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Abstract: Welding stands as a critical focus for the intelligent and digital transformation of the
machinery industry, with automated laser welding playing a pivotal role in the sector’s technological
advancement. The management of welding deformation in such operations is fundamental, relying on
advanced analysis and prediction methods. The endeavor to accurately analyze welding deformation
in practical applications is compounded by the interplay of numerous variables, a pronounced
coupling effect among these factors, and a reliance on expert intuition. Thus, effective deformation
control in automated laser welding operations necessitates the gathering of pre-test laser welding data
to develop a predictive approach that accurately reflects real-world conditions and is characterized
by improved reliability and stability. To address the technological evolution in automated laser
welding, a predictive model based on neural network technology is proposed to map the intricate
relationship between process variables and the resulting deformation. At the heart of this approach
is the formulation of a predictive model utilizing a back-propagation neural network (BP), with an
emphasis on four essential welding parameters: speed, peak power, duty cycle, and defocusing
amount. The model’s predictive accuracy is then honed through the application of the whale
optimization algorithm (WOA) and the differential evolutionary (DE) algorithm. Finally, extensive
testing in an automated laser welding experimental setup is conducted to validate the accuracy and
reliability of the proposed prediction model. It is demonstrated through these experiments that the
deformation prediction model, enhanced by the DEWOA-BP neural network, accurately forecasts
the relationship between laser welding parameters and the induced deformation, maintaining a
prediction error margin of ±0.1mm. The model is employed to fulfill the requirements for a pre-
welding quality evaluation, thereby facilitating a more calculated and informed approach to welding
operations. This method of intelligent prediction is not only crucial for the intelligent transformation
of laser welding but also holds significant implications for traditional machining technologies such
as milling, grinding, and spraying. It offers innovative ideas and methods that are pivotal for the
industrial revolution and technological advancement of the traditional machining industry.

Keywords: automated laser welding; welding deformation; welding process parameters; BP; DEWOA

1. Introduction

Welding is recognized as a pivotal technology in the machinery manufacturing indus-
try, playing an essential role in enhancing automation and transforming manufacturing
practices [1,2]. Among the various welding methods, laser welding stands out for its
use of laser radiation as a power source. This technology is notable for its highly con-
centrated energy, adjustable and precisely controllable power delivery, and the benefit
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of non-contact operation. As a result, laser welding has surpassed traditional welding
techniques, becoming widely adopted for its capabilities in high-speed processing and
precision applications [3].

The evolution of laser welding technology has been marked by the integration of
various technological approaches into a cohesive framework that combines artificial intel-
ligence capabilities—such as fuzzy logic control, neural network algorithms, and expert
system approaches—with the cross-disciplinary synergy of mechanical, electronic, material,
and physical sciences. This advanced framework aims to automate the welding process
by emulating human sensory capabilities like visual, tactile, and auditory perceptions to
replicate the nuanced human assessments involved in examining weld seams and melt
pool dynamics. Laser welding technology, comprising predictive, control, and interac-
tive intelligence, faces challenges in replacing human expertise and sensory responses
with algorithm-driven systems and mechanical analogues [4]. Traditional welding’s re-
liance on manual skill and procedural manuals often introduces biases and complexities
that intelligent laser welding seeks to overcome through robotic systems that can acquire
quasi-experiential knowledge and make decisions mirroring human cognition [5]. This
technology is primarily focused on predicting weld quality under various conditions and
identifying and rectifying potential defects to maintain compliance with quality standards.

Building on these advancements in intelligent laser welding, recent research has
further refined the predictive capabilities within this domain. In the realm of predictive
quality assessment, Tang et al. have devised a method utilizing machine vision coupled
with the Hidden Markov Model to simplify the evaluation of welding quality [6]. Sassi
and colleagues have employed deep learning techniques, bolstered by transfer learning,
for the efficient training of networks to monitor weld quality, yielding high accuracy with
a limited dataset [7]. Further research by Praveen Kumar R et al. has explored machine
learning for defect recognition in welding, employing classification algorithms to categorize
defects captured through machine vision [8]. Guo Jinjin and colleagues have implemented
a system integrating fuzzy control and neural networks for high-accuracy welding quality
classification [9]. Necip Fazil and co-researchers have used artificial neural networks
(ANNs) among other methods, achieving a high precision rate in predicting the ultimate
tensile strength of welded joints [10]. SenthilKumar V et al. have proposed a genetic
algorithm for optimizing laser cutting parameters, demonstrating a meticulous evaluation
of the effects on the quality of cuts [11].

