
Citation: Mika, S.; Gola, W.; Gil-Mika,

M.; Wilk, M.; Misiolłek, H.

Ultrasonographic Applications of

Novel Technologies and Artificial

Intelligence in Critically Ill Patients. J.

Pers. Med. 2024, 14, 286. https://

doi.org/10.3390/jpm14030286

Academic Editor: Lorenzo Faggioni

Received: 17 January 2024

Revised: 21 February 2024

Accepted: 26 February 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Review

Ultrasonographic Applications of Novel Technologies and
Artificial Intelligence in Critically Ill Patients
Sławomir Mika 1,*, Wojciech Gola 2, Monika Gil-Mika 3, Mateusz Wilk 4 and Hanna Misiolłek 5

1 Medica Co., Ltd. (Upper Silesian School of Ultrasonography), 41-500 Chorzów, Poland
2 Collegium Medicum, Jan Kochanowski University (JKU), 25-317 Kielce, Poland; wojciech.gola@ujk.edu.pl
3 Municipal Hospital Co., Ltd., 41-703 Ruda Śląska, Poland; mmika@szpitalruda.pl
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Abstract: The diagnostic process in Intensive Care Units has been revolutionized by ultrasonography
and accelerated by artificial intelligence. Patients in critical condition are often sonoanatomically
challenging, with time constraints being an additional stress factor. In this paper, we describe the
technology behind the development of AI systems to support diagnostic ultrasound in intensive care
units. Among the AI-based solutions, the focus was placed on systems supporting cardiac ultrasound,
such as Smart-VTI, Auto-VTI, SmartEcho Vue, AutoEF, Us2.ai, and Real Time EF. Solutions to assist
hemodynamic assessment based on the evaluation of the inferior vena cava, such as Smart-IVC
or Auto-IVC, as well as to facilitate ultrasound assessment of the lungs, such as Smart B-line or
Auto B-line, and to help in the estimation of gastric contents, such as Auto Gastric Antrum, were
also discussed. All these solutions provide doctors with support by making it easier to obtain
appropriate diagnostically correct ultrasound images by automatically performing time-consuming
measurements and enabling real-time analysis of the obtained data. Artificial intelligence will most
likely be used in the future to create advanced systems facilitating the diagnostic and therapeutic
process in intensive care units.

Keywords: artificial intelligence; ultrasonography; intensive care

1. Introduction

Ultrasound has a particular application in intensive care. Since the sonoanatomical
conditions in patients treated in intensive care units (ICU) are far from ideal, and ultrasound
(US) imaging is often performed under time pressure, physicians are increasingly more
likely to use artificial intelligence (AI). In particular, the use of AI in intensive care has been
discussed very often in both the literature and the media in the last 2–3 years. Modern
technologies have led to progress in the development of medical equipment dedicated to
anesthesiology and intensive care [1]. AI has been widely used in both these fields, making
it significantly easier to interpret the obtained images and providing doctors with rapid
feedback on the patient’s clinical situation [2,3].

Point-of-care ultrasound (POCUS) has a wide diagnostic application in intensive
care, making it easier to use and interpret such imaging modalities as transthoracic and
transesophageal echocardiography, lung ultrasound, ultrasound of a patient in shock,
and patients with other life-threatening conditions. Due to the complexity of ultrasound
assessment in intensive care, the physician’s purpose of using AI in this setting is to help
assess the patient’s condition based on US imaging of various systems and organs and
assess the patient’s hemodynamic profile [4–6]. The literature has shown that AI-guided
POCUS will most likely increase the efficiency and effectiveness of ultrasound imaging [4,7].
AI-supported point-of-care protocols also have particular educational applications, enabling
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young medical students to improve ultrasound techniques and increasing the identifiability
of anatomical structures, which is necessary to perform procedures [8].

Excellent knowledge of normal, topographic, and pathological anatomy is essential for
a correct assessment of ultrasound images. High inter-patient anatomical variability and
often difficult sonoanatomical conditions may discourage less experienced anesthesiologists
from performing US [3]. Point-of-care protocols require excellent technique in operating an
ultrasonic transducer from the operator due to time constraints and the schematic nature of
this type of examination.

