three variables to be solved, and identification of
the mutual inductances for different transmitting coils can enable detection of the relative
offset between the coils. However, Equation (27) is clearly a complex nonlinear function.

Artificial neural networks achieve structured combinations of relatively simple mathe-
matical expressions to produce more flexible and descriptive expressions describing the
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input-output relationships in specific processes. To overcome the limitations of traditional
problem analysis due to complex quantification, backpropagation (BP) neural networks
have been widely used for data prediction, pattern recognition, fault classification, etc.
Therefore, a BP neural network was used for the designed wireless charging system to
predict the secondary-side position.

The basic unit of the BP neural network is neurons. The general model of neurons is
shown in Figure 19, where the commonly used activation function is the sigmoid function.
Its characteristic is that the function itself and its derivatives are continuous, making it very
convenient to handle:

f (x) =
1

1 + e−x (29)
Machines 2024, 12, 275 19 of 32 
 

 

x1

x2

xm

ω1

ω2

ωm

∑ f(·) y

Input Synaptic 
Weight

Summing 
Point

Activation 
Function

Output

 
Figure 19. Single neuron model. 

The output of a single neuron is as follows: 
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The specific learning process of the BP neural network is shown in Figure 21. 

Figure 19. Single neuron model.

The output of a single neuron is as follows:

y = f

(
m

∑
i=1

ωixi

)
(30)

A neural network is a network formed by connecting multiple neurons together
according to certain rules, as shown in Figure 20. A neural network consists of an input
layer, a hidden layer (middle layer), and an output layer. The number of neurons in the
input layer is the same as the dimension of the input data, the number of neurons in the
output layer is the same as the number of data to be fitted, and the number of neurons in
the hidden layer needs to be set by the designer according to certain rules and objectives.
Before the emergence of deep learning, the number of hidden layers was usually one, which
means that the commonly used neural network was a three-layer network. Equation (28) is
a nonlinear function. To reduce the computational complexity of the controller, this paper
adopted a BP neural network with two hidden layers.
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The specific learning process of the BP neural network is shown in Figure 21.
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Equation (25) shows that the mutual inductances between the four transmitting coils
and the receiving coil can be obtained from the input voltage, input power, and output volt-
age. And the position of the receiving coil relative to the transmitting coil can be obtained
from the mutual inductances between the four transmitting coils and the receiving coil.
The input voltage and input power can be directly obtained from the primary signal acqui-
sition circuit, and the output voltage can be acquired by the secondary signal acquisition
circuit and transmitted to the primary side via wireless communication. The use of a BP
neural network to train the input voltage, input power, output voltage, and corresponding
secondary coil position can enable the prediction of the secondary coil position.

2.5. Nonsingular Terminal Sliding Mode Control

In traditional control technologies, challenges such as significant vibrations and slow
response times exist. To further enhance the system robustness, this paper combines
phase-shift control with nonsingular terminal sliding mode control (NTSMC) and neural
networks [21].
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First, according to Figure 12, we establish the equivalent topological circuit equations
for the LCC-S system: {

L
(

1
RL

duo
dt + diC

dt

)
= uout − uo

duo
dt = iC

C

(31)

The expected output voltage of the system is set as Uref. Letting the control variables
u = uout, x1 = uo − Uref, and x2 =

•
x1, the state-space equations for the LCC-S system can

be described as follows:[ •
x1
•

x2

]
=

[
0 1

− 1
LC − 1

RLC

][
x1
x2

]
+

[
0
1
L

]
u +

[
0
−Uref

L

]
(32)

The proposed sliding mode approach law is designed as below:

•
s = −ktsα, kt > 0, 0 < α < 1 (33)

To eliminate vibrations as much as possible, SMC needs to satisfy the following
conditions: Condition 1: rapid convergence to the sliding surface; Condition 2: a finite
time to reach the sliding surface; and Condition 3: the velocity is zero when reaching the
switching surface, i.e., the following:

lim
s→0

•
s = 0 (34)

Setting the initial value of s(t) as s(0), integrating Equation (33), and setting s = 0, we
can solve for the following:

τ = s0
1−α/[(1 − α)kt] (35)

when t = τ, Condition 2 and Condition 3 are satisfied. Since 0 < α < 1, Condition 1 is also
satisfied.