Extending these technological advancements to address the physical outcomes of the
welding process, significant efforts are underway to predict and control welding-induced
deformations—a critical topic within intelligent prediction. The aim is to anticipate and
mitigate part distortions post-welding through simulations that consider heat transfer and
material responses. Current methodologies often employ finite element analysis (FEA)
to predict these deformations. Ninshu Ma et al. combine finite element analysis with
experimental validation to understand and counteract the undesirable effects of weld
deformation [12]. Jiangchao Wang et al. have applied elastic finite element methods to
predict deformations in structural welding applications, developing optimization strategies
to minimize these effects [13]. Yu Cao et al. have introduced an approach tailored for
shipbuilding, integrating thermoelastic–plastic finite element methods with inherent defor-
mation theory, to preemptively address deformation concerns [14]. These investigations
highlight the ongoing efforts to bridge the gap between theoretical models and practical
production needs, with the ultimate goal of enhancing the precision and reliability of laser
welding processes.

In the field of mechanical engineering, the utility of deformation prediction methodolo-
gies in real-world production scenarios is somewhat constrained. The limited applicability
is attributed to the simplified assumptions used within idealized model frameworks. Dis-
crepancies in material quality parameters, the intricacies of on-site conditions, and the
multitude of influential factors serve to compound the complexity of analyses. Thus,
principles extrapolated from simulations under ideal conditions frequently fall short in
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practical processing environments. Additionally, the exigencies of production timelines
and operational conditions often obviate the development and implementation of economi-
cally viable predictive models. Consequently, on-site technicians traditionally depend on
empirical knowledge accrued over time for rudimentary inferential assessments.

The essence of the presented study is the formulation of a robust deformation prediction
model for laser welding, which is congruent with the realities of processing environments
and assimilates the empirical experience of technical staff. The research commences with the
establishment of a deformation evaluation criterion, pertinent to actual production activities
and intelligible to practitioners. At the heart of the investigation is the deployment of process
parameter-driven approaches, coupled with intelligent algorithms and assorted optimization
heuristics. The innovative aspect of the methodology lies in its foundation upon the tangible
conditions of the processing environment and the specific parameters of the laser welding
process. The objective is to derive a predictive model for laser welding deformation, predicated
on these parameters, which provides a streamlined yet efficacious means of forecasting welding
deformation on-site. This enables operators to refine and enhance production processes, leading
to improved operational efficiency. The intelligent prediction algorithm proposed in this paper
uses laser welding as an example to conduct the theoretical analysis and model construction,
but the algorithmic ideas embodied in it are not limited to the laser welding scene, which is only
used as a presentation mode of the algorithm and has no substantive significance. Therefore,
this method can reflect a more prominent role in the actual production than the content of
this paper and has a wide range of applicability. The prediction model proposed in this paper
transcends the resolution of discrete processing issues within enterprises. It endeavors to furnish
an advanced intelligent solution to the machining industry, addressing the challenges presented
by predominantly manual and experiential procedures. Furthermore, the model offers strategic
direction for the intelligent evolution and refinement of the sector as a whole.

2. Analysis of Problems

Welding deformation is predominantly induced via thermal expansion, contraction
upon cooling, and the accumulation of residual stresses throughout the welding pro-
cess [15]. Given its high energy density and the relatively small extent of the heat-affected
zone, laser welding is particularly susceptible to significant heat output and excessive
temperature gradients at the welded joints, compared to traditional welding methods. Such
conditions exacerbate the extent of welding deformation. Consequently, the control of
welding deformation is accorded heightened significance in the context of laser welding.

The extent of deformation in laser welding is significantly influenced by various factors
such as the welding process parameters, properties of the welding plates, and methodologies
for positioning and securing components, with process parameters being the primary contrib-
utors to deformation. In conventional laser welding operations, where plate parameters and
positioning fixtures are often standardized, the focus is notably on how changes in welding
speed, power, and focal point adjustment impact deformation [16]. Welding speed, which
determines the linear velocity of the welding head’s movement over the surface, directly
affects the heat input and size of the heat-affected zone. A higher welding speed reduces
the heat input and the heat-affected zone, thus minimizing deformation. The power of the
laser welding dictates the energy level discharged by the laser beam onto the welding sur-
face, where increased power leads to higher thermal energy absorption, enhancing welding
efficiency and penetration depth. Given the high output of continuous wave lasers, pulse
width modulation (PWM) is used for precise power management, splitting laser power into
peak power and duty cycle [17]. Peak power controls the maximum output in a cycle, influ-
encing the energy density essential for material melting, while the duty cycle, representing
the percentage of the laser’s operating time within a cycle, affects the heat input and material
melting. Additionally, the defocusing amount, or the position of the laser beam’s focal point
relative to the workpiece surface, significantly alters the laser beam’s focusing properties and
the resulting weld morphology. This combination of factors requires careful adjustment and
control to optimize welding outcomes and minimize deformation.
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Laser welding distortion assessment involves measuring and analyzing changes in
the geometry and dimensions of components that undergo stress during welding, typi-
cally using methods like geometric measurements, finite element analysis, or numerical
simulation [18]. Due to the need for quick assessments in real-time production settings,
conducting detailed analyses of welds, stress levels, and dimensions is often impractical
and cost-prohibitive. To address this, an innovative approach using differences in flatness
tolerance as a metric for assessing welding deformation has been developed. Flatness is
measured by the variation in distance between points on a surface and a reference plane.
This method evaluates the flatness of both the unwelded base material and the welded
component, with the unwelded material acting as the reference. This allows for quick data
collection on how the surface morphology of the joints changes before and after welding,
enabling fast and effective predictions of welding deformation.

