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Abstract: Drug development is expensive, time-consuming, and has a high failure rate. In recent
years, artificial intelligence (AI) has emerged as a transformative tool in drug discovery, offering
innovative solutions to complex challenges in the pharmaceutical industry. This manuscript covers
the multifaceted role of AI in drug discovery, encompassing AI-assisted drug delivery design, the
discovery of new drugs, and the development of novel AI techniques. We explore various AI method-
ologies, including machine learning and deep learning, and their applications in target identification,
virtual screening, and drug design. This paper also discusses the historical development of AI in
medicine, emphasizing its profound impact on healthcare. Furthermore, it addresses AI’s role in the
repositioning of existing drugs and the identification of drug combinations, underscoring its potential
in revolutionizing drug delivery systems. The manuscript provides a comprehensive overview of the
AI programs and platforms currently used in drug discovery, illustrating the technological advance-
ments and future directions of this field. This study not only presents the current state of AI in drug
discovery but also anticipates its future trajectory, highlighting the challenges and opportunities that
lie ahead.

Keywords: artificial intelligence; drug discovery; machine learning; deep learning; drug repurposing;
pharmaceutical AI

1. Introduction

Drug discovery is a highly intricate and lengthy process that requires the identification
of potential drug candidates that can effectively treat various diseases. The use of AI
has brought a significant shift in the approach to drug discovery. AI has fundamentally
transformed the pharmaceutical industry by speeding up the drug discovery process,
improving precision, and decreasing costs. In this review, we will explore the different
types of AI techniques used in drug discovery, including ML (to predict drug properties,
identify potential drug candidates, and optimize chemical structures), DL (to analyze
large-scale biological data, predict drug properties, and identify potential drug candidates),
NLP (to analyze the scientific literature for potential drug candidates and to generate drug
summaries), GM (to generate new molecules that could potentially be drug candidates),
and network-based approaches (to identify potential targets for drug development).

1.1. Historical Background and the Concept of AI in Medicine

The use of artificial intelligence techniques, algorithms, and technologies in medicine
and healthcare is referred to as AI in medicine. It involves the use of computer systems and
specialized software to analyze medical data, make decisions, and perform tasks that are
usually completed by human healthcare professionals. AI in medicine aims to improve the
accuracy, efficiency, and effectiveness of medical diagnosis, treatment, and patient care by
leveraging ML, NLP, and other AI methodologies.

AI in medicine includes its diverse applications in areas such as medical image anal-
ysis, drug discovery, personalized treatment planning, disease diagnosis and prediction,
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virtual health assistants, electronic health record management, and patient monitoring.
By processing vast amounts of patient data and medical literature, AI systems can assist
healthcare professionals in making more up-to-date decisions, detecting patterns, and
predicting patient outcomes, leading to better patient care and medical outcomes. The
field of AI in medicine is rapidly advancing and making an impact in areas such as drug
discovery, virtual health assistants, and remote patient monitoring. The use of AI-driven
tools is expected to improve medical diagnoses, disease prevention, and treatment out-
comes, ultimately leading to a more patient-centric and efficient healthcare system. The
history of AI in medicine dates back several decades, with significant developments in both
AI and medical sciences contributing to its evolution. Key milestones and events in the
historical development of AI in medicine include the establishment of the field of AI in the
1950s by researchers like Alan Turing, who proposed the idea of intelligent machines [1].
Early work in AI involved attempts to mimic human problem-solving abilities through
formal logic and rule-based systems [1]. In the 1960s, the concept of “expert systems”
emerged, where the knowledge and expertise of human experts was encoded into com-
puter programs to aid decision-making in specific domains [1]. This laid the foundation for
AI applications in medicine. The development of early expert systems, such as Dendral
and MYCIN, further advanced the use of AI in medicine. The 1970s saw an increase in AI
applications in medicine, including computer-aided diagnosis (CAD) systems for medical
imaging AI [1]. MYCIN, an expert system for diagnosing bacterial infections, demonstrated
the potential of AI in healthcare [1]. In the 1980s, AI-based image recognition algorithms
began to be applied in medical imaging, aiding in the interpretation of X-rays, CT scans,
and MRIs [1]. AI techniques, such as pattern recognition and ML, were integrated into
medical imaging systems [1]. The 1990s witnessed progress in NLP, enabling AI systems to
“understand” and process medical text data [1]. Robotic surgery systems, such as the da
Vinci Surgical System, were developed, combining AI and robotics for minimally invasive
procedures [1]. With the advent of electronic health records (EHRs) and the growth of big
data in healthcare, AI applications expanded to handle vast amounts of patient data [1]. AI
in medicine began contributing to personalized medicine, predicting patient responses to
treatments based on their individual characteristics [1]. DL, a subset of ML, revolutionized
AI applications, including medical image analysis and disease diagnosis [1]. AI in medicine
played a crucial role in advancing precision medicine, tailoring treatments based on genetic
and molecular data [1]. These developments highlight the significant progress made in AI
applications in medicine over the years, paving the way for improved healthcare outcomes
and personalized treatment approaches.

1.2. Statement of Significance

The historical background of AI in medicine shows a progressive journey from early
explorations to the current era of sophisticated AI applications in various aspects of health-
care. As AI technologies continue to advance, they hold the potential to reshape the future
of medicine and revolutionize healthcare practices for the benefit of patients and healthcare
professionals alike. Overall, the number of published papers on AI has been increasing
rapidly over time, with a peak of 348,684 papers being published in 2023. The number of
published papers on AI-assisted material discovery in drug delivery has also been increas-
ing in recent years, with a peak of 1234 papers being published in 2022. The number of
published papers on AI in medicine has also been increasing in recent years, with a peak of
188,845 papers being published in 2021. The increase in the number of published papers
on AI suggests that there is a growing interest in this technology and that more research is
being conducted in this area. The number of published papers on AI in medicine has also
been increasing in recent years but at a slower pace (Figure 1). The increase in the number
of published papers on AI-assisted material discovery in drug delivery suggests that there
is also a growing interest in the potential use of AI in this field. This suggests that there is
still some way to go before AI is widely adopted into this field.
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Figure 1. Digital survey (2010–2023) justifying the importance of the subject.

While the specific focus on AI-assisted material discovery in drug delivery is not
extensively covered in the literature, the literature highlights the potential of AI in ad-
vancing pharmaceutical product development, including formulation design and drug
discovery [2,3]. These insights suggest that AI can be a valuable tool in accelerating the
discovery and optimization of materials for drug delivery. However, for a more detailed
review specifically focusing on AI-assisted material discovery in drug delivery, it would be
beneficial to explore additional research articles or publications that specifically address
this topic.

2. AI in Discovering New Drugs

In the field of medicine, there are two types of AI applications: physical and vir-
tual. Physical applications include the following: robot-assisted surgery, AI-enhanced
prosthetics, real-time patient monitoring, and automated laboratory processes.

For example, AI in robot-assisted surgery can provide medical professionals with rel-
evant information to assist them in making more informed decisions. While AI cannot
replace human doctors, it can enhance their capabilities and improve patient care. Thus,
AI-powered surgical robots enable surgeons to perform complex procedures with greater
precision, control, and flexibility. These robots can reduce the risk of complications, min-
imize invasiveness, and shorten recovery times, leading to better surgical outcomes [4].
On the other hand, AI-driven prosthetics are designed to adapt to the user’s movements
and respond to their neural signals. These advanced prosthetics significantly improve the
quality of life for amputees, allowing them to perform complex tasks with greater ease
and naturalness. AI-based monitoring systems continuously analyze patient data, such as
their vital signs and electronic health records, to identify potential signs of deterioration or
complications. This enables healthcare providers to intervene on time and avert adverse
events. Studies have also shown that AI-based algorithms can outperform human doctors
in certain diagnostic tasks, such as detecting certain types of cancer or interpreting pul-
monary function tests [5]. Some automated laboratory processes, such as AI-powered robotic
systems that streamline and automate laboratory processes, include sample analysis, sort-
ing, and preparation. This reduces the workload for laboratory staff and minimizes the risk
of human errors, ensuring more accurate results.

Drug Discovery and Development belong to the Virtual Applications category,
together with diagnostic assistance, personalized treatment plans, and virtual health as-
sistants. Virtual AI applications aid healthcare professionals in diagnosing diseases more
accurately and efficiently. AI algorithms can analyze medical imaging data, such as X-rays,
CT scans, and MRI images, to detect abnormalities and assist in early disease detection [6].
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This capability translates to a significantly reduced chance of misdiagnosis and leads to
better patient outcomes. The power of AI lies in its ability to process and analyze large
amounts of medical data, spotting patterns that may not be immediately visible to hu-
mans. In doing so, AI can help improve diagnostic accuracy and develop personalized
treatment plans. In particular, DL algorithms can identify anomalies or potential diseases
in medical images, which can assist radiologists in their interpretations [6]. For instance,
AI has proven useful in the field of gastroenterology by detecting abnormal structures in
endoscopy and ultrasound images, such as colonic polyps [7]. Additionally, AI-powered
wearable devices can remotely monitor patients and provide real-time data to healthcare
professionals, offering early intervention opportunities. These devices have even been
developed to detect and notify caregivers about seizures in epilepsy-suffering patients [8].
Also, AI-powered virtual applications can analyze an individual’s health data, including
their genetics [9], medical history [10], lifestyle factors [11], and current health status, to
create personalized treatment plans. These plans can optimize their medication dosage, pre-
dict their treatment response, and recommend targeted therapies, ensuring more effective
and personalized patient care. AI can also contribute to precision medicine by analyzing a
patient’s genetic data and medical history to predict their disease risk, determine optimal
treatment plans, and identify potential drug targets. Moreover, virtual health assistants,
powered by AI, offer patients 24/7 support and personalized health advice [12]. They can
answer medical queries, remind patients about medication schedules, and provide lifestyle
recommendations, promoting patient engagement and proactive healthcare management.

Regarding drug discovery and development, AI algorithms assist researchers in iden-
tifying potential drug candidates by analyzing vast databases of molecular structures,
biological interactions, and clinical trial data. This accelerates the drug discovery process
and holds promise for a faster development of new medications.

AI in drug discovery implies:

(i) Target Identification and Validation:

AI has significantly impacted the field of drug discovery, particularly in the areas of
target identification and validation. This process involves identifying potential biological
targets and elucidating their roles in diseases, followed by validating these targets to ensure
they are directly involved in a disease mechanism and that the modulation of the target is
likely to have a therapeutic effect and plays a crucial role in identifying potential drug tar-
gets by analyzing the genomic, proteomic, and metabolomic data (Figure 2). ML algorithms
sift through large datasets to pinpoint the proteins or biological pathways implicated in
specific diseases, offering researchers valuable insights for drug development [13].

Life 2024, 14, x FOR PEER REVIEW 5 of 38 
 

 

 
Figure 2. Drug development process: target deconvolution vs. target discovery. 

For instance, ML-based approaches, such as Kronecker regularized least squares 
(KronRLS), evaluate the similarities between drugs and protein molecules to determine 
DTBA. Correspondingly, SimBoost utilizes regression trees to predict DTBA, and consid-
ers both feature-based and similarity-based interactions [14]. 