In this complex setting, AI comes to the aid of clinicians [9]. Depending on the type of
software, it helps detect key structures for performing a specific medical procedure, such
as cannulation, finding the optimal ultrasound plane for imaging of the heart, lungs, or
abdominal organs [4,10] as well as setting the appropriate image quality, and performing
measurements, including complex Doppler measurements [11]. At the same time, it
significantly reduces the time needed to learn how to perform imaging and the time
to acquire clinically significant images, and it improves the accuracy of the obtained
results [2,10,12,13].

2. Selected Innovative AI-Based US Technologies and Solutions Intended for Critically
Ill Patients

Intensive care ultrasonography (POCUS) is a tool that can provide abundant clinically
relevant information about a patient’s condition. The doctors attending the patient change,
which, combined with the diversity of medical staff in terms of ultrasound imaging skills,
may lead to variable and often incomplete observations and conclusions. A typical POC
examination is often performed under time pressure. AI-based solutions prove extremely
helpful in this regard and are very dynamically entering everyday clinical practice. They
allow for obtaining more objective real-time results than those obtained by different opera-
tors [14]. Similar to regional anesthesiology, these solutions are based on machine learning
(ML), deep learning (DL) and deep convolutional neutral network (DCNN), U-Net, and
big data. These are information technologies used in the processing and very detailed
interpretation of images, including medical images. In the case of DL, the created software
is intended to imitate and simulate human thinking in terms of the processed information
and is an important component of ML, which together constitute artificial intelligence. ML,
in turn, is the machine’s ability to automatically learn and improve the interpretation of
images [15]. The key technologies discussed in this paper include the following.

SmartVTI (Mindray Medical International Limited, Shenzhen, China) hereinafter
Mindray), AutoVTI (General Electric, Boston, MA, USA), US2.AI. Cardiac Output
Workflow (EchoNous Inc., Redmond Washington, DC, USA) or LVivo Seamless (Philips
Medical Systems International, Best, Holandia) are examples of AI-based tools offered
by two different manufacturers, which are used in ultrasound of patients in a life-
threatening condition. These semi-automatic solutions make it possible to calculate two
key parameters for hemodynamic monitoring and provide important prognostic data
for a critically ill patient. These two parameters are the automatic measurement of stroke
volume (SV) in mL and the cardiac output (CO), which is the product of the heart rate
(HR) and the SV [15–17]. Typical and manual examination of these two measurements
requires at least two ultrasound views (PLAX—parasternal long axis view), as well as
LVOT (left ventricular outflow tract) measurement, and Doppler spectrum contouring
by setting the sampling gate parallel to the LVOT blood flow from the five-chamber
view (5CH). The inter-operator results may differ due to incorrect placement of the
Doppler gate and incorrect selection of the insonation angle, which may consequently
lead to overestimation of the velocity time integral (VTI) [18]. Considering the fact that
the SV is the product of LVOT and VTI, the final value of the stroke volume may vary
significantly depending on the operator’s skill and precision. The sequence of steps in
the manual approach is shown in Figure 1.
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Figure 1. Manual VTI measurement.

When using AI-based tools, the operator should perform only one manual measure-
ment, i.e., LVOT in the PLAX view. The second and last step is to obtain a 5CH view and,
through “one-click” (SmartVTI for Mindray or AutoVTI for GE devices), the device will
automatically set the Doppler gate in the left ventricular outflow tract (LVOT) and outline
the Doppler spectrum by tracing the velocity in order to calculate the VTI in real time. With
data in the form of the LVOT area and VTI as well as the heart rate (HR), the ultrasound
device is able to automatically calculate the SV and CO parameters in real time, presenting
the data in the form of trending graphs (Figure 2).
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The calculations consist of simple mathematical operations using the following formu-
las [19]:

SV (mL/cycle) = LVOT Area (cm2) × VTI/cycle (cm/cycle)