In automated laser welding operations, controlling welding deformation is a funda-
mental requirement, with strategies for managing this deformation reliant upon the analysis
and prediction of distortions. Traditionally, deformation analysis has been predicated on
empirical methods, whereby technicians draw upon their extensive experience from re-
peated manual welding to deduce the effects of varying welding process parameters and
their interrelations. However, the variability and subjectivity inherent in human judgment
render this approach less reliable for the automated control of laser welding deformation.
A more stable and accurate method for predicting welding deformation is necessitated, one
that is grounded in pre-experimental data reflective of actual operational conditions.

The adoption of a neural network offers a more sophisticated and apt solution for
predicting parameter-induced deformations in automated laser welding settings. Neural
networks, renowned for their robust nonlinear fitting and generalization capabilities, can
effectively map complex, multi-dimensional data relationships, thus enabling the develop-
ment of a predictive model for multi-dimensional, nonlinearly coupled data based solely
on empirical observations [19]. The neural network-based model for predicting the impact
of laser welding process parameters on welding deformation represents an optimal solu-
tion. This approach leverages pre-existing welding pre-test data and the neural network’s
nonlinear fitting prowess to unearth patterns among welding parameters, culminating
in a predictive model that aligns closely with empirical data, thereby facilitating intelli-
gent predictions of parameter effects. Nonetheless, the predictive accuracy of traditional
neural networks can be compromised by the substantial variability and complexity of
pre-experimental data, often leading to suboptimal iterative efficiency. To address these
challenges, meta-heuristic algorithms are employed to enhance the neural network model,
optimizing initial parameters to avoid local minima and augment global search capabilities.

An enhanced BP neural network model (DEWOA-BP), optimized through the inte-
gration of differential evolution and whale optimization algorithms, is introduced. This
model establishes a predictive linkage between critical welding parameters—welding
speed, peak power, duty cycle, and defocusing amount—and the extent of welding defor-
mation, achieving an accurate mapping of process parameters to deformation outcomes.
For automated laser welding operations, the feasibility of the proposed improved neural
network prediction model is affirmed. Through algorithmic modeling, a concise set of
pre-experimental data and judicious parameter settings yield a stable and reliable law
of deformation, providing a straightforward and dependable method for deformation
prediction. This foundational work paves the way for future advancements in intelligent
welding technologies.

3. DEWOA-BP
3.1. BP

Artificial neural networks (ANNs), often shortened to neural networks, mimic the
structural and functional characteristics of the human brain [20]. These networks are
founded on the principles of distributed and parallel computation and utilize a variety of
weight-learning algorithms to achieve nonlinear generalized mapping for discrete datasets.
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The essential computational, recognition, and control logic is derived from and assimilated
based on data samples from the neural network. The development of an artificial neural
network involves three core components: the establishment of connection methodologies,
the selection of neuron nodes, and the formulation of learning algorithms. Among the
diverse spectrum of artificial neural networks, the back-propagation neural network, or
BP neural network, is recognized for its prevalence and advanced development [21]. The
architecture of the BP neural network, depicted in Figure 1, showcases its structured
approach to processing and learning from input data, thereby enabling effective pattern
recognition and data approximation capabilities.
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Figure 1. Structural diagram of the BP.

BP neural networks are characterized by their ability to adapt to complex control prob-
lems through the augmentation of network layers, particularly within large-scale and mul-
tivariate systems, where high stability and effectiveness are demonstrated. This capability
is essential for constructing nonlinear mapping models that necessitate a high degree of
discretization. Given an adequate dataset, deep dynamic features can be learned by BP neural
networks, thereby enhancing their adaptability to new conditions and unknown perturbations.
In comparison to other neural network types, such as RBF networks and GRNN networks, a
broader range of application benefits is offered by BP networks in complex prediction tasks,
where superior generalization capabilities and high response efficiency are exhibited.

3.1.1. Connection Method

The common BP neural network adopts the three-layer structure of “n-m-1”, with n
nodes in the input layer, m nodes in the hidden layer, and one node in the output layer,
and each layer is fully connected to the next layer.