AI also aids in the selection of the target. An optimal target should be druggable, safe, 
efficient, and able to fulfill commercial requirements. However, emerging modalities for 
disease treatment include previously less tractable targets. Target validation is a crucial 
step in drug discovery because it ensures that a molecular target is directly involved in a 
disease mechanism and that the modulation of the target is likely to have a therapeutic 
effect [15]. Target validation may involve determining the structure–activity relationship, 
the genetic manipulation of target genes (knockdown or overexpression), generating a 
drug-resistant mutant of the presumed target, using degradation-based tools to anticipate 
the effects of the target, and monitoring the signaling pathways downstream of the pre-
sumed target [16]. AI has been used to predict drug–target interactions [17], measure the 
binding affinity of a drug [18], and select and validate targets [19].  
(ii) Virtual Screening and Drug Design:  

AI-powered virtual screening tools analyze the three-dimensional structures of target 
proteins and predict how potential drug molecules would interact with them. This speeds 
up the process of drug designing and allows researchers to identify promising drug can-
didates for further testing [20]. 

Virtual drug screening is a computational approach that uses AI to predict the activ-
ity of potential drugs by fitting chemical structures to targets (Figure 3). This method al-
lows researchers to rapidly test a library of compounds for their potential to bind and 
inhibit specific receptor or enzyme targets [21]. AI algorithms can analyze molecular struc-
tures, predict binding affinities, and prioritize compounds for further experimental testing 
[21]. Also, AI techniques, such as Bayesian docking approximations and RL, can be used 
in molecular docking simulations [22]. Molecular docking involves predicting the pre-
ferred orientation of a small molecule (drug candidate) when it is bound to a target pro-
tein. AI algorithms can explore the conformational space and predict the binding affinity 
between the drug and the target protein [22]. ML algorithms for drug design can be 
trained on/with large datasets of known drug–target interactions to envisage new drug–
target pairs or optimize the properties of existing drugs. These algorithms can learn the 
patterns and relationships between chemical structures and biological activities, enabling 
the discovery of novel drug candidates [23]. For example, graph neural networks (GNNs) 
have been used to predict molecular properties and optimize drug design [24]. GNNs 

Figure 2. Drug development process: target deconvolution vs. target discovery.



Life 2024, 14, 233 5 of 36

For instance, ML-based approaches, such as Kronecker regularized least squares
(KronRLS), evaluate the similarities between drugs and protein molecules to determine
DTBA. Correspondingly, SimBoost utilizes regression trees to predict DTBA, and considers
both feature-based and similarity-based interactions [14].

AI also aids in the selection of the target. An optimal target should be druggable, safe,
efficient, and able to fulfill commercial requirements. However, emerging modalities for
disease treatment include previously less tractable targets. Target validation is a crucial step
in drug discovery because it ensures that a molecular target is directly involved in a disease
mechanism and that the modulation of the target is likely to have a therapeutic effect [15].
Target validation may involve determining the structure–activity relationship, the genetic
manipulation of target genes (knockdown or overexpression), generating a drug-resistant
mutant of the presumed target, using degradation-based tools to anticipate the effects of
the target, and monitoring the signaling pathways downstream of the presumed target [16].
AI has been used to predict drug–target interactions [17], measure the binding affinity of a
drug [18], and select and validate targets [19].

(ii) Virtual Screening and Drug Design:

AI-powered virtual screening tools analyze the three-dimensional structures of tar-
get proteins and predict how potential drug molecules would interact with them. This
speeds up the process of drug designing and allows researchers to identify promising drug
candidates for further testing [20].

Virtual drug screening is a computational approach that uses AI to predict the activity
of potential drugs by fitting chemical structures to targets (Figure 3). This method allows
researchers to rapidly test a library of compounds for their potential to bind and inhibit
specific receptor or enzyme targets [21]. AI algorithms can analyze molecular structures,
predict binding affinities, and prioritize compounds for further experimental testing [21].
Also, AI techniques, such as Bayesian docking approximations and RL, can be used in
molecular docking simulations [22]. Molecular docking involves predicting the preferred
orientation of a small molecule (drug candidate) when it is bound to a target protein. AI
algorithms can explore the conformational space and predict the binding affinity between
the drug and the target protein [22]. ML algorithms for drug design can be trained on/with
large datasets of known drug–target interactions to envisage new drug–target pairs or
optimize the properties of existing drugs. These algorithms can learn the patterns and
relationships between chemical structures and biological activities, enabling the discovery
of novel drug candidates [23]. For example, graph neural networks (GNNs) have been
used to predict molecular properties and optimize drug design [24]. GNNs have been
increasingly utilized in drug discovery for their ability to accurately predict molecular
properties. These advanced AI models excel in understanding the complex structures of
molecules, enabling a more efficient and targeted drug design. By representing molecules
as graphs with atoms as nodes and chemical bonds as edges, GNNs effectively analyze
and predict how these molecular structures will behave, leading to optimized drug design
processes. AI can enhance high-throughput virtual screening, which involves screening
large databases of compounds to identify potential drug candidates. ML algorithms can
analyze chemical features, structure–activity relationships, and other molecular properties
to prioritize compounds with high potential for further investigation [25].
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AI techniques, such as DL and quantum chemistry, can be used for predictive mod-
eling and optimization in drug design. DL models can analyze vast amounts of data,
including chemical structures, biological activities, and pharmacokinetic properties, to
predict the efficacy and safety of potential drugs [26]. Quantum chemistry combined with
AI can accelerate the exploration of chemical space and guide the design of new drug
candidates [25]. It is important to note that while AI has shown promising results in virtual
screening and drug designing, experimental validation is still necessary for the identified
drug candidates. AI is a powerful tool that can assist researchers in the early stages of drug
discovery, but it should always be complemented with traditional experimental methods
and rigorous testing [23]. Overall, AI has the potential to significantly accelerate the drug
discovery process, improve the efficiency of virtual screening, and enable the design of
novel drug candidates with optimized properties. As research in AI and ML continues
to advance, we can expect further advancements in virtual screening and drug design
methodologies.

(iii) Prediction of Drug Properties

AI algorithms can predict the physicochemical properties of drug candidates, such
as the solubility, bioavailability, and toxicity [16]. This helps in optimizing drug develop-
ment by focusing on compounds with a higher chance of success, thus reducing costs and
time. ML algorithms can be trained to predict drug properties using a database of known
compounds. These algorithms learn to recognize patterns and correlations between the
chemical structure of a compound and its physicochemical properties [20]. Once trained,
these models can predict the physicochemical properties of new, untested compounds, aid-
ing in the early stages of drug development [20]. For instance, ML models have been used
to predict solubility, a crucial property for drug candidates [27]. Similarly, ML algorithms
have been used to predict bioavailability, another critical property for drug candidates [28].
Toxicity prediction is another area where AI has shown promise. ML models have been
used to predict the toxicity of compounds based on their chemical structures [29]. These
models can help in early-stage drug discovery by identifying compounds that are less likely
to be toxic, thereby reducing the risk of harm to humans during the testing phase [14].

(iv) Repositioning of Existing Drugs

AI enables researchers to identify new therapeutic applications for existing drugs by
analyzing vast databases of drug–target interactions and disease pathways. This drug
repurposing approach can significantly reduce the time and cost required to bring a drug
to market (Figure 4) [30].
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AI used in drug combination identification implies enhanced synergy detection, combi-
nation optimization, personalized combination therapies, and prediction of adverse drug
interactions.

AI algorithms analyze high-dimensional biological data to identify potential syn-
ergistic drug combinations. By exploring interactions between drugs and their targets,
AI can predict combinations that exhibit enhanced therapeutic effects while minimizing
adverse reactions [31]. AI can optimize drug dosage and scheduling within a combination
to maximize its efficacy and reduce side effects [32]. This fine-tuning ensures that the
combination’s therapeutic benefits are fully realized, making it a more viable treatment
option. AI-driven precision medicine allows the identification of patient-specific drug
combinations based on individual molecular profiles and disease characteristics [33]. This
personalized approach aims to achieve better treatment outcomes and minimize the risk of
drug resistance. AI models can predict potential adverse interactions between drugs in a
combination, ensuring the safety of patients and avoiding potential harm [34].

2.1. AI Techniques Used in Material Discovery

AI techniques, particularly in materials science, focus on discovering and designing
new materials with desirable properties. This is directly applicable to drug discovery, as
the process often requires the identification of novel compounds with specific biological
activities. AI algorithms that excel in predicting the properties of new materials can
similarly predict the pharmacological profiles of drug candidates. This crossover allows for
the more efficient screening and optimization of potential drugs, leveraging AI’s predictive
capabilities to streamline both the material and drug discovery processes.

AI techniques in materials discovery include supervised and unsupervised learning.
Supervised learning uses labeled data to train models that can classify or predict outcomes
of new data. Unsupervised learning, on the other hand, deals with unlabeled data and aims
to develop models that can identify recurring patterns and clusters of the input data without
prior knowledge. In contrast, in drug discovery, AI techniques are used at various stages,
including in data collection and curation, compound representation, and AI methods and
their applications. Data resources, data representation schemes, and AI methods are the
three key components of applying AI to drug discovery and evaluation. AI techniques
used in drug discovery include regression analysis, the decision tree, logistic regression,
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the support vector machine, the convolution neural network, the recurrent neural network,
the generative adversarial network, k-means clustering, hierarchical clustering, principal
component analysis, and t-distributed stochastic neighbor embedding.

In drug discovery, the selection and application of AI techniques are problem-oriented
to ensure they are ideal. Two commonly used types of AI techniques in the realm of drug
discovery are supervised and unsupervised learning [35].

Table 1 lists the widely used AI techniques in drug discovery, which are briefly
discussed in the following sections.

Table 1. AI methods that are frequently utilized in drug discovery.

Class Algorithms Reference

Supervised learning

Regression analysis

MLR [35]

DT [36]

LR [37]

Classification

SVM [38]

CNN [39]

RNN [40]

GAN [41]

Unsupervised learning

Clustering
k-means [42]

Hierarchical [43]

Dimensionality
reduction

PCA [44]

t-SNE [45]

2.1.1. Supervised Learning Methods

Supervised learning involves using input-labeled data to train models capable of classi-
fying and/or predicting outcomes for new data, e.g., where the output is its corresponding
property (e.g., band gap, thermal conductivity) [46]. Supervised learning models can then
predict the properties of new materials based on the patterns learned during training [47]. In
contrast, unsupervised learning deals with unlabeled data and aims to advance models
which identify recurring patterns and clusters within the input data without prior knowl-
edge [48]. They can help identify novel material classes that might not be apparent through
manual analysis [49]. Supervised learning techniques are further split into classification
and regression algorithms, while unsupervised learning techniques include clustering and
dimensionality reduction algorithms.

