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Abstract: Background: In patients with embolic stroke of undetermined source (ESUS), occult atrial
fibrillation (AF) has been implicated as a key source of cardioembolism. However, only a minority
acquire implantable cardiac loop recorders (ILRs) to detect occult paroxysmal AF, partly due to
financial cost and procedural inconvenience. Without the initiation of appropriate anticoagulation,
these patients are at risk of increased ischemic stroke recurrence. Hence, cost-effective and accurate
methods of predicting AF in ESUS patients are highly sought after. Objective: We aimed to incorpo-
rate clinical and echocardiography data into machine learning (ML) algorithms for AF prediction
on ILRs in ESUS. Methods: This was a single-center cohort study that included 157 consecutive
patients diagnosed with ESUS from October 2014 to October 2017 who had ILR evaluation. We
developed four ML models, with hyperparameters tuned, to predict AF detection on an ILR. Results:
The median age of the cohort was 67 (IQR 59–74) years old and the median monitoring duration
was 1051 (IQR 478–1287) days. Of the 157 patients, 32 (20.4%) had occult AF detected on the ILR.
Support vector machine predicted for AF with a 95% confidence interval area under the receiver op-
erating characteristic curve (AUC) of 0.736–0.737, multilayer perceptron with an AUC of 0.697–0.708,
XGBoost with an AUC of 0.697–0.697, and random forest with an AUC of 0.663–0.674. ML feature
importance found that age, HDL-C, and admitting heart rate were important non-echocardiography
variables, while peak mitral A-wave velocity and left atrial volume were important echocardiography
parameters aiding this prediction. Conclusion: Machine learning modeling incorporating clinical and
echocardiographic variables predicted AF in ESUS patients with moderate accuracy.

Keywords: embolic stroke of undetermined source; atrial fibrillation; ischemic stroke; implantable
loop recorder
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1. Introduction

The annual burden of ischemic stroke (IS) has increased substantially in the past
20 years, with 12.2 million incident cases in 2019 [1]. Embolic stroke of undetermined
source (ESUS) accounts for approximately 17% of acute IS cases and confers an increased
stroke recurrence risk of 4–5% annually [2]. ESUS is defined as a non-lacunar brain infarct
in the absence of extracranial or intracranial atherosclerosis, major-risk cardioembolic
sources, and any other specific cause of stroke [3]. Proposed etiologies of ESUS include
atrial cardiopathy, non-obstructive arterial atherosclerotic plaques, left ventricular (LV)
systolic dysfunction, cardiac valvular disease, patent foramen ovale, and cancer [4,5].

In patients with ESUS, occult paroxysmal atrial fibrillation (AF) has been implicated as
a key occult source of embolism. In the prospective ASSERT cohort study, 10% of patients
with ESUS were found to have atrial tachyarrhythmias detected on an implantable cardiac
loop recorder (ILR), with an increased hazard rate of 5.6 for clinical AF at 2.5 years [6]. An
ILR allows for the prolonged recording of heart rhythms for up to three years, increasing
the detection rate of paroxysmal cardiac arrhythmias such as AF [7]. In patients with ESUS,
continuous heart rhythm monitoring using ILRs identifies AF in approximately 30% of these
patients [8], and previous studies have shown that the presence of such paroxysmal AF
episodes conferred an increased risk of stroke [6]. Despite current recommendations, only
a minority of patients with ESUS receive prolonged cardiac monitoring owing to patient
preferences, procedural inconvenience, and the significant cost of an ILR implantation [9,10].
This leads to a missed opportunity to institute ideal treatment with oral anticoagulation
to mitigate the risk of a recurrent stroke. As such, cost-effective and accurate ways to risk
stratify patients and predict for underlying occult AF in patients with ESUS are highly
sought after.

Machine learning (ML) is a branch of artificial intelligence that utilizes data and
algorithms to learn and make predictions. While there is established evidence regarding the
association of echocardiographic parameters such as atrial and ventricular size, valvular
heart disease, and left atrial thrombus with AF, ML using echocardiographic parameters
has not been adequately applied to predict AF in patients with ESUS. The incorporation
of echocardiographic parameters alongside clinical variables may enhance the predictive
accuracy of ML models.

Hence, the aim of this study was to develop an ML prediction model to predict parox-
ysmal AF in patients with ESUS using a combination of clinical parameters, biomarkers,
and echocardiographic parameters. We hypothesized that an ML model incorporating a
combination of clinical and echocardiographic parameters will predict the occurrence of
AF with moderate–high accuracy and provide insights on important variables aiding this
prediction that may not be identified using traditional statistics.