3.1.2. Node Selection

N parameters (x1, x2, x3, . . . , xN) of the input layer represent the N input parameters
of the prediction model.

Output layer one parameter y, where y is the modified predicted value.
Kolmogorov’s theorem yields that since there are n nodes in the input layer and one

node in the output layer, the number of implied nodes in the intermediate layer satisfies
the following relation:

m = (
√

a + b + c), 0 ≤ c ≤ 10 (1)

And, the hidden layer results and output layer results can be expressed by the follow-
ing formulas:

a(l+1)
i = g(∑

j=0
θl

ijxj) (2)
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ym = g(∑
j=0

θl
ijaj) (3)

In the formulas, a(l+1)
i represents the i-th activation unit of the i + 1-th layer; ym

represents the m-th output of the system; θl
ij represents the weight of the i-th layer mapped

to the l + 1-th layer; and function g(x) represents the nonlinear calculation result of linear
mapping.

3.1.3. Learning Algorithms

The BP network employs the back-propagation algorithm for parameter updates.
Initially, the loss function is computed, followed by a layer-by-layer calculation of the
partial derivatives of the loss function. The network is then updated using the gradient
descent algorithm. The parameter update algorithm for the output layer is as follows.

∂

∂θl
ij

J(θ) =
∂J(θ)

∂yi
× ∂yi

∂netl
i
×

∂netl
i

∂θl
ij

(4)

netl
i = ∑

j=0
θl

ijaj (5)

θl−1
ij = θl

ij − α
∂

∂θl
ij

J(θ) (6)

where J(θ) represents the loss function of the BP neural network; yi is the network output;
and α is the learning rate.

3.2. WOA

The whale optimization algorithm (WOA) is a bio-inspired heuristic search algorithm [22].
It models its search patterns on the intricate hunting strategies of whales, encompassing three
distinct phases: encircling prey, deploying bubble-net attacks, and foraging. The underlying
mathematical principles guiding the algorithm’s logic are elucidated below.

3.2.1. Phase 1: Surrounding the Prey

Generate a random initialization community xi within the search range.
Suppose that in d-dimensional space, the current position of the best whale individual

X∗ is (X∗
1 , X∗

2 , . . . , X∗
d), and the position of the whale individual X j is (X j

1, X j
2, . . . , X j

d).

Then, the formula for the next generation X j+1 position (X j+1
1 , X j+1

2 , . . . , X j+1
d ) of whale X j

under the influence of the best whale individual is

X j+1
k = X∗

k − A1 × Dk, (7)

Dk =
∣∣∣C1 × X∗

k − X j
k

∣∣∣, (8)

C1 = 2r2, (9)

A1 = 2a × r1 − a, (10)

where xi is the location of the search agent, lb is the lower bound of the variable, ub is
the upper bound of the variable, X j+1

k denotes the kth component of the spatial coordinate
X j+1, a is a linear decrease from 2 to 0 as the number of iterations increases, and r1 and r2
are a random number from 0 to 1.

3.2.2. Phase 2: Foam-net Attack

The bubble-net attack simulates the humpback whale’s characteristic behavior of spit-
ting bubbles while feeding and includes two mathematical models, contraction encircling
and spiral position updating.
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This contraction encircling behavior is essentially the same as the encirclement of
prey behavior described above, with the difference being the range of values for A1. The
difference between the two actions is the range of values for A. The value of A is adjusted
from [−a, a] to [−1, 1] because the meaning of contraction encirclement is to move the
whale in the current position closer to the whale in the best position at the current position.

Spiral position updating. The individual whale at the current position spirals closer to
the best individual whale at the current position.

X j+1
k = X∗

k + Dk × ebl × cos(2πl), (11)

Dk =
∣∣∣X∗

k − X j
k

∣∣∣, (12)

where b is the logarithmic spiral shape constant and l is a random number between −1
and 1.

When hunting, humpback whales not only need to shrink and surround but also
need to spiral towards the prey. Therefore, each chooses the foam-net attack mode with a
probability of 50%. That is, the mathematical model is as follows:

X j+1
k =

{
X∗

k − A1 × Dk, p < 0.5
X∗

k + Dk × ebl × cos(2πl), p ≥ 0.5
, (13)

3.2.3. Phase 3: Search and Predation

Assuming that the position of a random whale individual Xrand in d-dimensional
space is (Xrand

1 , Xrand
2 , . . . , Xrand

d ), and the position of the current whale individual X j is

(X j
1, X j

2, . . . , X j
d), the mathematical model of search and predation is

X j+1
k = Xrand

k − A1 × Dk, (14)