Linear regression models the relationship between a dependent variable and one or
more independent variables by fitting a linear equation to the observed data. In drug dis-
covery, linear regression can be used to predict a physicochemical property of a compound
based on its molecular descriptors. Ridge regression and lasso regression are types of
linear regression that use shrinkage, which is a technique for reducing the complexity of a
model. SVR is a type of regression analysis that uses the concept of support vectors. It is
a flexible method for regression and can handle both linear and non-linear problems. It
can also handle high-dimensional data and is effective in high-noise situations. In material
discovery, reinforcement learning (RL) can be applied to optimize the synthesis process [50].
Reinforcement Learning (RL) is an area of ML where an agent learns to make decisions by
performing actions in an environment to achieve some goals. The agent receives feedback
in the form of rewards or penalties, guiding it to learn the best strategy, known as a policy.
RL involves trial and error, where the agent explores various actions and learns from the
outcomes to optimize its behavior. This method is particularly useful in scenarios where
explicit instructions on how to achieve a goal are not available, allowing the agent to
autonomously discover effective strategies through iterative learning and adaptation. This
approach is gaining traction in various fields, including robotics, gaming, and autonomous
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vehicles, due to its ability to adapt and improve through experience [50]. Two common
RL algorithms are Q-learning and deep Q-Networks (DQNs). Q-learning is a model-free
reinforcement learning algorithm that learns the value of an action in a particular state
without requiring a model of the environment. A DQN combines deep learning with
Q-learning to allow the agent to learn directly from raw pixels or other raw input. One of
the key advantages of RL is that it focuses on the problem as a whole rather than dividing
it into subproblems. It is capable of trading off short-term rewards for long-term benefits,
and it does not require a separate data collection step, as training data are obtained via the
direct interaction of the agent with the environment. To facilitate the application of these
AI techniques, various open-source packages and frameworks have been developed, such
as Scikit-learn [51], PyTorch [52], and Keras [53]. These packages provide access to a range
of algorithms for users to practice using in drug discovery. Regression analysis algorithms
play a crucial role in drug discovery, particularly in the prediction of the physicochemical
properties of compounds. These algorithms can help optimize the drug development
process by identifying compounds with desirable properties and reducing the time and
cost of testing.

Regression analysis is a statistical method used in drug discovery to predict the outcome
of an experiment based on the values of predictor variables [54]. In the context of drug
discovery, the outcome could be a physicochemical property of a compound, such as its
solubility, bioavailability, or toxicity [54]. Linear regression is a basic and commonly used
regression analysis method. It models the relationship between a dependent variable and
one or more independent variables by fitting a linear equation to the observed data [55].
In drug discovery, linear regression can be used to predict a physicochemical property of
a compound based on its molecular descriptors [56]. Ridge regression is a type of linear
regression that uses shrinkage, which is a technique for reducing the complexity of a
model [57]. The shrinkage parameter (or tuning constant) determines the amount of the
shrinkage: the larger the value of the shrinkage parameter, the greater the amount of the
shrinkage [58]. Lasso regression is another type of linear regression that uses shrinkage and
can also handle high-dimensional data [59]. The main difference between ridge and lasso
regression is that lasso can result in sparse solutions, where some of the feature coefficients
are exactly zero, excluding those features from the model [60]. SVR is a type of regression
analysis that uses the concept of support vectors [38]. It is a flexible method for regression
and can handle both linear and non-linear problems. It can also handle high-dimensional
data and is effective in high-noise situations [38].

Classification involves assigning data points to one of several possible categories. In
drug discovery, classification algorithms can be used to predict whether a compound is
likely to be effective or not.

A support vector machine (SVM) is a type of supervised learning algorithm used
for classification and regression analysis. It works by finding a hyperplane in a high-
dimensional space that distinctly classifies the data points. In drug discovery, SVM can be
used to classify compounds based on their properties and predict their effectiveness.

A convolutional neural network (CNN) is a type of deep learning algorithm that
is primarily used for image processing. However, it can also be used in drug discovery
for tasks such as predicting the properties of new molecules. A CNN can automatically
learn and extract features from raw data, making it suitable for handling complex and
high-dimensional data.

A recurrent neural network (RNN) is a type of deep learning algorithm that is par-
ticularly suited for processing sequential data. In drug discovery, an RNN can be used to
predict the properties of new molecules based on their sequence data.

A generative adversarial network (GAN) is a type of deep learning algorithm that
consists of two neural networks, the generator and the discriminator, which are trained
in an adversarial manner to generate realistic data samples. In drug discovery, GANs are
applied to generate new molecular structures with desired properties.
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2.1.2. Unsupervised Learning Methods

Unsupervised learning involves using unlabeled data to identify patterns and relation-
ships within the data. In drug discovery, unsupervised learning techniques can be used to
identify novel material classes or to explore the chemical space of potential drug candidates.

Clustering (k-means) is a type of unsupervised learning technique that groups data
points based on their similarity. In drug discovery, clustering can be used to identify groups
of compounds with similar properties, which can help in identifying novel drug candidates.

Hierarchical clustering is a type of clustering technique that builds a hierarchy of
clusters through either a bottom-up or top-down approach. In drug discovery, hierarchical
clustering can be used to identify groups of compounds with similar properties at different
levels of granularity.

Dimensionality reduction (PCA, t-SNE) techniques are used to reduce the number
of variables in a dataset while retaining its essential characteristics. Principal component
analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are two common
dimensionality reduction techniques. In drug discovery, dimensionality reduction can be
used to visualize high-dimensional data and identify patterns or trends that might not be
apparent in the original data.

2.1.3. AI Algorithms Used in Drug Discovery

While traditional approaches used in drug discovery rely heavily on manual research,
experimentation, and testing, AI-driven methods/algorithms leverage data-driven analysis,
ML, and rapid simulation.

Machine Learning and Deep Learning

ML and DL are subsets of AI that have found applications in drug discovery. While
they share some similarities, they have distinct differences in terms of their approach,
architecture, and capabilities [61].

(i) Machine Learning

ML is a broad field that encompasses various algorithms that can learn patterns and
make predictions based on data. These algorithms typically work with structured data, and
they require feature engineering, where relevant features are selected or engineered before
feeding the data into the model [61–63]. Feature engineering is a critical step in preparing
the data for ML models [63]. Traditional ML algorithms require well-structured and labeled
data for training. ML algorithms are generally simpler and require less computational
power compared to DL models [61,62]. They can perform well on certain tasks with limited
data but may struggle with highly complex and non-linear problems. Traditional ML
models may require a substantial amount of labeled data to achieve good performance,
especially in complex tasks. Traditional ML models are generally more interpretable,
meaning it is easier to understand how the model arrived at its predictions based on the
selected features and parameters [61,62].

(ii) Deep Learning

On the other hand, DL is a specialized form of ML that uses artificial neural networks
to learn representations of data [64]. These neural networks have multiple layers, allowing
them to learn hierarchical features from raw data. Unlike traditional ML, DL models
can automatically learn features from data, eliminating the need for extensive feature
engineering [65]. DL models can handle unstructured data, such as images, texts, and
sequences, without the need for extensive feature engineering. They learn hierarchies of
representations directly from raw data, making them more suitable for handling complex
and high-dimensional data [65]. DL models are more complex and require significant
computational resources, especially when dealing with large datasets. They excel at han-
dling complex patterns and non-linear relationships in data, making them particularly
suitable for tasks like image and language processing [65]. DL models can often achieve
better performance with less-labeled data due to their ability to automatically learn features
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and representations from the data. DL models are often considered less interpretable
due to their multiple layers and complex learned representations. Understanding the
decision-making process of DL models can be challenging. Gong D. et al. demonstrated
how ML technology can be used to screen polymers for gene delivery in silico [66]. This
work reported the application of state-of-the-art ML algorithms to a dataset of synthetic
biodegradable polymers, PBAEs, which have shown promise for therapeutic gene delivery
in vitro and in vivo [66]. The dataset included polymer properties as inputs as well as poly-
meric nanoparticle transfection performance and nanoparticle toxicity in a range of cells as
outputs. These data were used to train and evaluate several state-of-the-art ML algorithms
for their ability to predict transfection and understand structure–function relationships [66].
By developing an encoding scheme for vectorizing the structure of a PBAE polymer in
a machine-readable format, the authors demonstrated that a random forest model can
satisfactorily predict DNA transfection in vitro based on the chemical structure of the
constituent PBAE polymer in a cell line-dependent manner [66]. Thus, a computational
approach that encoded the chemical descriptors of polymers was able to demonstrate that
the in silico computational screening of polymeric nanomedicine compositions had utility
in predicting de novo biological experiments.

DL is a branch of AI that employs both supervised and unsupervised learning tech-
niques, depending on the problem and data being analyzed [67].

(iii) High-throughput Density Functional Theory (DFT)

High-throughput density functional theory (DFT) calculations are computationally ex-
pensive but vital for understanding material properties at the atomic level [68]. High-
throughput DFT involves using efficient algorithms and parallelization to predict the
properties of a large number of materials rapidly [68]. DFT has become increasingly rele-
vant in drug discovery, where it plays a crucial role in understanding and predicting the
interactions between drug molecules and biological targets.

High-throughput DFT can be used to calculate the binding energies and binding affini-
ties between drug molecules and their target proteins [69]. These calculations help identify
potential drug candidates with strong binding interactions, leading to a more efficient
screening and selection of promising compounds. High-throughput DFT can be used in
virtual screening to predict the binding affinities of a large library of drug-like compounds
toward a specific target [70]. By virtually screening large numbers of compounds, re-
searchers can prioritize the most promising candidates for further experimental validation.
With the help of high-throughput DFT, researchers can investigate the nature of drug–target
interactions at the molecular level [71]. It can identify key residues involved in binding
and analyze the effects of ligand modifications on the binding affinity, which helps in the
rational development of effective and selective drugs [72]. Algorithm high-throughput DFT
can also predict physicochemical properties such as solubility, lipophilicity, and metabolic
stability, which are crucial for assessing the pharmacokinetics and toxicity of a drug can-
didate [73]. These predictions guide the selection of compounds with favorable ADMET
profiles and reduce the likelihood of failure in later stages of drug development. Also,
high-throughput DFT can be used to study drug metabolisms by predicting the energy of
various metabolic reactions such as hydroxylation or oxidation [74,75]. These predictions
help identify potential metabolic sites and understand the metabolic pathways of drug
candidates. On the other hand, high-throughput DFT can explore the conformational flexi-
bility of ligands and identify the most stable conformers [76]. This information is critical
for accurately representing ligand flexibility in molecular docking and molecular dynamics
simulations and leads to more reliable binding predictions. High-throughput DFT can be
used in fragment-based drug designing to analyze the binding of small fragments to a
target protein. These calculations help select fragments that can be assembled into larger,
more potent drug-like molecules [77].
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(iv) Natural Language Processing (NLP)

NLP is a key AI technique used in text mining for drug discovery. NLP algorithms
can process and interpret human language to extract relevant information from scientific
literature, patents, clinical trial data, and other textual sources [78]. NLP-powered AI
models can identify drug names, target proteins, chemical entities, and disease-related
information, aiding researchers in gathering crucial data for drug discovery [78].