CO (L/min) = SV (L/cycle) × HR (cycle/min)
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Additionally, some manufacturers of ultrasound equipment have access to technology
that allows the assessment of views obtained by the operator during an examination. They
bear in mind the fact that the above measurements are reliable only when appropriate
PLAX and 5CH images are obtained, and the device provides the operator with a graphic
“prompt” on whether the obtained image is acceptable or whether it should be corrected.
By properly selecting colors, the operator knows whether a given view is appropriate or
whether it requires more involvement. Only when the obtained images are accepted by the
AI algorithm are the automatic measurements taken [20]. An example of SmartEchoVue
(Mindray), Us2.ai and AI TRO (EchoNous Inc.), Butterfly ScanLab (Butterfly Network, Inc.)
or LVivo Seamless (Philips) technology enabling the correction of appropriate views is
shown in Figure 3.
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In the case of solutions proposed by Philips in the LVivo Seamless technology, the
device itself selects the most optimal projections obtained during an ultrasound scan and
uses them to present cardiac measurements, including SV [21] (Figure 4).

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 4 of 16 
 

 

SV (mL/cycle) = LVOT Area (cm2) × VTI/cycle (cm/cycle) 

CO (L/min) = SV (L/cycle) × HR (cycle/min) [19]. 

Additionally, some manufacturers of ultrasound equipment have access to technol-
ogy that allows the assessment of views obtained by the operator during an examination. 
They bear in mind the fact that the above measurements are reliable only when appropri-
ate PLAX and 5CH images are obtained, and the device provides the operator with a 
graphic “prompt” on whether the obtained image is acceptable or whether it should be 
corrected. By properly selecting colors, the operator knows whether a given view is ap-
propriate or whether it requires more involvement. Only when the obtained images are 
accepted by the AI algorithm are the automatic measurements taken [20]. An example of 
SmartEchoVue (Mindray), Us2.ai and AI TRO (EchoNous Inc.), Butterfly ScanLab (Butter-
fly Network, Inc.) or LVivo Seamless (Philips) technology enabling the correction of ap-
propriate views is shown in Figure 3. 

 
Figure 3. SmartEchoVue (Mindray TEX20; software version 01(01.07.00)). 

In the case of solutions proposed by Philips in the LVivo Seamless technology, the 
device itself selects the most optimal projections obtained during an ultrasound scan and 
uses them to present cardiac measurements, including SV (Figure 4). 

 
Figure 4. LVivo Seamless (Philips), adapted from (https://www.dia-analysis.com/lvivoseamless) 
with permission publisher 2024 (accessed on 1 January 2024) [21]. 
Figure 4. LVivo Seamless (Philips Epiq Elite, software version 9.05).

AI TRIO (EchoNous, Inc.) and Butterfly ScanLab, which offer real-time support during
an ultrasound scan, are yet another solution implemented by EchoNous, Inc., and Butterfly
Network, Inc. (Boston, MA, USA), which allows even beginners to quickly make progress
in performing echocardiography. They help the operator to identify quickly and very
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accurately individual cardiac structures and assess the quality of and initially qualify the
obtained images. This solution is presented in Figures 5 and 6.
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AutoEF (Mindray)/Real Time EF (GE)/ Us2.ai (EchoNous Inc.)/LVivo EF (Philips)
is another tool to assist clinicians in their work, allowing the calculation of the ejection
fraction (EF) in real time based on AI. The assessment of the left ventricular (LV) EF is an
integral part of echocardiographic evaluation. Despite not being error-free, it is one of the
basic criteria for therapeutic decisions and a prognostic marker. EF assessment allows for
a quantitative assessment of the blood volume ejected from the left ventricle during each
heartbeat. In the traditional and manual approach, it is a multi-stage process that includes
both systolic and diastolic measurements of the left ventricle. Measurements can be made
in two views: 4CH (four chamber view) and 2CH (two chamber view) as shown in Figure 7.

Based on the obtained measurements, the ultrasound machine uses the built-in calcu-
lation package to estimate the EF according to the following formula:

EF = (End Diastolic Volume − End Systolic Volume)/End Diastolic Volume × 100

This measurement is based on the Simpson method, i.e., the biplane method of disk
summation as shown in Figure 8.
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Figure 8. Method for calculating EF using the Simpson method.