3.3. Algorithmic Improvement Methods

Despite the BP neural network’s capacity for accurate intelligent mapping in complex
data systems, owing to its formidable nonlinear fitting and generalization capabilities, its
performance, notably prediction accuracy and iteration efficiency, is heavily contingent
upon the model’s initial parameters. Moreover, it is susceptible to entrapment in local
optima amidst complex data scenarios. This research introduces an innovative enhancement
method for the BP neural network by integrating the global optimization prowess and
rapid iteration capabilities of the whale optimization algorithm (WOA), aiming to refine the
prediction accuracy and speed of the BP neural network. The approach designates the initial
weights and biases of the BP neural network as target parameters for the WOA, aligning
the WOA’s fitness function with the error function of the BP neural network. Utilizing the
evolutionary mechanisms of the WOA to update these parameters, a reduction in the overall
error of the BP neural network is achieved, thereby facilitating the effective optimization
of weights and biases. This optimization enhances the convergence velocity and global
optimization efficiency of the network model, particularly in complex scenarios, yielding
a prediction network of heightened accuracy and augmented generalization capacity for
nonlinear and intricate problems.

However, the efficacy of WOA optimization is discovered to be significantly influenced
by the choice of initial population, with traditional WOA algorithms typically generating
this population randomly, thus not ensuring the optimality of the initial group. Fur-
thermore, when faced with extensive search domains, the convergence rate of the WOA
diminishes, prolonging the problem resolution time. To address these challenges, this study
integrates the differential evolution (DE) algorithm for a secondary optimization of the
WOA, thereby enhancing its efficiency. The DE algorithm, a heuristic search mechanism
predicated on population differences, when combined with the WOA, leverages DE’s
early-stage global solution identification capabilities and introduces diversity to avert local



Machines 2024, 12, 307 8 of 16

optima entrapment [23]. This synthesis not only harnesses the complementary strengths of
both algorithms to simultaneously augment global search efficiency and local optimization
capability but also bolsters algorithmic robustness and adaptability. Consequently, the
resultant improved DEWOA-BP neural network establishes a prediction network character-
ized by accelerated convergence, superior prediction accuracy, and enhanced generalization
ability, thereby enabling the intelligent prediction of welding deformation in automated
laser welding operations.

4. Method
4.1. Overview of the Method

The amount of weld distortion in automated laser welding operations is affected by
the coupling of welding speed, peak power, duty cycle, and defocusing amount in actual
welding operations, with the following influence equation:

∆x ∈ D =
{

D
∣∣∣D(x) = f

(
V, Ppeak, DC, S

)}
(15)

where ∆x is the flatness difference in the form of laser welding deformation; D indicates
the laser welding deformation obeys the distribution model, and D and laser welding
process parameters have a close relationship; V indicates the welding speed, using the unit
of mm/min; Ppeak indicates the peak power, using the unit of %; DC indicates the duty
cycle, using the unit of %; S denotes the amount of defocusing in mm. Due to the existence
of the coupling effect of welding process parameter action, and the role of the effect of
the expression is more complex, it is more difficult to solve the above distribution model
through the explicit formula method. For the above obeying model, the data samples from
the pre-experiment can be used to fit the data to the above multifactor molecule’s action
relationship and generate the prediction model of welding process parameters V, Ppeak, DC,
and S to the welding deformation ∆x.

In the context of advancements in laser welding process control, a “4-input–1-output”
neural network prediction model based on the enhanced DEWOA-BP neural network is
presented. This model is designed to forecast laser welding deformation by employing
actual welding process parameters as inputs. The nonlinear mapping model correlates
these parameters with the resultant welding deformation to produce predictive outputs.
Further enhancements to the model’s accuracy and iteration speed are achieved through a
proposed quadratic optimization method, which utilizes the improved WOA algorithm
refined with the DE algorithm. This method capitalizes on the crossover and mutation
processes of the differential evolutionary algorithm to globally optimize the initial whale
population of the WOA, thereby securing an optimal starting group. Subsequently, the
synergistic capabilities of the DE algorithm’s global search and the WOA algorithm’s local
optimization are employed to refine the initial weights and biases of the BP neural network
efficiently. This optimization yields a parameter set characterized by optimal prediction
accuracy and enhanced iterative efficiency, culminating in the accurate prediction of laser
welding deformation. This quadratic optimization approach significantly elevates the
predictive model’s accuracy and enhances the autonomy of parameter settings, making it
highly applicable and versatile across complex datasets.