2. Methods
2.1. Study Design

This study involved a retrospective cohort of consecutive patients with ESUS diagnosis
from a stroke unit at a tertiary care hospital from October 2014 to October 2017. All 291 pa-
tients were offered an ILR, of which 157 proceeded with implantation and were included
in the study and analyzed. Clinical and ILR data were collected from the institution’s elec-
tronic medical record and electronic ESUS database. The data collected comprised patient
demographics, medical comorbidities, and laboratory and imaging results. Quantified
data from echocardiography were recorded as categorical or numerical features and not
run through the ML models as visual images. ESUS was defined according to the criteria
outlined by the Cryptogenic Stroke/ESUS International Working Group as a non-lacunar
brain infarction without the following: extracranial or intracranial atherosclerosis resulting
in a luminal stenosis of 50% in the arteries supplying the area of infarction, major car-
dioembolic source, and other specific cause (e.g., vasculopathy, dissection, vasospasm, or
thrombophilia) [3]. All the ILR data were extracted and evaluated by a trained electrophys-
iologist. This study is reported following the Strengthening the Reporting of Observational
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Studies in Epidemiology (STROBE) checklist [11]. Ethics approval was obtained from
the National Healthcare Group Domain Specific Review Board (NHG DSRB Reference:
2021/00623). The study was conducted in accordance with the Declaration of Helsinki.
Exemption for informed consent taking was given in view of the retrospective nature of the
cohort and use of de-identified data.

2.2. Data Pre-Processing for Machine Learning Models

Descriptive statistics were used to compare characteristics between AF and non-AF
groups, with Pearson’s Chi-squared test used for categorical variables and the Mann–
Whitney U test for continuous variables. The dataset was first divided into 70% for
the training set and 30% for the test set using stratified sampling from the Scikit-learn
library [12]. IterativeImputer from the Scikit-learn library was used to impute missing
values in numerical features, while missing values in categorical features were imputed
using mode. Integer encoding was applied to ordinal variables, while one-hot encoding
was applied to nominal variables to ensure compatibility with ML algorithms.

2.3. Overcoming an Imbalanced Dataset

Several resampling techniques were employed to balance the target distribution in
the training set using the imbalanced-learn library in Python [13]. We implemented three
broad resampling strategies, namely oversampling, undersampling, and a combination
of both. We utilized two approaches to implement oversampling—random oversampling
and the synthetic minority oversampling technique (SMOTE) [14]. Undersampling was
implemented using random undersampling [15]. Furthermore, we proposed two combi-
nations of oversampling and undersampling to balance the target distribution. Random
oversampling and random undersampling were used jointly in the first combination while
SMOTE and random undersampling were used jointly in the second combination.

2.4. Machine Learning Algorithms

Several ML algorithms, namely support vector machine (SVM), random forest, extreme
gradient boosting (XGBoost), and multilayer perceptron (MLP), were implemented in
Python version 3.9.12 with the aid of open-source packages from Scikit-learn version 1.2.0
and XGBoost version 1.7.2 [12]. Before resampling the training set, StandardScalar from the
Scikit-learn library helped standardize numerical variables for SVM and MLP so that each
variable had zero mean and unit variance.

SVM was implemented using Support Vector Classifier, random forest using Random
Forest Classifier, XGBoost using XGBoost Classifier, and MLP using MLP Classifier, all
of which were derived from the Scikit-learn library. Additionally, XGBoost leveraged the
XGBoost library. Our MLP models contained one input layer, one hidden layer, and one
output layer. The hyperparameters tuned using grid search for each ML model can be
found in Supplementary Material: Table S1.

Feature selection was additionally performed on SVM with linear kernel, XGBoost,
and random forest. Features were selected based on feature importance in the Scikit-learn
library, which measured the individual contribution of each feature towards the perfor-
mance of the respective classifier [16]. Thus, features with an absolute importance value
greater than or equal to the specified threshold selected using grid search were retained
in these models. Outside of feature selection models, feature importance values were also
obtained for our best-performing random forest model (RF with random undersampling
and hyperparameter tuning) without reducing the number of features (Supplementary
Materials: Figure S1). Shapley additive explanation (SHAP) [17] was performed on our
best-performing model, namely SVM with random oversampling and hyperparameter
tuning (Figure 1), with mean absolute SHAP values obtained as a unified measure of
feature importance.
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Figure 1. Mean absolute SHAP values of features in best-performing SVM model (top 20 features
displayed). Abbreviations: SHAP, Shapley additive explanation; SVM, support vector machine.
Abbreviations of all features can be found in Supplementary Materials: Table S2.