(v) Text mining

Text mining enables the identification of existing drugs with potential applications in
different therapeutic areas [79]. By analyzing the literature, AI models can suggest drug
candidates that have a demonstrated efficacy against specific diseases or targets, leading to
drug repurposing opportunities and exploring the concept of polypharmacology [79]. AI
models can integrate diverse data sources, such as clinical trial results, genomic data, and
chemical databases, to build knowledge graphs [80]. Knowledge graphs represent complex
relationships between drugs, targets, diseases, and biological pathways, facilitating compre-
hensive analysis and hypothesis generation [80]. Also, AI models can mine the literature to
identify the adverse drug reactions reported in clinical studies and post-marketing surveil-
lance. Extracting adverse drug reaction information from scientific literature helps improve
drug safety assessments and informs decision-making in clinical trials [81]. Text mining by
AI models can uncover the potential biomarkers associated with specific diseases or drug
responses [82]. These biomarkers play a crucial role in personalized medicine, aiding in
patient stratification and the development of targeted therapies.

Various text mining-based tools have been harnessed through AI-driven techniques to
leverage their capabilities. For instance, Jang et al. introduced PISTON (http://databio.
gachon.ac.kr/tools/PISTON/ (accessed on 1 February 2024)), a tool that employs NLP and
topic modeling to predict drug side effects and indications [83]. DisGeNET (https://www.
disgenet.org/ (accessed on 1 February 2024)) is a text mining-driven database offering a
wealth of information on gene–disease and variant–disease relationships [84]. DisGeNET’s
data analysis encompasses diverse biological processes, including adverse drug reactions,
molecular pathways involved in diseases, and drug actions on targets. Another tool
is STRING (https://string-db.org/ (accessed on 1 February 2024)), which represents a
text mining-driven database. It offers an abundance of information on protein–protein
interactions across various organisms [85]. In addition, STITCH (http://stitch.embl.de/
(accessed on 1 February 2024)) provides valuable information on interactions between
proteins and chemicals–small molecules [86]. STITCH’s information is also utilized to
determine drug binding affinities and drug–target associations.

(vi) Generative Adversarial Networks (GANs)

GANs are a class of ML algorithms that consist of two neural networks, the generator
and the discriminator, which are trained in an adversarial manner to generate realistic
data samples [87]. In drug discovery, GANs are applied to generate new molecular struc-
tures [88] and optimize lead compounds [89], among other applications.

For example, GANs can generate novel molecular structures with certain desired
properties. The generator network learns to produce realistic chemical structures, while
the discriminator network evaluates their authenticity based on a training dataset. This
process encourages the generator to produce new molecules that resemble the properties of
known drugs, making GANs useful in de novo drug design [90].

Also, it was found that GANs can be employed to optimize lead compounds by gener-
ating modifications or analogs of existing drug candidates. By using the discriminator’s
feedback to guide the generation of new chemical structures, GANs can propose modifi-
cations that are more likely to be biologically active and have improved pharmacological
properties [91].

A number of studies have also shown that GANs can be used for multi-objective drug
designing, where the goal is to optimize multiple drug properties simultaneously [41].
By adjusting the loss function of the GAN, researchers can balance various factors, such

http://databio.gachon.ac.kr/tools/PISTON/
http://databio.gachon.ac.kr/tools/PISTON/
https://www.disgenet.org/
https://www.disgenet.org/
https://string-db.org/
http://stitch.embl.de/
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as the binding affinity, solubility, and selectivity, to generate molecules with desirable
multi-objective profiles [41,89]. It should be noted that previous studies [92] have indicated
that GANs can optimize specific molecular properties, such as the lipophilicity, molecular
weight, or solubility. This capability allows researchers to fine-tune lead compounds or
design molecules with the desired physicochemical properties [93].

According to the evidence to date, GANs can explore rare chemical space and identify
molecules that are not commonly found in traditional drug databases. This capacity is
valuable for discovering novel chemical entities with unique properties, potentially leading
to the development of innovative drugs [94].

Studies show that GANs can be integrated into virtual screening pipelines to propose
novel drug candidates. By generating diverse sets of molecules, GANs can expand the
chemical diversity of virtual screening libraries and increase the chances of identifying hits
against specific targets [95].

It should be noted that GANs can augment small datasets of known active compounds,
enabling better generalization and improving the performance of predictive models by
generating additional data samples [88]. Also, GANs enhance the efficiency and accuracy
of the ML models used in drug discovery [96].

Present day science indicates that GANs can be used to predict drug–target interactions
by generating molecular structures that are likely to interact with specific protein targets.
The generated compounds can then be experimentally validated to identify potential novel
drug–target interactions [94,97].

(vii) Transfer Learning

The other two AI algorithms used in drug discovery are transfer learning and ac-
tive learning.

Transfer Learning makes it possible to fine-tune models that have been pre-trained on a
larger dataset to cater to a specific material class or property using a smaller dataset. This is
especially useful when there is a scarcity of labeled data. Transfer learning in drug discovery
is an ML method that leverages knowledge gained from one task and applies it to another
related task with limited data. This approach has shown great promise in addressing the
challenge of sparsely labeled data in in silico drug discovery efforts [98]. In transfer learning, a
pre-trained model developed for a specific task, such as image recognition, is used as a starting
point for a new model targeting a different task, such as predicting drug–target interactions or
identifying high-efficacy drug compounds [99]. By transferring the learned representations
from the pre-trained model, the new model can benefit from the knowledge and generalization
capabilities of the pre-trained model, even with a small amount of labeled data. In the past,
quantitative structure–activity relationship (QSAR) models utilized regression models to
establish links between molecule descriptors and biological properties [100].

In the field of drug discovery, ML techniques such as support vector machine algo-
rithms and decision trees have been utilized for drug-like classification and the predic-
tion of absorption, distribution, metabolism, excretion, and toxicity (ADME/T) proper-
ties [101–103]. Significant progress has been made in various areas through the use of
AI technology, including predicting molecular properties and activities [104–106], virtual
screening [107,108], retrosynthetic analysis [109,110], and generating new drugs [111,112].
Deep transfer learning, which involves using deep neural networks, is the most commonly
used type of transfer learning in drug discovery [113]. Deep learning models, such as convo-
lutional neural networks (CNN) and recurrent neural networks (RNN), have been applied
to various drug discovery tasks, including compound activity prediction, virtual screening,
and de novo drug designing [113]. These models can learn complex representations of
chemical structures or biological data and transfer that knowledge to related drug discovery
tasks. DL utilizes deep neural networks with multiple hidden layers to grasp and analyze
complex knowledge, in contrast to traditional “shallow” ML approaches. Big data refers
to datasets that are voluminous, diverse (i.e., originating from multiple sources), rapidly
updated (i.e., in real-time), comprehensive (i.e., capturing the entirety of the system’s
features rather than just samples), valuable (i.e., yielding numerous insights and potential
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for repurposing the data), and possess other defining characteristics [114]. Transfer learning
offers a significant advantage in drug discovery by overcoming the challenge of limited
and diverse datasets. Researchers can leverage pre-trained models to gain insights from
vast and varied datasets in related fields [98]. For example, a pre-trained CNN model that
has been trained on a large dataset of images can be fine-tuned and applied to analyze
chemical structures or molecular fingerprints, enabling the prediction of compound activity
or identifying potential drug–target interactions [98]. One useful application of transfer
learning is its potential to speed up the process of discovering new drugs and enhance
the effectiveness of identifying potent drug compounds. Through utilizing the knowledge
stored in pre-existing models, researchers can decrease the amount of time and resources
needed to train models from the ground up [98]. The method of using transfer learning in
drug discovery enables faster testing and experimentation, which leads to speedy identifi-
cation of promising drug candidates. Nevertheless, it is important to keep in mind that
transfer learning in drug discovery is still an area of research with ongoing challenges and
limitations to consider. One of these challenges is selecting the right pre-trained models
and then fine-tuning them correctly. When choosing a pre-trained model, it is crucial to
consider its relevance to the target task and the availability of appropriate datasets [35].
It is important to note that transfer learning does not always lead to better performance.
This is particularly true when the source and target tasks are quite different. It is crucial
to carefully assess how transferable the knowledge is between the tasks to ensure that the
transferred representations are relevant and useful for the desired target task [98]. To sum
up, transfer learning is a hopeful strategy in drug discovery which tackles the problem
of insufficient labeled data and speeds up the detection of effective drug compounds. It
involves using pre-trained models and applying knowledge from similar tasks to enhance
the drug discovery process. This method can help researchers obtain useful representations
and improve the efficiency of the process. However, there is still a need for more research
to optimize the selection and fine-tuning of pre-trained models, and to explore the broader
possibilities of transfer learning in drug discovery.

(viii) Active Learning

On the other hand, through the active selection of informative samples, active learning
can determine which materials to test or simulate next, significantly reducing the number
of experiments required. The use of AI techniques in material discovery has led to im-
pressive advancements in drug discovery. By leveraging the power of computation and
data-driven insights, researchers can more efficiently design and discover materials with
customized properties for various applications. This ultimately accelerates innovation across
industries [98]. Active learning is an ML technique used in drug discovery. Its goal is to
improve the selection of compounds for experimental testing by iteratively selecting the most
informative samples to label. This approach reduces the need for the exhaustive screening of
large compound libraries and focuses on areas of chemical space with the highest potential
for success while also considering structural novelty [115]. Active learning involves starting
with a small group of labeled compounds and continuously choosing more compounds to
label based on the model’s predictions. The selected compounds are then tested and the
results are used to update the model and improve the selection process for future cycles [115].
By actively choosing which compounds to label, active learning algorithms can effectively
navigate and utilize the chemical space, resulting in more efficient and cost-effective drug
discovery processes. These algorithms strive for greater predictive accuracy using fewer
labeled samples than traditional passive learning methods [115]. There are many drug
discovery tasks that can benefit from active learning methods. These include predicting
compound activity, optimizing leads, and virtual screening. Active learning can be used with
various ML models, such as SVM, RF, and neural networks [115]. Active learning in drug
discovery offers several benefits, including saving costs and resources. This is achieved by
selecting a targeted subset of compounds for experimental testing, thereby reducing the need
for extensive screening and saving time and resources [115]. Active learning algorithms can
efficiently explore chemical space by choosing compounds that are likely to yield valuable in-



Life 2024, 14, 233 15 of 36

formation. This approach leads to a more targeted and effective drug discovery process [115].
Active learning can enhance the model’s predictive accuracy by regularly updating it with
experimental feedback. This process leads to more precise predictions of compound activities
over time [115]. When it comes to implementing active learning in drug discovery, there
are some challenges and factors to consider. One of the biggest is choosing the right ML
model and optimizing its parameters, which is crucial for success. It is important to find a
model that can comprehend the complex connections between the chemical structures and
activities, and the optimization process itself should be thoughtfully designed to balance
exploration and exploitation. The selection of compounds for labeling is another vital step in
active learning, and there are various strategies to consider, including uncertainty sampling,
querying by committee, and diversity-based sampling. The best approach will depend on
the task at hand and the data available. Finally, integrating active learning into existing drug
discovery workflows may require some adjustments and considerations. The infrastructure,
experimental design, automation, and data management should all be aligned with the active
learning process to maximize its benefits [115]. To summarize, active learning is an effective
method in drug discovery that leads to faster and more precise compound selection for
testing. This is achieved by repeatedly selecting compounds based on the model’s predic-
tions and experimental results. Active learning lowers expenses, enhances the exploration
of chemical space, and improves predictive precision. However, it is crucial to thoughtfully
select the models, data selection strategies, and workflow integration in order to successfully
integrate active learning into drug discovery pipelines.