4.2. Model

The intelligent prediction model of weld distortion for automated laser welding
proposed in this paper is shown in Figure 2 below.
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5. Experiment
5.1. Experimental Settings

Experimental validation was carried out on 0.5mm-thick stainless steel sheets. For the
welding experiments, a uniform batch of 304 stainless steel sheets, measuring 100 mm× 50 mm
× 0.5 mm and subjected to surface deoxidation and decontamination, was selected. The
JM-HG2000 laser welding machine, developed by a company based in Wuhan, was chosen
for its capabilities. This machine, equipped with an IPG 2000W fiber-coupled laser and a
four-axis CNC table, met the specific requirements set forth for the experiments. Further-
more, a custom welding table was employed to aid the welding procedures. As depicted in
Figure 3a, this table comprised a simple horizontal fixture table and four rapid horizontal
work clamps, engineered to securely hold flat parts in place during the welding process.

In addition to the welding apparatus, the Hexagon Absolute Arm, a six-axis handheld
measuring arm, in combination with Ployworks MS 2020 measurement software, was utilized
to assess the flatness of the weldments, as shown in Figure 3b. This involved manually
maneuvering the handheld arm to touch feature points on the surface of the 304 stainless
steel plate, generating multiple sets of three-dimensional spatial coordinate information. The
flatness value of the stainless steel sheet was then determined by calculating the discrepancies
among these planes. This approach enabled a precise and thorough measurement of the
welded sheet’s flatness, significantly enhancing the experimental results’ accuracy.
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5.2. Data Acquisition Experiment

To construct a nonlinear mapping model correlating welding speed, peak power, duty
cycle, defocusing amount, and welding deformation, this study orchestrates a series of
laser welding experiments on 304 stainless steel sheets, employing various welding process
parameters of an automated laser welding machine. Subsequent to these experiments, a
six-joint hand-held measuring arm is utilized for determining the flatness pre- and post-
welding, employing the disparity in flatness as a proximate measure for characterizing
laser welding deformation. This facilitates the aggregation of a dataset delineating the
impact of multiple welding process parameters on welding deformation.

To compile a dataset elucidating the interrelation between welding process param-
eters and welding deformation, this paper proposes a design for repetitive single-factor
experiments on 0.5 mm 304 stainless steel sheets using laser welding, based on four weld-
ing process parameters: welding speed, peak power, duty cycle, and focal offset. The
parameter values for these single-factor experiments are cataloged in Table 1. Aiming to
mitigate the influence of random errors, each set of experimental parameters is subjected to
thrice-repeated laser welding experiments, with the mean of the outcomes deemed as the
final result for each parameter set. The selection of experimental parameters with reference
to the mature semi-automated laser welding process parameter table, selecting the same
optimal range of process parameters with the mature process, and then the optimal range
combined with the existing commonly used process parameter combinations were set
up for four process parameters of equidistant sampling points. This sampling method
cannot include all possible parameter combinations under the welding process parameters,
but through the four equidistant sampling points that approximate the discussion of all
possible process parameter effects, which ensures that the data collection experiments can
be obtained to cover all the welding effects of the data samples. Since the purpose of the
experiment is to collect data for subsequent prediction model validation experiments, it is
feasible to use this simple sampling method to design the experimental program for laser
welding process parameter data collection experiments under the premise of ensuring the
number of samples.

The designed experimental workflow for data acquisition is illustrated in Figure 4,
encompassing a total of six phases: experimental setup, experimental program design, pre-
weld flatness assessment, the execution of laser welding experiments, post-weld flatness
assessment, and the subsequent data analysis and synthesis.
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Table 1. Table of Single-Factor Experimental Parameters.

SN/Parameter
Factor 1:

Welding Speed
(mm/min)

Factor 2: Peak
Power (%)

Factor 3: Duty
Cycle (%)

Factor 4:
Defocusing

Amount (mm)

1 20 30 30 0
2 25 35 35 +1
3 30 40 40 +2
4 40 50 50 +5

5.3. Model Validation Experiment

To assess the reliability of the DEWOA-BP neural network-based prediction model for
laser welding deformation, the 256 experimental samples collected in this study were ran-
domly shuffled and segregated into two subsets: 236 training samples and 20 test samples,
arranged in no particular order. The DEWOA-BP prediction network was then established
using the 236 training samples, and its reliability was evaluated by employing the 20 test
samples. Meanwhile, to highlight the enhanced performance of the DEWOA-BP prediction
network introduced in this study, comparative analyses were conducted. The traditional
BP neural network, traditional RBF neural network, traditional GRNN neural network, and
statistical methods were utilized to construct prediction models using the same training
dataset, thereby forming an experimental control group. Predictive comparisons were then
carried out among the constructed improved DEWOA-BP prediction model, traditional BP
prediction model, traditional RBF prediction model, traditional GRNN prediction model,
and the model generated via statistical methods. These comparisons were conducted
using the same test sample set to ascertain the predictive outcomes of each model. This
methodology ensured that the enhanced capabilities of the DEWOA-BP network could be
effectively measured against established techniques under identical testing conditions.