2.5. Performance Metrics

For each ML model, the performance scores of 20 iterations were obtained, with
each iteration using a different random state. In each iteration, a grid search with 5-fold
cross-validation was utilized to select the best hyperparameter set for the model. The 95%
confidence interval was calculated for each test performance metric by aggregating the
results from 20 iterations. As the outcome was categorical, the summary performance
estimates used included test AUC, accuracy, sensitivity, specificity, and F1 score.

3. Results
3.1. Baseline Characteristics

This study included 157 patients who had an ILR implantation after ESUS. The median
age was 67 years (IQR 59–74), with 43 (27.4%) patients being female and 128 (81.5%) being
of Chinese ethnicity. Patients were monitored for a median duration of 2.88 (IQR 1.31–3.52)
years. There were 108 (68.8%) patients with hypertension, 96 (61.1%) with hyperlipidemia,
60 (38.2%) who were current or previous smokers, and 60 (38.2%) with diabetes mellitus.
The median National Institutes of Health Stroke Scale (NIHSS) score was 4 (IQR 1.5–8.5).
Of the 157 patients, 32 (20.4%) had AF detected on their ILR subsequently. Comparing
the group with AF detected versus the group without, the median age and high-density
lipoprotein cholesterol (HDL-C) were significantly higher, while the admitting heart rate
was significantly lower (Table 1). Apart from the proportion of patients with mitral stenosis,
there were no significant differences in echocardiography parameters between these two
groups (Table 2).
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Table 1. Characteristics of patients with ILR implantation after ESUS, with comparison between AF
detected on ILR and AF not detected on ILR.

Variable Total (N = 157) AF Not Detected on ILR
(n = 125)

AF Detected on ILR
(n = 32) p-Value

Age (years, median [IQR]) 67.00 [59.00, 74.00] 65.00 [57.00, 72.00] 73.50 [67.00, 77.25] <0.001

Female sex (n, %) 43 (27.4) 28 (22.4) 15 (46.9) 0.011

Duration of ILR monitoring (days, median
[IQR]) 1051.00 [478.00, 1287.00] 1024.00 [387.00, 1287.00] 1093.00 [664.25, 1283.50] 0.33

Ethnicity (n, %) 0.442

Chinese 128 (81.5) 100 (80.0) 28 (87.5)

Malay 12 (7.6) 9 (7.2) 3 (9.4)

Indian 12 (7.6) 11 (8.8) 1 (3.1)

Others 5 (3.2) 5 (4.0) 0 (0.0)

Comorbidities (n, %)

Smoking status 0.103

Never 97 (61.8) 72 (57.6) 25 (78.1)

Previous smoker 52 (33.1) 46 (36.8) 6 (18.8)

Current smoker 8 (5.1) 7 (5.6) 1 (3.1)

Hypertension 108 (68.8) 83 (66.4) 25 (78.1) 0.288

Hyperlipidemia 96 (61.1) 76 (60.8) 20 (62.5) 1

Diabetes mellitus status 0.604

No DM 97 (61.8) 75 (60.0) 22 (68.8)

DM on OHGA 56 (35.7) 47 (37.6) 9 (28.1)

DM on insulin 4 (2.5) 3 (2.4) 1 (3.1)

Stroke Parameters

Acute treatment (n/total, %) 0.4

No tPA or EVT 111/152 (73.0) 87/122 (71.3) 24/30 (80.0)

tPA 23/152 (15.1) 21/122 (17.2) 2/30 (6.7)

EVT 10/152 (6.6) 7/122 (5.7) 3/30 (10.0)

Both tPA and EVT 8/152 (5.3) 7/122 (5.7) 1/30 (3.3)

Baseline mRS (n/total, %) 0.084

0 91/114 (79.8) 75/92 (81.5) 16/22 (72.7)

1 13/114 (11.4) 12/92 (13.0) 1/22 (4.5)

2 3/114 (2.6) 2/92 (2.2) 1/22 (4.5)

3 5/114 (4.4) 2/92 (2.2) 3/22 (13.6)

4 2/114 (1.8) 1/92 (1.1) 1/22 (4.5)

Admitting NIHSS (median [IQR]) 4.00 [1.50, 8.50] 4.00 [2.00, 7.75] 3.00 [1.00, 14.00] 0.78

Admitting systolic BP (mmHg, median
[IQR]) 152.00 [132.00, 170.00] 150.00 [132.25, 168.50] 162.00 [129.50, 175.00] 0.49

Admitting diastolic BP (mmHg, median
[IQR]) 82.00 [72.00, 92.00] 82.50 [72.00, 92.75] 82.00 [72.50, 86.00] 0.416