In the end of Section 2, we have centralized in Table 2 some collaborations between
pharmaceutical companies and AI providers.

Table 2. Collaborations between pharmaceutical companies and AI providers.

Pharmaceutical Company AI Provider Project Details

AstraZeneca BenevolentAI Selected the first AI-generated drug target for chronic kidney
disease (CKD)

Pfizer AI Technology

Used AI for COVID-19 vaccine trials and streamlined
distribution. Also used AI and predictive analytics to
modernize, streamline, and simplify the development of
medicines.

Pfizer XtalPi
Developed a hybrid physics and AI-powered software platform
for the accurate molecular modeling of drug-like small
molecules.

Pfizer Insilico Medicine Mined data for drug targets.

Pfizer ConcertAI Expanded partnership to improve study design and diversify
clinical trials with the aid of AI.

Pfizer Janssen Research and
Development (Johnson & Johnson)

Collaborated to apply AI in the identification and selection of
new targets and disease subsets to aid therapeutic programs.

Eli Lilly, Bayer, Bridge
Biotherapeutics Atomwise Assisted in structure-based small-molecule drug discovery.

Boehringer Ingelheim Google Quantum AI Working together to leverage quantum computing to accelerate
and optimize the discovery of future new medicines.

Boehringer Ingelheim Insilico Medicine Partnered to use AI technology in identifying potential
therapeutic targets.

BMS Exscientia Contract led to the selection of an AI-designed
immune-modulating drug candidate.

GSK Exscientia Developed the first-ever AI-powered treatment for COPD.

Roche, Sanofi, Bayer Exscientia Working with these big pharma players.

AstraZeneca Eko, BERG, Renalytix AI,
Mila-Quebec AI Institute Using AI algorithms and supercomputers for drug discovery.

Optellum J&J Lung Cancer Initiative Applied AI-powered clinical decision support platform to
transform early lung cancer treatment.
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3. Studies of AI-Assisted Drug Discovery

AI offers a powerful tool for drug discovery, with applications ranging from predicting
drug properties to generating new chemical structures and optimizing drug properties
(Figure 5). One of the most common applications of AI in drug discovery is through
the use of ML algorithms. These algorithms can learn from large datasets of chemical
structures and biological data to predict the properties of new compounds, such as their
ability to bind to a target protein (affinity prediction) or their toxicity (toxicity prediction).
This can help to identify potential drug candidates that can be tested in the lab. Another
application of AI in drug discovery is through the use of GANs that can be used to generate
new chemical structures that are likely to bind to a target protein based on the chemical
structures of known active and inactive compounds. AI can also be used in drug discovery
for multi-objective optimization, where the goal is to optimize a drug for multiple desirable
properties, such as high efficacy, low toxicity, and good solubility.
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3.1. AI Programs and Platforms Used for Drug Discovery

Different AI tools/platforms are already used in drug discovery (Table 3).
For example, an MLP model uses a Python-based AI system to find a suitable candidate

in drug discovery (DeepChem) and can be accessed at [116].
Another Python-based system driven by computational tools can aid the detection of

the molecular activity of compounds (DeepNeuralNetQSAR) and can be found at [117].
On the other hand, there exists a program that helps to report the procedure for

chemical synthesis in a standardized format (Chemputer) [118].
The Tox21 Data Challenge tested 12,000 chemicals for toxic effects using specially

designed assays. DL was used in this example to predict toxicity. DeepTox software outper-
formed other methods, proving DL to be a superior method for toxicity prediction [119].

AlphaFold is an AI program developed by DeepMind, a subsidiary of Alphabet, that
predicts the 3D structures of proteins. The program utilizes deep learning techniques and
has been highly successful in protein structure prediction. AlphaFold participated in the
Critical Assessment of Structure Prediction (CASP) competition and achieved remarkable
accuracy in predicting protein structures, outperforming other groups [120]. AlphaFold
has undergone two major versions: AlphaFold 1 (2018) and AlphaFold 2 (2020). In both
versions, the program demonstrated exceptional performance in predicting protein struc-
tures. AlphaFold 2, in particular, achieved a level of accuracy much higher than any other
group in the CASP competition. It scored above 90 for approximately two-thirds of the
proteins in the global distance test (GDT), a measure of how closely the predicted structure
aligns with the experimentally determined structure.



Life 2024, 14, 233 17 of 36

Table 3. AI tools/platforms already used in drug discovery.

Program/Platform Description Primary Use Accession

DeepChem Python-based AI system
using MLP model

Candidate selection in
drug discovery

https://github.com/deepchem/deepchem
(accessed on 1 February 2024)

DeepNeuralNetQSAR Python-based AI system
Can aid the detection of
the molecular activity of
compounds

https://github.com/Merck/
DeepNeuralNet-QSAR (accessed on
1 February 2024)

Chemputer

Combination of Monte
Carlo tree search and
symbolic AI, including
DNNs

Synthesize organic
molecules

https://zenodo.org/record/1481731
(accessed on 1 February 2024)

DeepTox AI system using DL Chemical toxicity
prediction

www.bioinf.jku.at/research/DeepTox
(accessed on 1 February 2024)

AlphaFold AI system using DL Predicts the 3D structures
of proteins

https://alphafold.ebi.ac.uk/ (accessed on
1 February 2024)

ORGANIC Generative ML
approaches and DNNs Novel molecular materials https://github.com/aspuru-guzik-group/

ORGANIC (accessed on 1 February 2024)

PotentialNet
Neural networks, deep
attention mechanisms and
descriptor embeddings

The binding affinity of
ligands in protein–ligand
complexes.

https://www.genesistherapeutics.ai/
platform.html (accessed on 1 February 2024)

Hit Dexter ML technique, CNNs and
ANNs

For predicting molecules
that might respond to
biochemical assays

http://hitdexter2.zbh.uni-hamburg.de
(accessed on 1 February 2024)

DeltaVina
ML algorithms, including
XGBoost and random
forest

Scoring protein–ligand
binding affinity

https:
//github.com/chengwang88/deltavina
(accessed on 1 February 2024)

Neural graph
fingerprint CNNs Predict properties of novel

molecules

https:
//github.com/HIPS/neural-fingerprint
(accessed on 1 February 2024)

GastroPlus AI and predictive
modeling

For pharmaceutical
products (dosage form) in
many animal models

https://www.simulations-plus.com/
software/gastroplus/# (accessed on
1 February 2024)

The success of AlphaFold has been regarded as a significant breakthrough in the
field of structural bioinformatics. However, it is important to note that while AlphaFold
has achieved remarkable accuracy, there are still challenges to be addressed, and the
protein folding problem is not considered completely solved. Nonetheless, the technical
achievement of AlphaFold has garnered widespread respect and has the potential to
accelerate the advancement of structural bioinformatics.

AlphaFold utilizes an AI-based approach called Evoformer, which treats protein struc-
ture prediction as a graph inference problem in 3D space. This approach involves updated
operations applied in series within each block of the network. The pair representation in
AlphaFold encodes information about the relationships between the residues, while the
MSA (multiple sequence alignment) representation encodes individual residues and the
sequences in which they appear. The MSA representation updates the pair representation
through an element-wise outer product, allowing continuous communication between
the evolving MSA representation and the pair representation. This approach enables the
accurate prediction of protein structures [121]. The development of AlphaFold has the
potential to revolutionize structural bioinformatics and accelerate the advancement of our
understanding of protein structures. By combining AI techniques with curated structure
and sequence databases, it can help bridge the gap between genomics and experimental
structure determination, leading to a deeper understanding of biological processes and the
development of new therapies [121].
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https://github.com/HIPS/neural-fingerprint
https://www.simulations-plus.com/software/gastroplus/#
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ORGANIC [122] is a molecular generation tool that helps create molecules with
certain desired properties. It utilizes generative ML approaches and deep neural networks
to enable the design of novel molecular materials. The goal-directed generative model
powered by deep neural networks and high-throughput simulations allow for a more
directed design approach, minimizing design bias and enabling the exploration of specific
material’s property spaces [123]. One of the key applications of ORGANIC is in the design
of organic electronic materials, such as those used in organic light-emitting diodes (OLEDs).
By leveraging generative ML frameworks, such as recurrent neural networks (RNNs) and
deep RL, ORGANIC can rapidly identify new materials for OLED applications. This
approach accelerates the development of novel organic electronic materials while also
enabling expansion into other domains like catalyst design, aerospace, life science, and
petrochemicals [123].

Another area where ORGANIC can be applied is in the virtual design of organic
semiconductors based on metal–organic frameworks (MOFs). MOFs offer a supramolecular
approach to modulate the arrangement of organic semiconductor molecules, allowing for
the tailoring of the material properties. ORGANIC can automate the design process by
generating MOF structures, sampling their structural dynamics, and predicting properties
such as the conduction properties, absorption, and interaction with light. This automated
workflow tool enhances the modeling and characterization of a wide variety of MOFs [124].

The development of ORGANIC provides researchers with a powerful tool for molec-
ular generation and property optimization. By leveraging ML techniques and high-
throughput simulations, it enables the rapid exploration of chemical space and the design
of molecules with the desired properties. The availability of user-friendly interfaces and its
integration with existing computational chemistry software, such as VASP and Gaussian,
further enhances its usability and applicability in various research domains [125].

PotentialNet [126] is a program that utilizes neural networks to predict the binding
affinity of ligands in protein–ligand complexes. It employs deep attention mechanisms
and descriptor embeddings to improve the accuracy of binding affinity prediction [127].
The program focuses on intermolecular interactions within the molecular complex to
capture important descriptors for an accurate prediction [127]. The approach used in
PotentialNet involves representing the molecular complex as a 1D vector based on the
descriptor information obtained from the training dataset. The descriptors are generated
for the contacted protein and ligand atom pairs in the complex. The distance between the
protein atom and the ligand atom pair is calculated using the Euclidean distance, with
a cutoff value typically set at 12 Å [127]. The program considers various intermolecular
interactions, including steric interactions, hydrophobic interactions, and hydrogen bonding.

The model architecture of PotentialNet incorporates an attention mechanism, which
highlights important descriptors for a binding affinity prediction [128]. This mechanism
helps capture the binding sites in the protein–ligand complex and improves the overall
prediction performance. The program also utilizes a deep neural network model, specif-
ically a PUResNet architecture, which consists of encoder and decoder blocks with skip
connections [128].

To evaluate the performance of the binding affinity models, several metrics are used,
including the mean absolute error (MAE), root mean square error (RMSE), Pearson’s
correlation coefficient (PCC), Spearman’s correlation coefficient (SCC), and the standard
deviation in regression (SD) [127]. The selection of an optimal number of descriptors is
conducted by training a random forest model and sorting the descriptors according to
their priorities. The model is then trained using different numbers of descriptors, and the
performance is evaluated to determine the optimal number [127].

Hit Dexter is an ML technique used for predicting molecules that might respond
to biochemical assays. It is an ML model specifically designed for hit discovery in the
drug discovery process. Hit discovery involves identifying small molecules that have the
potential to bind to a target and alter its function. By applying diverse algorithms and
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multivariate parameters, Hit Dexter aims to identify hits against specific biological targets
or neurological complications [35].