The system sliding surface is chosen as follows:

s = x1 +
1
β

x2
p/q (36)

where β, p, and q are the equivalent control coefficients. The selection of these coefficients
must meet the existence conditions of SMC, which are derived using Lyapunov’s second
method as follows:

lim
s→0+

•
s < 0 and lim

s→0−

•
s < 0 (37)

By substituting (32) and (35) into (37), we find that the necessary and sufficient
condition for the existence of a sliding mode on the switching surface is that the equivalent
control satisfies the following equation:

0 < {LC[
uo

LC
+

IC

RC2 − β

(
IC

C

)2−p/q
]}/Uoutmax < 1 (38)

By introducing the approach law (32), we obtain the following:

u∆sw = −ktLCsα/k3 (39)

As long as kt > 0 is satisfied, the approach law meets the conditions for the existence
and global reaching of the sliding mode.

The actual control law of the sliding mode controller is as follows:

u = LC[
uo

LC
+

IC

RC2 − β

(
IC

C

)2−p/q
] + u∆sw (40)
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After combining nonsingular SMC with the BP neural network, the control rate
equation for the four energy channels is as below:

u1 =
√

3 cos φ+sin φ√
3

√
3 cos θ+sin θ√

3
u

u2 = 2 sin φ√
3

√
3 cos θ+sin θ√

3
u

u3 =
√

3 cos φ+sin φ√
3

2 sin θ√
3

u

u4 = 2 sin φ√
3

2 sin θ√
3

u

(41)

The input voltages of the four energy channels are as follows:

U1 =
(√

3 cos φ+sin φ√
3

√
3 cos θ+sin θ√

3
u
)2

Uin

U2 =
(

2 sin φ√
3

√
3 cos θ+sin θ√

3
u
)2

Uin

U3 =
(√

3 cos φ+sin φ√
3

2 sin θ√
3

)2
uUin

U4 =
(

2 sin φ√
3

2 sin θ√
3

u
)2

Uin

(42)

3. Results
3.1. Construction of Simulation Models and Experimental Platforms

In order to further verify the theory in the above analysis, we used ANSYS to build
the coil model as shown in Figure 22 and Simulink to build the circuit model as shown in
Figure 23, then conducted simulation. Reference Table 2 for the coil simulation model. The
simulation parameters of Simulink are shown in Table 3.
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Table 3. Parameters of the circuit simulation.

Symbol Note Value

L1 Inductance of transmitting coil 1 32.23 µH
L2 Inductance of transmitting coil 2 32.29 µH
L3 Inductance of transmitting coil 3 32.24 µH
L4 Inductance of transmitting coil 4 32.27 µH
LR Inductance of receiving coil 135.18 µH
C1 Capacitance of transmitting circuit 207 nF
C2 Capacitance of transmitting circuit 126.5 nF
C3 Capacitance of transmitting circuit 206 nF
C4 Capacitance of transmitting circuit 126.5 nF
C5 Capacitance of transmitting circuit 207 nF
C6 Capacitance of transmitting circuit 126.5 nF
C7 Capacitance of transmitting circuit 205 nF
C8 Capacitance of transmitting circuit 126.5 nF
C9 Capacitance of receiving circuit 18.8 nF

Lf1, Lf2, Lf3, Lf4 Inductance of transmitting circuit 20 µH
L Rectifier-side filter inductance 4.6 µH
C Rectifier-side filter capacitor 470 µF

RL Load resistance 10 Ω

The experimental prototype constructed in the laboratory is shown in Figure 24.
The coupling conditions for the experiment are not fixed but are varied. The transmitting
coil is stationary, while the receiving coil can move in both the x-direction and y-direction.
The measurement instruments used in the experiment were a RIGOL MSO5104 oscillo-
scope, a CYBERTEK P1300 isolated voltage probe, and a CYBERTEK HCP8030D current
probe. The controllers used in the experiment were STM32F103ZET6 and STM32F103RCT6.
The MOSFET model for the inverter bridge is an IRF540N. The coil used in the exper-
iment was wound with 120 × 0.1 mm silk wrapped wire, and the capacitors were all
high-temperature resistant metal film capacitors. The actual circuit parameters measured
are shown in Table 4.
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Table 4. Parameters of the laboratory prototype.