Manual outlining of the LV endocardium may be very time consuming and burdened
by inter-operator measurement errors, not to mention the significant time needed to perform
the scan itself. In the intensive care and according to the POCUS philosophy, often, only
a quantitative method is used to assess global LV dysfunction and thereby the patient’s
general status. AutoEF or RealTime EF may be a tool to solve many of the abovementioned
problems related to EF assessment (Figure 9).
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Figure 9. Automatic EF measurement (Mindray TEX20; software version 01(01.07.00)).

The operator’s main task is to obtain an apical four chamber view (A4CH). Using
AI algorithms, ML and DL in particular, the ultrasound device first classifies the image
obtained by the operator by tracing individual ventricular wall segments both in the end-
diastolic and end-systolic phases, while assessing the maximum and minimum LV volume.
If the view and the correct image have been accepted by the ultrasound machine, the most
optimal views are selected in one cycle, and the LVEF is automatically calculated. The
calculated parameters are displayed on the ultrasound screen. Each time, the operator has
the opportunity to correct the outlined LV endocardium if necessary.

The technology of the automatic measurement of the inferior vena cava (IVC), referred
to by various manufacturers as SmartIVC (Mindray) and AutoIVC (GE), is an additional tool
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to support the patient’s assessment and deliver clinically relevant information (Figure 10).
The IVC width and collapsibility are indirect indicators of myocardial preload and CVP
estimation. Similar to LVEF measurement, ultrasonographic IVC assessment can also be
highly subjective. The final dimension of the inferior vena cava is influenced by, among
other things, the operator’s skill and, above all, the unstable position of this vessel during
respiratory movements. During spontaneous breathing, the IVC moves on average 21.7 mm
vertically and 3.9 mm horizontally. Furthermore, the actual vertical axis of the IVC in the
human body is not 90◦ but an average of 115◦. All this means that the test is not easy to
interpret, and it should take into account these limitations [24,25].

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 7 of 16 
 

 

obtained by the operator by tracing individual ventricular wall segments both in the end-
diastolic and end-systolic phases, while assessing the maximum and minimum LV vol-
ume. If the view and the correct image have been accepted by the ultrasound machine, 
the most optimal views are selected in one cycle, and the LVEF is automatically calculated. 
The calculated parameters are displayed on the ultrasound screen. Each time, the operator 
has the opportunity to correct the outlined LV endocardium if necessary. 

The technology of the automatic measurement of the inferior vena cava (IVC), re-
ferred to by various manufacturers as SmartIVC (Mindray) and AutoIVC (GE), is an ad-
ditional tool to support the patient’s assessment and deliver clinically relevant infor-
mation (Figure 10). The IVC width and collapsibility are indirect indicators of myocardial 
preload and CVP estimation. Similar to LVEF measurement, ultrasonographic IVC assess-
ment can also be highly subjective. The final dimension of the inferior vena cava is influ-
enced by, among other things, the operator’s skill and, above all, the unstable position of 
this vessel during respiratory movements. During spontaneous breathing, the IVC moves 
on average 21.7 mm vertically and 3.9 mm horizontally. Furthermore, the actual vertical 
axis of the IVC in the human body is not 90° but an average of 115°. All this means that 
the test is not easy to interpret, and it should take into account these limitations [24,25]. 

 
Figure 10. Imaging variability of the inferior vena cava depending on the respiratory phase. 

According to the 2015 guidelines of the American Society of Echocardiography (ASE) 
[26], the measurement should be performed with the patient in a supine position, as the 
IVC diameter and shape may change depending on the patient’s position, at a distance of 
1–2 cm from the opening of the hepatic vein, perpendicular to the long axis of the vessel 
in B-Mode. In clinical practice, M-Mode is also used to observe IVC respiratory variability 
[24]. The traditional and manual diagnostic process is presented in Figure 11. 
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According to the 2015 guidelines of the American Society of Echocardiography
(ASE) [26], the measurement should be performed with the patient in a supine position,
as the IVC diameter and shape may change depending on the patient’s position, at
a distance of 1–2 cm from the opening of the hepatic vein, perpendicular to the long
axis of the vessel in B-Mode. In clinical practice, M-Mode is also used to observe IVC
respiratory variability [24]. The traditional and manual diagnostic process is presented
in Figure 11.
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The semi-auto SmartIVC and AutoIVC provide quick and simple real-time IVC mea-
surements without the need to manually perform the individual stages of the examination
described in Figure 11.