One of the key components of Hit Dexter is the utilization of deep learning techniques
to extract and analyze the chemical and physical properties of molecules. For example, deep
learning models have been used to predict properties such as the absorption, distribution,
metabolism, and excretion (ADME) of drug candidates. These models incorporate molec-
ular graphs and utilize concepts like CNNs and ANNs to predict properties such as oral
drug absorption. By considering various molecular descriptors and using ML algorithms
like SVM regression and boosting, accurate predictions can be made [35].

Another aspect of Hit Dexter is the use of QSAR models. QSAR models leverage deep
learning techniques to extract features from chemical strings and automatically extract
relevant molecular descriptors. These models have shown promising results in hit-to-
lead optimization research, providing predictions for binding affinities and aiding in the
selection of potential drug candidates [35].

The application of Hit Dexter extends beyond drug discovery. It can also be used
in the prediction of bioactivity, prognosis of prote–protein interactions, homology model-
ing/prediction of protein folding, and digital pathology [35].

DeltaVina [129] is a scoring function used for rescoring the binding affinity between
proteins and ligands. It incorporates ML techniques and diverse algorithms to improve
the accuracy of binding affinity predictions [130]. DeltaVina is designed to improve the
accuracy of scoring the protein–ligand binding affinity. It utilizes various ML algorithms,
including XGBoost and random forest, to incorporate different molecular descriptors
and features. The performance of DeltaVina has been evaluated on benchmark datasets
and compared to classical scoring functions, demonstrating its effectiveness in predicting
binding affinities and identifying potential drug candidates. The scoring function and its
code are available for use and further research [131].

The neural graph fingerprint [132] is a technique used to predict the properties of novel
molecules. It involves generating molecular sentences and encoding them using a language
model, such as BERT, to obtain high-dimensional embeddings of the substructures. These
embeddings represent the molecules in vector form, which can be used for downstream
tasks like molecular property prediction [133].

Once the molecular sentences are constructed, they are encoded using a language
model, such as BERT. This pre-trained model can generate high-dimensional embeddings
of the substructures, representing the molecules in vector form. These embeddings capture
important features and structural information of the molecules, which can be used for
predicting their various molecular properties [133]. To evaluate the performance of the
prediction model, different metrics are used. For example, for classification tasks, the
cross-entropy loss function is used, and the prediction performance is evaluated using the
ROC-AUC (the area under the receiver operating characteristic curve) [133]. The ROC-
AUC represents the ability of the model to distinguish between positive and negative
samples. On the other hand, for regression tasks, the mean squared error (MSE) loss
function is used, and the prediction performance is evaluated using the root mean squared
error (RMSE) and the coefficient of determination (R2) [133]. The RMSE measures the
average squared difference between the predicted and real property values, while the R2

reflects the goodness of fit and prediction. The neural graph fingerprint, with its molecular
sentence generation and language model-based encoding, offers a powerful approach
for predicting the properties of novel molecules. By leveraging deep learning techniques
and molecular embeddings, it enables accurate predictions and the analysis of various
molecular properties [133].

GastroPlus [134] is a platform that utilizes AI and predictive modeling to aid in the
design and optimization of drug formulations. This software is used for pharmaceutical
products (dosage form) in many animal models, including rats, primates, and animals,
allowing researchers to predict the drug absorption, distribution, metabolism, and excre-



Life 2024, 14, 233 20 of 36

tion [135]. GastroPlus’s AI-driven approach aids in the development of more effective and
bioavailable drug formulations, streamlining the drug development process.

3.2. Example of AI in Drug Design

Next, we will present some examples which cover a range of topics related to AI in
drug design, including the integration of AI in drug discovery, the prediction of drug–
protein interactions, and practical guidelines for using ML algorithms. They provide
valuable insights into the use of AI in the pharmaceutical industry and offer potential
solutions to challenges in drug design and development.

For example, Paul D. et al. discusses the integration of artificial intelligence in drug
discovery and development, including the tools and techniques used. They also highlight
ongoing challenges and ways to overcome them [14].

Dara S. et al. explores various applications of artificial intelligence in drug design,
including in the prediction of drug–protein interactions, the discovery of drug efficacy, and
ensuring safety biomarkers [35].

Jiménez-Luna et al. focuses on explaining compound activity predictions using a
substructure-aware loss for graphing neural networks. They explore the use of deep
learning in predicting molecular properties [24]. They also provide practical guidelines
for using gradient boosting in molecular property prediction. They offer insights into the
application of ML algorithms in drug design.

Schneider et al. discuss the foundation of artificial intelligence in therapeutic science,
including its applications in drug design. They explore adaptive graph learning methods
for automated molecular interactions and property predictions [136].

The iterative process to design the 3D structures of receptors to generate a novel
molecule is termed de novo drug designing, which is intended to produce new dynamics.
Researchers utilized the indolent space portrayal to prepare a model dependent on the
quantitative estimate of the drug likeness and drug similarity scores, and the manufactured
availability score and synthetic accessibility score [137].

3.3. Examples Cases of AI Used in Polypharmacology

Next, we present some examples of papers that shed light on the application of AI in
polypharmacology and drug discovery. They discuss how AI can be used to predict drug–
protein interactions and design safer drug molecules. Understanding polypharmacology is
crucial in developing drugs that are effective against multiple targets while minimizing off-
target effects. These papers provide valuable insights into the advancements and challenges
in this field and offer potential strategies for improving drug design and development.
Chauhari et al. explain the concept of polypharmacology, which refers to the tendency of a
drug molecule to interact with multiple receptors, leading to off-target effects. They explore
how artificial intelligence can aid in the design of safer drug molecules by considering
polypharmacology [138].

Reddy et al. [139] provide an overview of polypharmacology studies and the chal-
lenges involved. They discuss the potential of a rational design using polypharmacology
to develop more effective and less toxic therapeutic agents. The review outlines the latest
progress in this field. Other authors [140] explore polypharmacy using AI and data analysis.
The AI axis focuses on defining and detecting polypharmacy using algorithms to predict
health outcomes based on medication combinations.

The use of AI in pharmaceutical product development is also discussed in a review [14].
The review suggests that AI can replace the traditional trial-and-error method in designing
formulations. Computational tools, including quantitative structure–relationship (QSPR)
models and decision-support tools, can help address issues related to formulation design
such as stability, dissolution, and porosity. Furthermore, the integration of AI with mathe-
matical models like computational fluid dynamics (CFD) can speed up the production of
pharmaceutical products [14].
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The involvement of AI in the development of a pharmaceutical product from the bench
to the bedside can be imagined given that it can aid rational drug design [141]; assist in de-
cision making; determine the right therapy for a patient, including personalized medicines;
and manage the clinical data generated and use it for future drug development [142]. E-VAI
is an analytical and decision-making AI platform, developed by Eularis, which uses ML
algorithms along with an easy-to-use user interface to create analytical roadmaps based on
the competitors, key stakeholders, and currently held market share to predict key drivers
in the sales of pharmaceuticals [143], thus helping marketing executives allocate resources
for the maximum market share gain, reversing poor sales and enabling them to anticipate
where to make investments.

3.4. Example Cases of AI in Drug Chemical Synthesis

The following example cases of AI in drug chemical synthesis highlight the use of
artificial intelligence and ML in drug chemical synthesis. They explore the application of DL
models in de novo drug design, the prediction of reaction outcomes, and the optimization
of synthetic routes. The integration of AI with chemical knowledge and data-driven
approaches has the potential to accelerate the drug discovery process and facilitate the
design of new drug molecules. The paper by Paul D. et al. [14] is focused on the application
of DL in drug discovery and medicinal chemistry, including the synthesis of new drug
molecules. It explores the use of generative models and RL for de novo drug design and
optimization.

Jiménez-Luna et al. [24] describe the use of AI in synthetic organic chemistry, specif-
ically in reaction prediction, retrosynthesis, and reaction optimization. They discuss the
integration of ML algorithms with chemical knowledge for efficient and automated synthe-
sis planning. Their paper introduces DeepChem, a deep learning toolkit designed for drug
discovery tasks. It covers various applications, including the generation of novel chemical
structures, predicting chemical properties, and optimizing synthetic routes. The paper
highlights the potential of deep learning in accelerating the drug discovery process. It also
presents ML models for predicting the outcomes of organic reactions, including the yield
and regioselectivity. It discusses the use of reaction fingerprints and molecular descriptors
as input features for predicting reaction outcomes. The study demonstrates the potential of
ML in guiding synthetic chemistry efforts.

3.5. Case Examples of AI Used in Drug Screening

These examples provide insights into the application of AI in drug screening and
discovery. They highlight the use of AI algorithms for identifying novel compounds,
designing new drug candidates, and predicting protein structures. The integration of AI in
drug screening processes can help accelerate the discovery of potential drug candidates
and optimize the drug discovery pipeline.

Paul D et al. [14] discuss the integration of AI in various sectors of the pharmaceutical
industry, including drug discovery and development. They highlight the use of AI in
drug screening and repurposing, reducing the human workload, and accelerating the
achievement of targets. Their paper also discusses the ongoing challenges and the potential
ways to overcome them, along with the future of AI in the pharmaceutical industry.

Blanco-González et al. [3] present case studies demonstrating the successful applica-
tion of AI in drug discovery. They showcase examples where AI algorithms have been
used to identify novel compounds for cancer treatment, inhibitors for specific proteins
involved in diseases like Alzheimer’s, and potential drugs for combating COVID-19. Their
paper highlights the ability of AI to accelerate the drug discovery process and enable the
development of more effective medications. It explores the impact of AI on the drug dis-
covery process, with a focus on the design of novel compounds. It discusses how AI-based
approaches, such as deep learning algorithms, can rapidly and efficiently design new drug
candidates with desirable properties and activities. The paper also mentions the use of
AI in structural biology, such as the development of AlphaFold, a software platform that
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uses AI to predict protein structures. This advancement has the potential to revolutionize
personalized medicine and drug discovery.

Discovering drugs through AI models is a topic discussed on nexocode.com [144]. By
analyzing large amounts of data, AI models can detect correlations that were previously
unknown. This technology is being utilized in drug discovery to identify new drugs, design
drug candidates, and assist in preclinical testing. AI is also being used to screen chemical
repositories, identify new drug targets, and aid in computer-assisted molecular design.

A recent study showcased the use of AI in material discovery, as seen on unibas.ch [145].
The study’s author, a doctoral student, utilized quantum mechanics to generate predictions
for thousands of crystals that had randomly determined chemical compositions. These
predictions served as training data for statistical ML models. The ML models demonstrated
an accuracy level equivalent to standard quantum mechanical approaches, but with the
added benefit of speed. In a day, ML models can provide predictions, while quantum
mechanical calculations would take a supercomputer over 20 million hours.

An interesting example is found on popularmechanics.com [146], where researchers
used AI to develop a new type of compressible material. They did not have to rely on
trial-and-error experimentation because they used existing research and AI algorithms
to create new designs. This approach made the material discovery process much faster
and allowed scientists to explore more design possibilities. The research also showed how
important data-driven methods are in materials science. AI can suggest new approaches
and designs as long as there are enough accurate data available.