The construction of a “4-input–1-output” laser welding deformation model was carried
out using MATLAB R2022b, with the initial model parameters set as detailed in Table 2.
The evolution curve of the DEWOA-BP prediction model developed herein is depicted in
Figure 5.

Table 2. Values of initial parameters of the DEWOA-BP prediction algorithm.

Parameter Value

BP

Number of input layer nodes 4
Number of output layer nodes 1

Number of hidden layer
nodes 3–12 (adaptive choices)

Number of training sessions 1000
Learning rate 0.01

WOA

Minimum error of training
target 0.00001

Maximum number of
iterations 100

Population size 50
Upper bound 3
Lower bound −3

DE
Population size 50
Variation factor 0.75

Crossing probability 0.9
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6. Results and Discussion

By analyzing and calculating the prediction results from the improved DEWOA-BP
prediction model, the traditional BP prediction model, the traditional RBF prediction
model, the traditional GRNN prediction model, and the prediction model generated via
the statistical method, comparison plots for each model’s prediction results and prediction
errors were obtained, as illustrated in Figures 6 and 7, respectively. In addition to these
graphical comparisons, the superiority of the DEWOA-BP prediction model was further
elucidated through a detailed statistical analysis of the mean absolute error (MAE), mean
squared error (MSE), root-mean-squared error (RMSE), and mean absolute percentage error
(MAPE) for each model. These statistical measures are presented in Table 3, providing a
more accurate and intuitive representation of the comparative performance of the models.
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Table 3. Comparison of MAE, MSE, RMSE, and MAPE of the improved DEWOA-BP prediction
model, the traditional BP prediction model, the traditional RBF prediction model, the traditional
GRNN prediction model, and the prediction model generated via the statistical method.

Type DEWOA-BP BP RBF GRNN Statistical
Methods

MAE 0.07 0.2175 0.2376 0.287 0.5189
MSE 0.0109 0.0687 0.0833 0.0985 0.3567

RMSE 0.1043 0.2621 0.2887 0.3138 0.5973
MAPE 42.5292 312.2395 357.6041 358.3177 821.0032
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Incorporating both the graphical and tabular data, a detailed analysis and discussion
are presented as follows:

(1) From Figures 6 and 7, it is demonstrated that the prediction effectiveness of the model
employing statistical methods is significantly lacking. Specifically, a consistent pre-
diction deviation greater than 0.8 mm is observed across 20 test samples, with an
error rate exceeding 100%. As detailed in Table 3, the mean absolute error (MAE) is
recorded at 0.5189, the mean squared error (MSE) at 0.3567, the root-mean-squared
error (RMSE) at 0.5973, and the mean absolute percentage error (MAPE) at 821.0032.
These metrics substantially underperform compared to those of alternative neural
network-based prediction models. The inefficacy of statistical methods in scenarios
such as laser welding, characterized by high levels of data discretization and sig-
nificant noise interference, renders them unsuitable for applications requiring high
precision. The principal limitation of the statistical approach is attributed to its re-
liance on predetermined functional models, which fail to accommodate the variability
and noise prevalent in discrete laser welding data samples.

(2) From Figures 6 and 7, it can be found that the traditional general regression neural
network (GRNN) is shown to inadequately reflect effective predictions on the test
data samples, with minimal variation observed across the 20 test results. The data
presented in Table 3 indicate an average MAE of 0.287, an MSE of 0.0985, an RMSE of
0.3138, and a MAPE of 358.3177. These results suggest that the GRNN model does not
produce a viable prediction under the tested conditions. The inherent design of the
GRNN, which is based on probability density functions and demonstrates a lack of
sensitivity to data distribution, is found to be ineffective against test samples marked
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by high sparsity and severe data noise, leading to poor predictive performance in
precision-critical applications.

(3) From Figures 6 and 7, it can be found that the data trends of the traditional BP and RBF
prediction neural networks are essentially consistent with the actual data, indicating
a certain level of prediction feasibility. However, large prediction deviations are
still present in some of the test samples. As a result, the prediction outcomes of
the traditional BP and RBF neural networks can be seen as approximations of the
welding deformation change rules, but due to significant error fluctuations, they are
not suitable for practical welding site applications. As shown in Table 3, the average
mean absolute error (MAE) of the BP prediction neural network is 0.2175, the mean
squared error (MSE) is 0.0687, the root-mean-squared error (RMSE) is 0.2621, and the
mean absolute percentage error (MAPE) is 312.2395. Similarly, the RBF prediction
neural network displays an average MAE of 0.2376, MSE of 0.0833, RMSE of 0.2887,
and MAPE of 357.6041. Although both models demonstrate some effectiveness,
significant accuracy issues remain. The primary reason for the challenges faced by
the BP prediction neural network is that its training relies on optimization algorithms
such as gradient descent, which carry the risk of converging to local minima rather
than the global optimal solution. In the case of the RBF neural network, its prediction
mechanism involves mapping the input to a high-dimensional space through a radial
basis function and then applying a linear model for regression or classification, which
can be slightly inadequate as sample complexity increases. After thoroughly analyzing
the deficiencies of the two models, it is suggested that the prediction performance
of the BP neural network could be optimized by improving the initial parameter
settings, preventing convergence to local minima, and striving for the global optimum.
Such improvements would allow the traditional BP neural network to maintain
its predictive capabilities in the face of complex problems and nonlinear models
while reducing prediction fluctuations and enhancing prediction stability. Therefore,
selecting the BP neural network for model optimization in this study is deemed
reasonable.