After obtaining a correct view in the long axis of the IVC and activating the
SmartIVC or AutoIVC button on the US control panel, the algorithm automatically
determines the anatomical M-line, which is placed exactly at the right site, where the
measurements are made manually. Both the angle and the position of the M-line are
adjusted in real time using a special tracing algorithm. If the image changes due to
the mobility of the IVC described earlier, the M-line automatically adjusts so that it is
always perpendicular to IVC axis. The user can always adjust the position and angle of
the anatomical M-line. Owing to the automatic detection of the IVC walls, the presented
results show its maximum and minimum dimensions and the Caval Index (CI). It is
calculated according to the following formula:

Caval Index (CI) = (Maximum diameter (expiratory) − Minimum diameter
(inspiratory))/Maximum diameter (expiratory).

In the case of a mechanically ventilated patient, the DI (Distensibility Index) is pre-
sented instead of the CI, calculated according to the following formula:

Distensibility Index (DI) = (Maximum diameter (expiratory) − Minimum diameter
(inspiratory))/Minimum diameter (inspiratory).

Furthermore, in addition to the CI and DI, the technology allows for presenting the
trend lines in accordance with the change in collapsibility, as shown in Figure 12.
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The Inferior Vena Cava Distensibility Index (IVCDI) is a parameter commonly used
in critical care units to assess the fluid responsiveness and intravascular volume status
in ventilated patients. It involves measuring changes in the diameter of the inferior vena
cava (IVC) during the respiratory cycle. The IVC in deeply sedated or paralyzed patients
being passively ventilated with positive pressure has a very different pattern in respiratory
variation compared to that of spontaneously breathing patients. In the absence of central
hypovolemia, the increase in the internal IVC pressure that has been transmitted from the
right atrium exceeds the increase in the external intra-abdominal pressure. This pressure
gradient will distend the IVC; so, its size will increase on inspiration. This does not occur in
a patient who is fluid unresponsive. When the caval venous system is congested and closer
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to its maximal size, there will be minimal, if any, distention of the IVC with inspiration.
These phenomena can be quantified by the “IVC Distensibility Index”.

The Vena Cava Distensibility Index and distensibility variability can be calculated with
the following formulas: IVC-DI = (max diameter–min diameter)/(min diameter) × 100,
IVC-DV = [(maximum diameter − minimum diameter)/(mean diameter)] × 100). The cut
off of the distensibility index for fluid responsiveness is between 15 and 20%, with maximum
accuracy when Vt ≥ 8 mL/Kg or PEEP ≤ 5 cm H2O.

However, to reiterate, the change in IVC size with positive pressure mechanical venti-
lation is only observed consistently in patients who have no inspiratory effort and are being
ventilated passively. These are patients who are either deeply sedated or paralyzed [27–31].