The use of AI in the field of medicine goes beyond discovering new materials. Ac-
cording to ibm.com [147], AI has the potential to support precision medicine by providing
patients with real-time recommendations that are tailored to their medical history, prefer-
ences, and needs. AI-powered virtual assistants are available 24/7 to provide healthcare
information and address patient queries. Furthermore, AI is employed in medical imaging
to detect diseases like breast cancer with comparable accuracy to human radiologists. Ad-
ditionally, AI can help clinicians make sense of vast numbers of medical images and data,
making them more manageable and enhancing patient care.

Healthcare is an ever-evolving field that is exploring the potential of AI in vari-
ous medical domains. A comprehensive overview of AI in healthcare can be found on
en.wikipedia.org [148]. In oncology, AI is used for cancer diagnosis, risk stratification, the
molecular characterization of tumors, and drug discovery. For instance, AI algorithms
have shown high accuracy in identifying breast cancer and prostate cancer. AI techniques
such as artificial neural networks and Bayesian networks are used to diagnose and classify
diseases. With the assistance of electronic health records, AI can analyze large amounts
of data and help doctors with a patient’s diagnosis and treatment. Physics-inspired ML
approaches are also being explored to enhance medical diagnostic approaches and perform
biomarker analysis.

To benchmark and test AI applications in the health domain, the United Nations
(WHO/ITU) has established the ITU-WHO Focus Group on Artificial Intelligence for
Health (FG-AI4H). They are working on various cases for its use such as in assessing breast
cancer risk, guiding antivenom selection, and diagnosing skin lesions.

The market potential of AI applications in drug discovery and development is im-
mense. AI has emerged as a powerful tool in the pharmaceutical industry, revolutionizing
the way new drugs are discovered, developed, and brought to market. With its ability to
analyze vast amounts of data, AI offers the potential to accelerate the drug development
process, reduce costs, and improve the success rate of bringing new medicines to patients.

Pharmaceutical companies, research institutions, and startups are increasingly invest-
ing in AI technologies to streamline drug discovery processes and gain a competitive edge
in the market. Partnerships between AI companies and pharmaceutical giants are becoming
more common, fostering the development of innovative drug discovery platforms.
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3.6. AI in Drug Discovery and Repurposing

In this section we provide information on different drugs discovered by means of
AI, highlighting AI’s significant role in drug discovery, accelerating the identification of
potential drug candidates and optimizing drug development processes. In the following,
we present some drugs that have been discovered or aided by AI.

Zong et al. [149] explore a computational drug repurposing application by using elec-
tronic health records (EHRs) to discover new applications for approved or investigational
drugs. Their review identified four themes: publication venues, data types and sources,
data processing and prediction methods, and targeted diseases, validation, and released
tools. The utilization of EHRs in drug repurposing is hindered by validation, accessibility,
and understanding issues.

Yadi et al. [150] introduce guidelines on how to use AI for accelerating drug repurpos-
ing or repositioning. They present how to use AI models in precision medicine, and as an
example, how AI models can accelerate COVID-19 drug repurposing.

In the paper by Wang et al. [151], a novel scoring algorithm, DrugRepo, uses chemical
and genomic data to repurpose drugs for various diseases. In total, 516 approved drugs
have been repurposed for 545 diseases using DrugRepo. Hundreds of novel predicted
compounds have the potential for matching ongoing clinical trials.

Different research groups used AI algorithms to discover that naproxen, a commonly
used pain reliever, has potential antiviral properties. An excellent illustration of an in silico
and target-based technique for finding novel antivirals is naproxen. Lejal et al. used the
X-ray structure of the RNA-free NP of H1N1 as a prototype to develop a structural-based
modeling technique to find potential medications that target the nucleoprotein (NP) of
the influenza A virus [152]. The non-steroidal anti-inflammatory medication naproxen, a
well-known inhibitor of inducible cyclooxygenase type 2 (COX-2), was discovered using
an in silico screening that was concentrated on a selected particular location of the NP
structure. AI models identified this drug as potential inhibitors of a viral enzyme, providing
valuable insights for future antiviral drug development [152]. In another study, naproxen
demonstrated antiviral properties against SARS-CoV-2 using an in silico molecular docking
analysis (using Autodock Vina) [153].

By using molecular modeling and virtual screening studies, Mostafa et al. tested the
antiviral activity of anti-microbial and anti-inflammatory FDA-approved drugs, commonly
prescribed to relieve respiratory symptoms, against SARS-CoV-2 [154]. The docking study
was performed using OpenEye scientific software version 2.2.5. A virtual screening study
illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of
SARS-CoV-2.

Baricitinib is an oral Janus kinase (JAK)1/JAK2 inhibitor approved for the treatment of
rheumatoid arthritis. The Eli Lilly and Incyte Corporation used AI algorithms to analyze
large-scale datasets to predict its usefulness on COVID-19 infection through planned anti-
cytokine effects and as an inhibitor of host cell viral propagation [155].

DSP-1181 was Developed by Sumitomo Dainippon Pharma and Exscientia. It is a drug
designed using AI algorithms [156]. It became the first AI-designed drug to enter human
clinical trials for the treatment of obsessive-compulsive disorder (OCD). DSP-1181 is a
long-acting, potent serotonin 5-HT1A receptor agonist [156]. AI played a pivotal role in the
drug’s discovery by rapidly analyzing vast datasets, identifying potential drug candidates,
and optimizing the molecular structures to enhance their therapeutic effects. The successful
progression of DSP-1181 to clinical trials showcases the potential of AI in expediting drug
development for challenging neurological disorders [156].

DSP-2230 was also Developed by Sumitomo Dainippon Pharma and Exscientia, by
means of AI-design, and is being investigated for the treatment of OCD. AI algorithms were
utilized to analyze biological data and identify the novel compounds that can modulate the
specific brain receptors implicated in the disorder [157].

Berzosertib (formerly M6620, VX-970), developed by Merck KGaA and C4X Discov-
ery [158], is a promising drug investigated for its applications in targeting the DNA repair
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mechanisms in various cancers. AI played a significant role in identifying Berzosertib as a
potential candidate for cancer treatment [159]. Through the AI-driven analysis of genetic
and molecular data, researchers could pinpoint specific DNA repair pathways that the
drug could effectively target, making it a promising addition to cancer therapy.

Halicin is a revolutionary antibiotic discovered by MIT researchers through the appli-
cation of AI models [160]. It demonstrated remarkable effectiveness against a wide range
of bacterial infections, including drug-resistant strains [161]. AI enabled the screening
of a vast number of chemical compounds to identify Halicin as a potent antibiotic. The
discovery of Halicin highlights the potential of AI in quickly identifying new classes of
antibiotics to combat the growing problem of antibiotic resistance.

Evinacumab is a drug developed by Regeneron Pharmaceuticals using AI [162]. The
drug was identified as a potential therapy for homozygous familial hypercholesterolemia (a
rare genetic disorder characterized by extremely high cholesterol levels), refractory hyperc-
holesterolemia (both familial and non-familial), and severe hypertriglyceridaemia [162]. AI
algorithms were utilized to analyze vast datasets of genetic and biochemical information to
identify the specific targets and pathways involved in cholesterol regulation. This helped
researchers identify evinacumab as a monoclonal antibody that binds to and blocks an
enzyme called ANGPTL3, thereby reducing cholesterol levels in affected individuals [162].

The Amarin Corporation developed Icosapent Ethyl to reduce cardiovascular risk [163].
The AI-driven analysis of clinical trial data helped demonstrate the drug’s effectiveness
in reducing cardiovascular events in patients with high triglyceride levels, leading to its
approval by regulatory authorities. Icosapent Ethyl is a high-purity prescription form
of EPA ethyl ester approved by the US Food and Drug Administration at a dose of 4
g/day as an adjunct to diet to reduce plasma triglyceride levels in adults with severe
hypertriglyceridemia [164].

LegoChem Biosciences, using AI models, developed Delpazolid (LCB-010371) as a
potential antibiotic with effectiveness against drug-resistant bacteria, including Methicillin-
resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococci (VRE) [165].
AI-driven drug discovery methods were employed to identify Delpazolid as a novel an-
tibiotic candidate. LegoChem Biosciences utilizes its ConjuAll and Legochemisty platform
technologies to discover and develop drugs.

InSilico Medicine has used their AI platform Pharma.AI™ to develop INS018-055 to
help treat idiopathic pulmonary fibrosis [166]. Targeting the discoidin domain receptor
1 (DDR1) is how INS-08055 works. DDR1, an epithelial cell-expressed pro-inflammatory
receptor tyrosine kinase involved in fibrosis, is activated by collagen and inhibited by INS-
08055. The medication candidate, which is delivered orally and intravenously, improves
illness symptoms by inhibiting DDR1 [166].

Developed by Merck & Co., Pembrolizumab (Keytruda) is an AI-discovered drug used
for the treatment of various cancers, including melanoma, lung cancer, and head and neck
cancers [167].

The UK Medicines and Healthcare Products Regulatory Agency (MHRA) has received
a clinical trial application from BenevolentAI for BEN-8744, a small molecule phosphodi-
esterase 10 (PDE10) inhibitor that is intended to treat ulcerative colitis [168].

Sotorasib (AMG 510), developed by Amgen, is an AI-optimized drug used for the
treatment of non-small cell lung cancer with specific genetic mutations. AI algorithms were
used to analyze cancer genomic data and identify potential compounds that selectively
inhibit the mutated protein responsible for tumor growth [169].

The above-mentioned drug examples highlight the diverse applications of AI in drug
discovery and development, from optimizing drug structures and formulations to identi-
fying novel targets and repurposing existing drugs for new indications. AI technologies
continue to revolutionize the pharmaceutical industry, enabling more efficient and tar-
geted drug development processes that hold the potential to transform patient care and
treatment outcomes.
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4. The Market Prospects of AI-Based Drug Development

Pharmaceutical companies are converting to AI solutions to reduce the financial costs
and potential losses connected with virtual screening. Between 2015 and 2018, the AI
market grew from USD 200 to USD 700 million, and by 2024, it is expected to reach USD
5 billion [170]. An expected 40% increase from 2017 to 2024 suggests that AI may reshape the
pharmaceutical and medical industries. Many pharmaceutical companies have invested in
AI or are continuing to do so, as well as collaborating with AI service providers to develop
critical medical equipment. Examples of collaboration are given in Table 4.

Table 4. Collaborations of pharmaceutical companies with AI providers/developers for various
applications.

Company AI Use Collaboration with the
Pharmaceutical Industry Application/Agents for Clinical Trials

IBM Watson Health
Cambridge

AI for evaluating clinical
and health-related data

Novartis Real-time patient monitoring to improve
breast cancer patient intervention outcomes

Pfizer Accelerating immuno-oncology medication
discovery efforts

Benevolent AI

AI-enabled Judgement
Augmented Cognition
System (JACS) for
developing new drugs
effective against
neurodegenerative diseases

Janssen Such partnership will lead to the
advancement of new medicinal molecules.

Using AI, new clinical lead
agents for chronic renal
diseases are being
developed.

AstraZeneca
During Phase 2b clinical trials, a drug
candidate was assessed as a primary agent
for treating chronic renal diseases.