Admitting heart rate (beats per minute,
median [IQR]) 78.00 [68.00, 88.00] 80.00 [71.50, 89.00] 68.00 [63.00, 82.00] 0.003

Biochemical Parameters

Total cholesterol (mmol/L, median [IQR]) 4.56 [3.80, 5.34] 4.53 [3.78, 5.32] 4.84 [4.22, 5.81] 0.085

LDL (mmol/L, median [IQR]) 2.88 [2.03, 3.54] 2.77 [1.94, 3.49] 3.02 [2.28, 4.24] 0.079

HDL (mmol/L, median [IQR]) 1.15 [1.00, 1.35] 1.13 [1.00, 1.30] 1.34 [1.06, 1.67] 0.004

HbA1c (%, median [IQR]) 6.05 [5.60, 6.93] 6.20 [5.70, 7.07] 5.90 [5.53, 6.50] 0.207

Fasting glucose (mmol/L, median [IQR]) 5.70 [5.20, 6.50] 5.70 [5.30, 6.70] 5.45 [5.20, 5.97] 0.217
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Table 1. Cont.

Variable Total (N = 157) AF Not Detected on ILR
(n = 125)

AF Detected on ILR
(n = 32) p-Value

Serum creatinine (µmol/L, median [IQR]) 77.00 [61.50, 93.50] 76.00 [62.25, 90.00] 81.00 [58.00, 100.00] 0.419

eGFR (mL/min/1.73 m2, median [IQR]) 89.00 [69.25, 99.00] 91.00 [75.25, 100.00] 76.00 [57.50, 91.00] 0.012

Others

Previous myocardial infarction (n, %) 21 (13.4) 16 (12.8) 5 (15.6) 0.898

Previous stroke (n, %) 0.682

None 98 (62.4) 76 (60.8) 22 (68.8)

TIA 45 (28.7) 37 (29.6) 8 (25.0)

Stroke 14 (8.9) 12 (9.6) 2 (6.2)

Heart failure 7 (4.5) 5 (4.0) 2 (6.2) 0.944

Antiplatelet 141 (89.8) 113 (90.4) 28 (87.5) 0.876

Anticoagulation 12 (7.6) 11 (8.8) 1 (3.1) 0.481

Body mass index (kg/m2, median [IQR]) 24.09 [21.53, 27.22] 24.09 [21.69, 27.14] 23.68 [21.42, 28.89] 0.893

Body surface area (median [IQR]) 1.71 [1.57, 1.83] 1.72 [1.57, 1.83] 1.64 [1.54, 1.80] 0.238

Abbreviations: n, number; Total, total number of non-missing values; p, p-value of Pearson’s Chi-squared test
for categorical variables and Mann–Whitney U test for continuous variables; IQR, interquartile range; ILR,
implantable loop recorder; ESUS, embolic stroke of undetermined source; DM, diabetes mellitus; OHGA, oral
hypoglycemic agent; tPA, tissue plasminogen activator; EVT, endovascular therapy; mRS, modified Rankin
Scale; NIHSS, National Institutes of Health Stroke Scale; BP, blood pressure; LDL, low-density lipoprotein; HDL,
high-density lipoprotein; HbA1c, hemoglobin A1c; eGFR, estimated glomerular filtration rate; TIA, transient
ischemic attack.

Table 2. Characteristics of patients with ILR implantation after ESUS, with comparison between AF
detected on ILR and AF not detected on ILR (echocardiography parameters).

Echocardiography Variable Total (N = 157) AF Not Detected on ILR
(n = 125)

AF Detected on ILR (n =
32) p-Value

Peak mitral E-wave velocity (cm/s, median
[IQR]) 63.40 [53.22, 80.40] 62.30 [54.00, 79.90] 69.30 [52.15, 81.38] 0.624

Peak mitral A-wave velocity (cm/s,
median [IQR]) 79.00 [63.33, 92.27] 78.10 [62.97, 88.70] 89.50 [66.75, 106.00] 0.105

Mitral E/A ratio (median [IQR]) 0.86 [0.67, 1.04] 0.88 [0.67, 1.06] 0.74 [0.66, 0.89] 0.277

PASP (mmHg, median [IQR]) 29.00 [26.00, 34.00] 29.00 [26.00, 34.00] 29.50 [26.50, 34.25] 0.842

LVIDd (mm, median [IQR]) 47.00 [43.00, 51.00] 47.00 [43.00, 51.00] 48.00 [42.75, 51.00] 0.866

LVIDs (mm, median [IQR]) 30.00 [26.00, 33.00] 30.00 [26.00, 33.00] 29.50 [25.75, 33.00] 0.867