Airway ultrasound is becoming a common, accessible, quick, and easy method for
assessing the upper airways. Its main goal, especially in the case of intensive care patients,
is to identify anatomical structures such as thyroid cartilage, epiglottis, cricoid cartilage,
cricothyroid membrane, tracheal cartilages, and esophagus, determine the required size
of endotracheal tubes (ETT), aid potentially difficult intubation, and help perform a per-
cutaneous tracheostomy [32]. Research on the use of AI in airway ultrasound is currently
underway, pointing to the enormous potential of this technology [32]. Due to its specificity,
airway US is also related to lung ultrasound, in which AI is already used. In addition to
the previously mentioned assessment of the myocardium and the inferior vena cava, AI
technologies are also utilized to assess the respiratory system. Since 1992, when Professor
Daniel Lichtenstein published an article on lung ultrasound, this discipline has become
increasingly appreciated by clinicians and is increasingly used in critically ill patients. Lung
ultrasound is used to interpret artifacts, the presence or absence of which may be of key
importance in the clinical assessment. B-lines are one of the key findings assessed in lung
ultrasound. The presence of these vertical artifacts excludes pneumothorax on the one hand
but is a marker of interstitial fluid accumulation on the other hand. The new guidelines
(February 2023) [33] for the use of lung ultrasound not only once again clearly confirm that
AI has a wide application in many fields of medicine but also point to its powerful potential
in lung diagnosis. Combining technology and diagnostic imaging may prove extremely
useful as the first screening in an intensive care unit [33]. Conventional lung ultrasound
focuses on the assessment of horizontal and vertical artifacts and involves their visual
assessment. A convex transducer is used for fluid components, with the operator focused
on the quantitative and qualitative B-line assessment on the ultrasound screen. As in the
case of the previously described ultrasound scans, the assessment and interpretation of the
obtained findings may vary depending on the operator’s skill and experience. Therefore,
another AI-based technology may be of great support for the assessment of vertical US
artifacts. This technology is referred to as Smart B-line (Mindray) and AutoB-line (GE),
depending on the manufacturer. A doctor performing a lung scan using this technology
positions the ultrasound transducer in exactly the same zones as during conventional
imaging. The US machine can assign a diagnostic image to each scanned zone. There are
6, 8, and 12 scanning zones, the number of which is selected by the operator as described
Figure 13.
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Automatic identification of the pleural line, the rib acoustic shadow, and the presenta-
tion of the scanned zone for the presence of vertical artifacts (B-lines) is the primary support
offered by this technology. Once the operator accepts the proposed zone, the B-lines in the
selected zone are identified and automatically counted, and the distance between them is
measured. In addition to these data, the ultrasound screen also displays information about
the B-line area ratio for the entire zone (%), as shown in Figure 14.
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Once the scan is complete, the operator can generate a report that will summarize the
entire examination along with the scoring of each scanned zone, as shown in Figure 15.
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More than vertical artifacts can be identified by AI-based technologies in LUS. The
technology used in the latest solution from Butterfly Network, Inc. helps identify horizontal
artifacts, i.e., the A-lines. As shown in Figure 16, Butterfly ScanLab software employed
in the Butterfly iQ+ device identifies horizontal artifacts and the pleura itself during an
ultrasound scan, presenting them in appropriate colors.

To summarize, AI-based technologies are used in the ultrasound assessment of the
lungs, including patients with COVID-19, and can be very helpful, especially for a less
experienced physician, eliminating inter-operator subjectivity of the assessment and pro-
viding a large amount of valuable clinical information. Additionally, they are very easy to
use [34,35].

Auto Gastric Antrum (Mindray), i.e., automatic measurement of gastric contents, is
the last technology supported by DL algorithms. In clinical practice, this test is part of the
gastric POCUS concept, which is a non-invasive quantitative and qualitative assessment
of the gastric contents. Qualitative measurement helps determine whether the stomach is
empty or filled with solid or liquid content. Quantitative assessment involves estimating
the gastric volume, which is calculated based on the antral cross-sectional area (antral
CSA) [36]. This information is very useful for the assessment of the risk of aspiration, which
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in turn facilitates therapeutic decisions and influences the type of anesthesia or induction
techniques. A convex transducer is used, and the patient is placed in two positions—on the
back and on the right side. The sagittal view is used as a standard. The operator performs
quantitative and qualitative assessment by manually outlining the gastric cardia in the
patient placed on the right side. The obtained CSA dimension is directly proportional to
the volume, which is ultimately obtained from the data in a mathematical table that takes
into account the patient’s age. If the test is repeated several times, it is necessary to archive
the data to assess the trend of changes. When Auto Gastric Antrum is used, the operator’s
only task is to obtain the correct image accepted by the device. From this moment, the
AI-guided ultrasound system will evaluate the image, locate the antrum and automatically
outline the CSA, presenting the GA area in cm2, as shown in Figure 17.

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 15. A scoring map and full review—Smart B-line (Mindray TEX20; software version 
01(01.07.00)). 

More than vertical artifacts can be identified by AI-based technologies in LUS. The 
technology used in the latest solution from Butterfly Network, Inc. helps identify horizon-
tal artifacts, i.e., the A-lines. As shown in Figure 16, Butterfly ScanLab software employed 
in the Butterfly iQ+ device identifies horizontal artifacts and the pleura itself during an 
ultrasound scan, presenting them in appropriate colors. 