Microsoft
AI for image processing and
therapeutic interventions
using cells and genes

Novartis
Creating an AI innovation lab to improve
medication research and commercialization
processes

Numerate
AI-enabled drug design for
oncology and
gastrointestinal specialties

Takeda Phase 1 clinical trial of drug S48168 for
Ryanodine Receptor 2

Servier
Drug development for conditions of the
central nervous system, the digestive
system, and cancer

Owkin Clinical testing by means
of ML Roche Created and improved the Owkin’s Studio

platform using artificial intelligence

XtalPi

A target identification and
validation package
integrating quantum
mechanics and ML
techniques

Pfizer
Preparation and improvement of
crystalline drug candidate entities for use
in early drug screening

Exscientia AI-enabled drug discovery
and lead refinement

Sanofi

Agent DSP-1181 is currently undergoing
Phase I clinical testing.
Advancement of the Centaur ChemistTM
drug discovery AI system
Drug discovery in obsessive-convulsive
disorder

Merck and BenevolentAI
New clinical development drug candidates
in key therapeutic areas of oncology,
neurology, and immunology

Atomwise AI-enabled structural
modeling

Lilly Agent BBT-401 in Phase 2 of clinical testing

Bridge Biotherapeutics
Augmentation of Pellino Inhibitor Pipeline
Agent BBT-401 evaluated in Phase-2a of
clinical testing

Sensyne Health Clinical AI schemes Bayer
Created and improved the specialized
clinical AI technology suite for Sensyne
Health.
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5. Challenges and Limitations in AI-Assisted Drug Discovery

The use of AI to aid in the discovery of new materials holds immense potential in
developing materials with specific properties for diverse applications. However, there
are challenges and limitations that need to be acknowledged and addressed to ensure its
effective implementation [3].

One of the main challenges highlighted in our paper is related to the quality and
quantity of data. AI models require a large volume of high-quality data for training.
In materials science, obtaining comprehensive and dependable datasets can be difficult
due to the vast number of materials and properties that can be taken into consideration.
Incomplete or inaccurate data can result in biased or erroneous predictions.

Therefore, reliable and high-quality data are the foundation of AI-assisted research.
Industries must ensure that the data used for training AI models are precise, representative,
and related to the specific research objectives. It is crucial to address data limitations, such
as biases or incomplete datasets, to avoid skewed results and unreliable conclusions.

When it comes to discovering new materials, there are several important factors to
consider. Firstly, data representation is key. This involves transforming complex material
data, like crystal structures or chemical compositions, into formats that AI models can
understand. It is important to develop representations that capture essential features while
remaining interpretable [171].

Algorithm selection and development is also crucial. The appropriate AI algorithms
for a material’s discovery will depend on the specific problem at hand. Developing custom
algorithms that can handle the unique challenges of material data, such as high dimension-
ality and non-linear relationships, requires expertise in both AI and materials science.

While AI models can predict material properties with impressive accuracy, interpreting
the underlying reasons for these predictions remains a challenge. Understanding the
relationship between the input features and output properties is essential for guiding
further research and design.

Finally, effective material discovery often requires the integration of domain-specific
knowledge, such as quantum mechanics or thermodynamics. Combining AI techniques
with specialized scientific insights is essential to ensure accurate predictions and meaningful
discoveries [14].

When training data are biased, AI models may not perform well when presented with
new materials or conditions. It is crucial to ensure diversity and representativeness in the
training dataset to avoid this issue. However, researchers may face limitations in accessing
a powerful computing infrastructure, which is often necessary for resource-intensive tasks,
such as simulating material properties at different scales or conducting high-throughput
calculations. Additionally, the vast and intricate search space of potential materials can pose
a challenge when trying to find the optimal candidate. Advanced optimization techniques
are required to explore this space efficiently [172].

It is also important to validate AI model predictions through experimental testing,
which can be a time-consuming and costly process. Moreover, discovering new materi-
als with advanced properties raises ethical and safety concerns. AI-assisted discoveries
must be safe, environmentally friendly, and compliant with regulations. Industries must
establish ethical guidelines that ensure responsible data usage, transparent algorithms,
and the fair treatment of all stakeholders to address these concerns. Overall, AI-assisted
research presents exciting opportunities but also requires the careful consideration of these
issues [173]. When incorporating AI tools into the material discovery process, researchers
must adjust their workflows and thinking. Cooperation between materials scientists and
AI specialists is crucial for the optimal usage of these tools. AI-assisted material discovery
offers exciting possibilities for revolutionizing the field by speeding up the identification of
materials with the desired properties. However, the challenges and limitations mentioned
above stress the importance of interdisciplinary collaboration, better data organization,
innovative algorithms, and ethical and scientific considerations. Overcoming these obsta-
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cles will lead to the successful integration of AI in material discovery and ultimately fuel
innovation across various industries [174].

Industries that handle sensitive or proprietary data should prioritize data security
and implement strong measures to safeguard information against unauthorized access and
breaches. It is crucial to balance the benefits of AI-powered insights with data security
concerns. To ensure the reliability and applicability of AI-generated insights across various
contexts, rigorous validation procedures are essential. Since AI-assisted research often
requires significant computational resources, including powerful hardware and significant
energy consumption, industries need to assess their computational needs and allocate
resources effectively. Industries should implement strategies to identify and mitigate biases
in AI models that may inadvertently perpetuate the biases present in the training data.
In regulated industries, AI-assisted research must comply with relevant regulations and
standards. To reap the full benefits of AI-driven research outcomes, industries must commit
to long-term strategies that require continuous investment in updating models, refining
algorithms, and adapting to evolving research needs. In fostering a collaborative environ-
ment, industries must encourage researchers to work alongside AI systems, leveraging
their strengths to make more informed decisions and discoveries, and augmenting human
capabilities [3]. To sum up, utilizing AI in research can lead to groundbreaking discoveries
and drive innovation in various industries. However, it is crucial to carefully consider
important factors such as data quality, ethics, expertise, security, and collaboration to ensure
successful implementation. By thoughtfully addressing these considerations, industries
can fully utilize the potential of AI to revolutionize their research practices and achieve
unprecedented levels of discovery and innovation [3].

6. Future Directions and Opportunities in AI-Assisted Drugs Discovery

The global AI-in-drug discovery market is projected to witness significant growth
in the coming years. Advancements in AI technologies, such as ML, natural language
processing, and deep learning, have led to the development of sophisticated algorithms
capable of analyzing complex biological data and predicting the interactions between drugs
and their targets.

AI-driven platforms are being used for the virtual screening of large compound
libraries, identifying potential drug candidates with higher accuracy and efficiency than
traditional methods. These platforms can also optimize lead compounds and predict
their pharmacokinetic and toxicity profiles, aiding in the selection of the most promising
candidates for further development.

Furthermore, AI is transforming drug design by enabling the generation of novel
molecular structures with specific properties. AI-generated molecules can be tailored to
target specific diseases and biological pathways, offering new opportunities for precision
medicine.

As regulatory agencies, such as the FDA, continue to embrace AI applications in drug
development, the market potential of AI in the pharmaceutical industry is expected to grow
further. However, challenges remain, including data privacy concerns, the validation of AI
models, and the integration of AI with existing drug development processes.

Moreover, AI’s potential extends beyond drug discovery and development. It also
plays a critical role in clinical trials, patient stratification, and the real-time monitoring
of treatment responses, enabling personalized medical approaches that enhance patient
outcomes.

The use of advanced simulation and modeling techniques in AI has the potential to
revolutionize the drug discovery process, making it more efficient and effective. With AI, it
is possible to model and simulate biological networks, which deepens our understanding
of disease mechanisms and helps in the discovery of new drugs [175].

The use of AI in drug discovery has many benefits. Traditional approaches face obsta-
cles such as high costs, inefficiency, and lengthy timelines. AI can address these issues by
automating and optimizing processes, resulting in more efficient and effective drug discov-
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ery. This enables the discovery of novel drug candidates that may have been overlooked
using traditional approaches. AI leverages advancements in biology and computing to
develop cutting-edge algorithms for drug discovery, leveling the playing field and enabling
more researchers to access powerful computational tools for drug development. Further-
more, AI models have a higher predictive power, reducing the potential for false positives
in drug screening. By carefully designing the assay parameters, AI can identify meaningful
interactions and prioritize promising targets for further investigation [176].

The use of AI in drug discovery shows potential by moving drug screening from the
lab to a virtual environment, resulting in faster screening and the ability to identify promis-
ing targets without extensive effort and manpower. However, implementing advanced
simulation and modeling techniques in AI for drug discovery poses challenges such as the
data quality, interpretability of AI models, and the need for validation and reproducibility.
Despite these challenges, AI has the potential to improve drug discovery efficiency, enable
unbiased exploration, and enhance its predictive power, leading to reduced costs and an
increased likelihood of successful drug candidates. To successfully integrate AI in drug
discovery, addressing these challenges and ensuring the reliability and interpretability of
AI models is crucial.

7. Conclusions

The future of AI in drug discovery involves a closer integration with automation,
which would allow AI systems to make decisions on compound design and synthesis
without human input. This shift from an augmented drug design paradigm to an au-
tonomous one has the potential to accelerate the drug discovery process and yield better
starting points for drug development. Ultimately, the goal is to develop fully autonomous
laboratories that can iterate through the design–make–test–analyze cycle of drug discovery
on their own. This could lead to faster and more efficient drug discovery processes, with
AI systems suggesting and testing new compounds autonomously. However, there are
challenges to overcome, such as proving the reliability and reproducibility of AI-assisted
findings. Furthermore, the availability of robust datasets and investments in AI technology
are important considerations for the future adoption and success of AI in drug discovery.

The major challenge for the medical industry while developing a new drug is its
increased costs and reduced efficiency. ML approaches and recent developments in DL
come with great opportunities to reduce this cost, increase efficiency, and save time during
the drug discovery and development process. Even though there are some obstacles and a
tremendous amount of work to be conducted to incorporate AI tools in the drug discovery
cycle, concretely, despite these challenges, AI has already demonstrated promising results
in discovering new combinations of materials for drug discovery, accelerating the search for
drug candidates, optimizing drug formulation and delivery, improving target identification,
and enhancing virtual screening. The future outlook for AI in drug discovery is promising,
with advancements expected in autonomous decision-making and the integration of AI
with automation.
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AI Artificial intelligence
DL Deep learning
ML Machine learning
ANN Artificial neural network
CT Computed Tomography Scan
MRI Magnetic resonance imaging
ML Machine Learning
KronRLS Kronecker-regularized least squares
DTBA Drug target binding affinity
GPCRs G protein-coupled receptors
MLR Multiple linear regression
DT Drug target
LR Logistic regression
SVM Support vector machine
CNN Convolution neural network
RNN Recurrent neural network
GAN Generative adversarial network
PCA Principal-component analysis
t-SNE t-distributed stochastic neighbor embedding
SVR Support vector regression
Lasso Least absolute shrinkage and selection operator
PBAEs poly(beta-amino ester)s
DFT High-throughput density functional theory
ADMET Absorption, distribution, metabolism, excretion, and toxicity
QSAR Quantitative structure-activity relationship
NLP Natural language processing
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