(4) From Figures 6 and 7, it can be found that the DEWOA-BP prediction neural network
achieves higher prediction accuracy under error allowance conditions when compared
with the BP and RBF prediction neural networks. The results from 20 test samples
are generally consistent with the actual sample data, with the prediction error for
10 samples within 0.05 mm and for 18 test samples within 0.1 mm, thus meeting the
demands of actual laser welding operations. As presented in Table 3, the average
mean absolute error (MAE) for the DEWOA-BP network is 0.07, which is 67.82% lower
than that of the traditional BP network and 70.54% lower than that of the traditional
RBF network. The mean squared error (MSE) is noted at 0.0109, which is 84.13% lower
than that of the traditional BP network and 86.91% lower than that of the traditional
RBF network. Additionally, the root-mean-squared error (RMSE) is recorded at 0.1043,
60.21% lower than the BP network and 63.87% lower than the RBF network. The mean
absolute percentage error (MAPE) stands at 42.5292, which is 86.38% lower than the
BP network and 88.14% lower than the RBF network. Due to factors such as uneven
plate quality and environmental variables, occasional errors are introduced in the
welding sample data, typically resulting in large fluctuations in welding prediction
results, which in turn contribute to high MAPE values. However, from the perspective
of practical requirements, the DEWOA-BP prediction neural network proposed in this
study is shown to satisfactorily meet operational needs and exhibit a significant degree
of reliability. The enhanced global optimization capability of the DEWOA-BP model,
in comparison with the traditional BP and RBF models, allows for a more thorough
analysis and synthesis of the complex relationships within the sample data. This
culminates in the generation of more accurate and reliable predictive rules, effectively
meeting the requirements for setting automated laser welding process parameters.



Machines 2024, 12, 307 15 of 16

7. Conclusions

(1) Despite the complexity of laser welding deformation during laser welding operations,
the data from the laser welding process are compiled and analyzed in this study, and
combined with neural network technology, a novel method for predicting welding
deformation is proposed. This method enables intelligent predictions from laser
welding process parameters to laser-induced deformation. The prediction accuracy
and stability of the model are found to generally meet the requirements of the welding
process. An analysis and assessment of welding quality based on welding process
parameters can be conducted prior to actual welding operations, thereby determining
the appropriateness of the set laser welding process parameters.

(2) A BP prediction neural network based on the differential progress optimization al-
gorithm and enhanced via secondary optimization using the whale optimization
algorithm is introduced in this paper. This approach is employed for predicting laser
welding deformation from laser welding process parameters. By utilizing the DEWOA
algorithm to optimize the BP neural network, traditional limitations such as local
optimization inefficiency or poor convergence are effectively overcome, significantly
enhancing the global optimization capabilities of the BP neural network. As a result,
the neural network’s capacity for complex data fitting and mapping is substantially
improved. The predictive performance of this model is shown to be superior to that
of the traditional BP prediction model, the traditional RBF prediction model, the tradi-
tional GRNN prediction model, and models generated via statistical methods. This
advancement meets the requirements of actual automated laser welding operations
and exhibits strong predictive reliability.

(3) The integration and advancement of intelligent algorithms with traditional machining
technology represent a crucial aspect of the intelligent and digital transformation of
the machinery industry. This paper proposes the implementation of an intelligent
prediction algorithm, which is significant not only for the intelligent transformation
of laser welding but also provides strong guidance for traditional machining technolo-
gies like milling, grinding, and spraying, which are labor-intensive and operate in
harsh environments with stringent requirements for processing quality and stability.
Departing from traditional simulation methods and utilizing actual processing data,
modern computational technologies such as neural networks are employed to con-
struct a nonlinear mapping model. The generalization and nonlinear fitting abilities
of neural networks are harnessed to uncover deep data relationships that traditional
data models cannot reveal. This enables predictions and analyses based on deep
data connections and facilitates seamless integration with other automation units and
intelligent modules for collaborative operations and system integration. Ultimately,
this approach contributes to building a genuinely significant factory environment
and realizing the industrial revolution and technological upgrading of the traditional
machining industry.
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