 
Figure 16. Automatic detection of A-line in lung ultrasound, adapted from (https://www.butter-
flynetwork.com/iq-plus) with permission publisher 2024 (accessed on 1 January 2024) [29]. 

To summarize, AI-based technologies are used in the ultrasound assessment of the 
lungs, including patients with COVID-19, and can be very helpful, especially for a less 
experienced physician, eliminating inter-operator subjectivity of the assessment and 
providing a large amount of valuable clinical information. Additionally, they are very 
easy to use [34,35]. 

Auto Gastric Antrum (Mindray), i.e., automatic measurement of gastric contents, is 
the last technology supported by DL algorithms. In clinical practice, this test is part of the 
gastric POCUS concept, which is a non-invasive quantitative and qualitative assessment 
of the gastric contents. Qualitative measurement helps determine whether the stomach is 
empty or filled with solid or liquid content. Quantitative assessment involves estimating 
the gastric volume, which is calculated based on the antral cross-sectional area (antral 
CSA) [36]. This information is very useful for the assessment of the risk of aspiration, 
which in turn facilitates therapeutic decisions and influences the type of anesthesia or in-
duction techniques. A convex transducer is used, and the patient is placed in two posi-
tions—on the back and on the right side. The sagittal view is used as a standard. The op-
erator performs quantitative and qualitative assessment by manually outlining the gastric 
cardia in the patient placed on the right side. The obtained CSA dimension is directly 
proportional to the volume, which is ultimately obtained from the data in a mathematical 
table that takes into account the patient’s age. If the test is repeated several times, it is 
necessary to archive the data to assess the trend of changes. When Auto Gastric Antrum 
is used, the operator’s only task is to obtain the correct image accepted by the device. From 
this moment, the AI-guided ultrasound system will evaluate the image, locate the antrum 
and automatically outline the CSA, presenting the GA area in cm2, as shown in Figure 17. 

Figure 16. Automatic detection of A-line in lung ultrasound, adapted from (https://www.
butterflynetwork.com/iq-plus) with permission publisher 2024 (accessed on 1 January 2024) [29].

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 17. Auto Gastric Antrum (Mindray TEX20; software version 01(01.07.00)). 

Since the amount of gastric contents varies over time, it is possible to present the CSA 
area in the form of a trend line, which is also presented in Figure 17. Therefore, as in each 
technology described earlier, the automation of diagnostic measurements performed by 
the AI technology objectifies the obtained results, making them repeatable and avoiding 
inter-operator variability. In clinical practice, it has become an easy and very useful tool 
for assessing gastric contents. 

Clarius PAL HD3 (Clarius Mobile Health, Vancouver, BC, Canada) is the last inten-
sive-care ultrasonographic solution based on AI, not only in the context of software but 
also in the context of the optimal use of a single ultrasound transducer to examine the 
patient’s entire body (Figure 18). This solution allows the use of a single wireless trans-
ducer for all ultrasound examinations in an intensive care unit. One transducer, in the 
shape of a typical phased array transducer, presents an appropriate image as a linear, 
convex, or phased array transducer, depending on the site where the transducer is applied 
by the operator. In practice, it works in such a way that if the operator applies the trans-
ducer, for example, to the patient’s abdomen, an image typical of a convex transducer will 
automatically appear on the ultrasound screen, without the need to press any buttons. If 
the transducer is positioned around the cervical vessels, the image shape will change to 
the one acquired with a typical linear transducer. If the scan is performed to assess the 
heart, the presented image will automatically change into one typical of phased array 
transducers. 

 
Figure 18. Clarius PAL HD3, adapted from (https://clarius.com/pal-dual-array-ultrasound) with per-
mission publisher 2024 (accessed on 1 January 2024) [37]. 

If we add to this functionality the fact that the manufacturer also offers the option of 
voice control for the key functions of the ultrasound system, this solution becomes very 
practical for the operator. 

Figure 17. Auto Gastric Antrum (Mindray TEX20; software version 01(01.07.00)).

Since the amount of gastric contents varies over time, it is possible to present the CSA
area in the form of a trend line, which is also presented in Figure 17. Therefore, as in each
technology described earlier, the automation of diagnostic measurements performed by
the AI technology objectifies the obtained results, making them repeatable and avoiding
inter-operator variability. In clinical practice, it has become an easy and very useful tool for
assessing gastric contents.