Symbol Note Value

L1 Inductance of transmitting coil 1 33.00 µH
L2 Inductance of transmitting coil 2 33.59 µH
L3 Inductance of transmitting coil 3 33.78 µH
L4 Inductance of transmitting coil 4 33.34 µH
LR Inductance of receiving coil 124.053 µH
C1 Capacitance of transmitting circuit 191.18 nF
C2 Capacitance of transmitting circuit 125.03 nF
C3 Capacitance of transmitting circuit 189.53 nF
C4 Capacitance of transmitting circuit 125.7 nF
C5 Capacitance of transmitting circuit 187.66 nF
C6 Capacitance of transmitting circuit 125.57 nF
C7 Capacitance of transmitting circuit 189.71 nF
C8 Capacitance of transmitting circuit 120.35 nF
C9 Capacitance of receiving circuit 18.4 nF
Lf1 Inductance of transmitting circuit 20.5 µH
Lf2 Inductance of transmitting circuit 20.37 µH
Lf3 Inductance of transmitting circuit 20.4 µH
Lf4 Inductance of transmitting circuit 20.57 µH
L Rectifier-side filter inductance 5.49 µH
C Rectifier-side filter capacitor 470 µF

RL Load resistance 10 Ω

3.2. BP Neural Network Training

Based on the analysis in Section 2.4.2, we know that the position of the secondary coil
can be determined by the mutual inductance between the four coils with different center
positions and the secondary coil. The inputs of the four neural networks are denoted as x1,
x2, x3, and x4

x1 = M1 = ω0
2Lf

3P1Uout
0.9U1[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

x2 = M2 = ω0
2Lf

3P2Uout
0.9U2[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

x3 = M3 = ω0
2Lf

3P3Uout
0.9U3[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

x4 = M4 = ω0
2Lf

3P4Uout
0.9U4[ω0

2Lf
2(P1+P2+P3+P4)−(U1

2r1+U2
2r2+U3

2r3+U4
2r4)]

(43)

The output of the BP neural network is set to the offset of the secondary coil in the x
direction and the offset of the secondary coil in the y direction. The following dataset is
obtained after measuring the power supply through actual circuit connections. Partial data
are shown in Figure 25. The variation trend of x1, x2, x3, and x4 calculated based on actual
data with the offset in Figure 25 is very close to the variation trend of M1, M2, M3, and
M4 in Figure 10. Consider x1, x2, x3, and x4 as functions associated with specific positions,
each linearly independent from the others. With the coordinates (x,y) of the receiving coil
as unknowns, it is possible to establish a system comprising four linearly independent
equations in two variables. This setup allows us to demonstrate that the coordinates (x,y)
can be uniquely determined.

After being trained with the actual measured input current and voltage of the transmit-
ting coil and the output voltage of the receiving coil, the training objective is to minimize
the normalized mean square error (NMSE) between the predicted position of the receiving
coil and the actual position of the coil. The equation for calculating the NMSE is as follows:

NMSE =
1
m

m

∑
i=1


(

xi −
∧
xi

)2
+
(

yi −
∧
yi

)2

a2 + b2

 (44)
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In Equation (44), m is the number of samples,
∧
x is the position of the secondary

coil predicted by the BP neural network in the x direction, x is the actual position of the

secondary coil in the x direction,
∧
y is the position of the secondary coil predicted by the BP

neural network in the x direction, and y is the actual position of the secondary coil in the
y direction.
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The BP neural network can achieve a position prediction accuracy of 99.6% for the
receiving coil. The results of the data training for the BP neural network are shown in
Figures 26 and 27. The round of neural networks in Figure 26 refers to the learning
process completed by the neural network on the data in Figure 25, as shown in Figure 20.
The RMSE in Figure 27a,b is the root mean square error. The specific equation for the RMSE
in Figure 27a RMSEy and the RMSE in Figure 27b RMSEx is as follows:

RMSEx =

√
1
m

m

∑
i=1

(
xi −

∧
xi

)2
(45)
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3.3. Magnetic Field Simulation 

In Maxwell, simulation models for the proposed multicoil were developed. To better 
demonstrate the advantages of multicoil transfer, we built a single coil transfer model of 
the same size (200 mm × 200 mm) and the same coil width (23 mm) as a control. The sim-
ulation facilitated a comparison and validation of the magnetic field distributions result-
ing from the lateral misalignment and longitudinal displacement of the coils. In these sim-
ulations, the secondary-side coils each received a voltage of 20 V. The distribution of mag-
netic field intensity and magnetic field vector obtained under different offset conditions 
are shown in Figures 28–30. 

(a) (b) (c) 

Figure 28. Magnetic field distribution diagrams of a single-coil transfer structure. (a) Without offset. 
(b) Offset by −20 mm in the x-direction. (c) Offset by −20 mm in the x-direction and 20 mm in the y-
direction. 

(a) (b) (c) 

Figure 29. Magnetic field distribution diagram of the multicoil transfer structure. (a) Without offset. 
(b) Offset by −20 mm in the x-direction. (c) Offset by −20 mm in the x-direction and 20 mm in the y-
direction. 

Figure 27. Comparison of the prediction results based on the training set.

3.3. Magnetic Field Simulation

In Maxwell, simulation models for the proposed multicoil were developed. To better
demonstrate the advantages of multicoil transfer, we built a single coil transfer model of the
same size (200 mm × 200 mm) and the same coil width (23 mm) as a control. The simulation
facilitated a comparison and validation of the magnetic field distributions resulting from
the lateral misalignment and longitudinal displacement of the coils. In these simulations,
the secondary-side coils each received a voltage of 20 V. The distribution of magnetic field
intensity and magnetic field vector obtained under different offset conditions are shown in
Figures 28–30.
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The simulation results reveal that in the traditional single-coil coupling energy trans-
fer process, the single coil generates a magnetic field that scatters away from the center of 
the coil. In contrast, the multicoil transfer structure can adjust the magnetic field in re-
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posed system has advantages in magnetic field coupling. 
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and receiver separated by 20 mm. Figure 31 displays the voltage and current waveforms 
of the secondary-side coil without any offset during WPT, while Figure 32 shows the volt-
age and current waveforms when the secondary-side coil is offset by 2 cm in both the x- 
and y-directions during WPT. A 1:1 probe was used for the current measurements. From 
Figures 31 and 32, it can be seen that when the secondary coil undergoes displacement, 
the inverter bridge allocates electrical energy as envisioned in Section 2.3, directionally 
adjusts the magnetic field, and verifies the control effect of the BP neural network. 
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Figure 30. Magnetic field vector diagram of the multicoil transfer structure. (a) Without offset.
(b) Offset by −20 mm in the x-direction. (c) Offset by −20 mm in the x-direction and 20 mm in the
y-direction.

The simulation results reveal that in the traditional single-coil coupling energy transfer
process, the single coil generates a magnetic field that scatters away from the center of the
coil. In contrast, the multicoil transfer structure can adjust the magnetic field in response
to the movement of the secondary-side coil, concentrating the magnetic field near the
center of the receiving coil. A key aspect of underwater WPT is minimizing the leakage of
magnetic fields from the WPT device, thereby reducing eddy current losses in seawater.
The diagrams clearly show that the magnetic leakage of the multicoil transfer structure is
significantly less than that of the single-coil transfer structure, indicating that the proposed
system has advantages in magnetic field coupling.

3.4. Experimental Verification

Experiments were conducted to validate both traditional WPT and the proposed
system, with the input voltage set at 25 V, the output voltage set at 20 V, and the transmitter
and receiver separated by 20 mm. Figure 31 displays the voltage and current waveforms
of the secondary-side coil without any offset during WPT, while Figure 32 shows the
voltage and current waveforms when the secondary-side coil is offset by 2 cm in both the
x- and y-directions during WPT. A 1:1 probe was used for the current measurements. From
Figures 31 and 32, it can be seen that when the secondary coil undergoes displacement, the
inverter bridge allocates electrical energy as envisioned in Section 2.3, directionally adjusts
the magnetic field, and verifies the control effect of the BP neural network.
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Figure 31. System input without an offset. (a) Energy channel 1. (b) Energy channel 2. (c) Energy
channel 3. (d) Energy channel 4.