Clarius PAL HD3 (Clarius Mobile Health, Vancouver, BC, Canada) is the last intensive-
care ultrasonographic solution based on AI, not only in the context of software but also in
the context of the optimal use of a single ultrasound transducer to examine the patient’s
entire body (Figure 18). This solution allows the use of a single wireless transducer for all
ultrasound examinations in an intensive care unit. One transducer, in the shape of a typical
phased array transducer, presents an appropriate image as a linear, convex, or phased
array transducer, depending on the site where the transducer is applied by the operator. In
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practice, it works in such a way that if the operator applies the transducer, for example, to
the patient’s abdomen, an image typical of a convex transducer will automatically appear
on the ultrasound screen, without the need to press any buttons. If the transducer is
positioned around the cervical vessels, the image shape will change to the one acquired
with a typical linear transducer. If the scan is performed to assess the heart, the presented
image will automatically change into one typical of phased array transducers.
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If we add to this functionality the fact that the manufacturer also offers the option of
voice control for the key functions of the ultrasound system, this solution becomes very
practical for the operator.

Table 1. Summary of selected technological and artificial intelligence in ultrasonography in the field
of ICU.

AI Technology Manufacturer Short Description Range of
Ultrasound Exam

Lvivo Philips
automatic measurement of

stroke volume (SV) and
cardiac output (CO)

Ultrasonographic
assessment of

cardiac function

AutoVTI GE

US2.AI EchoNous

SmartVTI Mindray

SmartEchoVue Mindray

assessment of views Whole body
Us2.ai and AI TRO EchoNous

Butterfly ScanLab Butterfly Network

LVivo Seamless Philips

AutoEF Mindray

calculation of ejection
fraction (EF)

Ultrasonographic
assessment of

cardiac function

RealTimeEF GE

US2.AI EchoNous

LvivoEF Philips

SmartIVC Mindray automatic measurement of
the inferior vena cava (IVC)

Internal Vena
Cava examinationAutoIVC GE

Smart B-line Mindray
automatic identification of

the artifacts Lung examinationButterfly ScanLab Butterfly Network

Auto B-line GE

Auto Gastric Antrum Mindray automatic measurement of
gastric contents

Gastric
examination

Clarius PAL HD3 Clarius Mobile
Health 1 probe for each examination Whole body

https://clarius.com/pal-dual-array-ultrasound
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All the above mentioned AI-based technologies (Table 1) are still at an early stage of
implementation, and confirming their usefulness requires extensive research to enable their
practical clinical evaluation. Simplified interpretation of images (63%);

• Facilitation of the learning process for ultrasound (59%);
• Streamlined capture of images (47%);
• Enhanced accuracy scanning (42%);
• Quicker diagnosis for accelerated treatment (40%);
• Higher efficiency in workflow (38%).

The benefits of using AI include not only support for beginner ultrasonographers but
also for those highly experienced. Survey participants pointed to significant improvements
in productivity, with features such as auto-labeling (76%) and daily diagnostic support
(75%) of key importance. Most of all, AI reduces the scanning time, which allows a larger
number of patients to be examined. Additionally, diagnostic AI support may be used
to confirm the initial diagnosis established by experienced clinicians, thus accelerating
therapeutic processes in an intensive care unit (Figure 19) [38].
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3. Conclusions

Introduction of ultrasound to assess a patient’s health status was the first revolution
in intensive care. Currently, as shown in this paper, artificial intelligence facilitates ultra-
sound imaging and measurements crucial for selected areas of intensive care, significantly
reducing the workload of medical staff. Introduction of complex systems based on artificial
intelligence, which will increase the diagnostic speed and effectiveness, as well as facilitate
making complex clinical decisions, will most likely represent another milestone. The com-
plexity of an intensive care unit, the instability and severity of patients’ condition, and the
need to combine the medical knowledge of specialists in various medical fields will most
likely make it impossible to create independent autonomous systems for assessing patient
health status, but the emerging solutions will significantly accelerate the diagnostic and
therapeutic path, improving the treatment outcomes of intensive care patients.
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