Figure 33 illustrates the output efficiency related to coil misalignment at a transfer
power of 40 W. Figure 33 shows that the MTCWPT equipment maintains a relatively high
transfer efficiency within a 4 cm offset range, and the experimental results are slightly lower
than the simulation results. This is because the experiment did not use the ideal device as
in the simulation, and the inverter bridge, wire, and capacitor in the experiment generated
heat and loss. Moreover, in the experiment, the compensation circuit cannot achieve the
same resonant state as in the simulation.
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Figure 33. System transmission efficiency under different offsets.

The NTSMC parameters obtained from tuning are p/q = 1.04, β = 44,789, α = 0.01, and
kt = 3,075,700,000. The NTSMC step response curve obtained from the experiment is shown in
Figure 34. The experiment was designed with an x-direction offset varying from 0 to 10 mm
and a y-direction offset from 0 to 10 mm. The output voltage waveform of the NTSMC offset
change experiment is displayed in Figure 34. The calculation formula for the high values VH
in Figure 34 is shown in Equation (47).

VH = 0.1Vmin + 0.9Vmax (47)
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In Equation (47), Vmin is the minimum value of the waveform, and Vmax is the maxi-
mum value of the waveform.

Figure 34 shows that the system using SMC reduces the rise time to only 15 ms, with
no overshoot during the rising process. Figure 35 shows the variation of load voltage
during the coupling process of the system from positive to offset of about 1.5 cm. It can
be seen that the output voltage of the system quickly reaches a stable state after a brief
fluctuation, and the process only lasts for 6 ms, and during the voltage fluctuation period,
there is only an 11.24% reduction in the voltage, demonstrating the strong robustness
of the system and having obvious advantages for its application in complex underwater
environments.
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Figure 35. Output voltage waveform when the secondary coil moves.

Figure 36 shows the voltage output waveform when the secondary coil vibrates.
Figure 36a shows the voltage output waveform when a small vibration occurs, with
a vibration range of 0 mm to 15 mm and a vibration speed of approximately 1500 mm/s.
Figure 36a shows that when the secondary coil vibrates, the output voltage fluctuates
very little or even not at all, with a maximum fluctuation of approximately 6%. When
the vibration ends, the voltage immediately stabilizes. Figure 36b shows the voltage
output waveform when a large vibration occurs, with a vibration range of 0 mm to 30 mm
and a vibration speed of approximately 3000 mm/s. Figure 36b shows that when the
secondary coil experiences a large vibration, the maximum fluctuation in the output voltage
is approximately 15%. When the vibration ends, the voltage immediately stabilizes, and
the output voltage is still within a controllable range.
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4. Discussion

From the results, with an input DC voltage of 25 V, the WPT system we constructed
can maintain a stable power output of 40 W and an efficiency of over 78.5%, while the
step response time of the system is 15 ms. When a small offset occurs, the system needs
only 6 ms to stabilize, and the robustness of the system was verified through experiments.
When the secondary coil undergoes slight vibration, the output has little effect. Moreover,
in practical applications, the standard input DC voltage on AUVs can achieve kilowatt-
level charging power. Although magnetic leakage is of significant practical importance in
real underwater robots, the proposed multicoil wireless charging structure can effectively
prevent leakage. However, the design of this article is limited to only the control aspect, and
there has not been in-depth research on coil design. In fact, coil resistance is still a major
issue in the process of wireless energy transfer [22], and future research will focus on coil
design to reduce copper loss during wireless energy transfer.

5. Conclusions

This article introduces a new charging method that combines BP neural networks
with SMC. Through mathematical modelling, magnetic field modelling, and experimental
verification, the feasibility of this method was demonstrated. The research shows that
multicoil wireless charging enhances the mutual inductance of traditional WPT systems,
improving their stability and efficiency. The proposed charging system also exhibited
significant stability advantages in lateral misalignment experiments, achieving stable and
effective WPT within an 8 cm displacement range.
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