EDV (ml, median [IQR]) 102.00 [79.00, 124.00] 99.50 [79.00, 124.00] 108.00 [82.00, 124.00] 0.719

ESV (ml, median [IQR]) 32.00 [25.00, 44.00] 32.00 [25.00, 44.00] 33.35 [24.25, 44.00] 0.965

VisualEF (%, median [IQR]) 63.00 [60.00, 65.00] 62.00 [60.00, 65.00] 65.00 [57.75, 65.00] 0.734

IVSd (mm, median [IQR]) 10.00 [9.00, 12.00] 10.00 [9.00, 12.00] 10.00 [9.00, 12.00] 0.931

IVSs (mm, median [IQR]) 14.00 [12.00, 16.00] 14.00 [12.00, 16.00] 14.00 [12.75, 16.50] 0.926

LVPWd (mm, median [IQR]) 10.00 [9.00, 11.00] 10.00 [8.50, 11.00] 10.00 [9.00, 11.00] 0.483

LVPWs (mm, median [IQR]) 15.00 [13.00, 16.00] 15.00 [13.00, 16.00] 14.00 [13.00, 16.00] 0.83

Left atrial diameter (mm, median [IQR]) 37.00 [33.00, 41.00] 37.00 [33.00, 41.00] 39.00 [35.75, 42.25] 0.077

Left atrial volume (ml, median [IQR]) 45.00 [36.32, 56.30] 44.90 [34.20, 55.00] 50.81 [38.62, 61.61] 0.088

LV mass index (g/m2, median [IQR]) 90.00 [77.00, 109.00] 89.00 [76.00, 106.00] 95.00 [79.50, 110.25] 0.701

MS (n, %) 0.017



J. Pers. Med. 2024, 14, 534 7 of 14

Table 2. Cont.

Echocardiography Variable Total (N = 157) AF Not Detected on ILR
(n = 125)

AF Detected on ILR (n =
32) p-Value

None 154 (98.1) 124 (99.2) 30 (93.8)

Mild 2 (1.3) 0 (0.0) 2 (6.2)

Severe 1 (0.6) 1 (0.8) 0 (0.0)

Abbreviations: n, total number of non-missing values; p, p-value of Pearson’s Chi-squared test for categorical
variables and Mann–Whitney U test for continuous variables; IQR, interquartile range. Abbreviations of all
features can be found in Supplementary Materials: Table S2.

3.2. Performance of ML Models

The following describes the best-performing model of each distinctive model type.
The performance estimates of SVM with random oversampling and hyperparameter tuning
comprised an AUC of 0.736–0.737, sensitivity of 0.600–0.600, and specificity of 0.816–0.816.
XGBoost with random undersampling and hyperparameter tuning performed the best com-
pared to other balancing techniques, with an AUC of 0.697–0.697, sensitivity of 0.900–0.900,
and specificity of 0.395–0.395. Random forest with random undersampling and hyperpa-
rameter tuning had an AUC of 0.663–0.674, sensitivity of 0.650–0.700, and specificity of
0.492–0.516. The MLP model with random undersampling and hyperparameter tuning had
an AUC of 0.697–0.708, sensitivity of 0.605–0.666, and specificity of 0.627–0.652 (Table 3).

Table 3. Performance scores of models with and without feature selection, with hyperparameters tuned.

ML Models without Feature Selection

Model Balancing
Strategy Accuracy Sensitivity Specificity F1 Score AUC

XGBoost Random
undersampling 0.5–0.5 0.9–0.9 0.3947–0.3947 0.4286–0.4286 0.6974–0.6974

Random Forest Random
undersampling 0.5290–0.5502 0.6500–0.7000 0.4915–0.5164 0.3671–0.3911 0.6629–0.6737

SVM Random
oversampling 0.7708–0.7708 0.6–0.6 0.8158–0.8158 0.5217–0.5217 0.7362–0.7370

SVM Random
undersampling 0.625–0.625 0.7–0.7 0.6053–0.6053 0.4375–0.4375 0.4863–0.6935

SVM

Combined
random
oversampling
and
undersampling

0.7083–0.7083 0.6–0.6 0.7368–0.7368 0.4615–0.4615 0.7290–0.7290

SVM

Combined
SMOTE and
random
undersampling

0.7917–0.7917 0.4–0.4 0.8947–0.8947 0.4444–0.4444 0.6815–0.6818

MLP SMOTE 0.7271–0.7687 0.3781–0.4520 0.8136–0.8574 0.3714–0.4458 0.6497–0.6756

MLP Random
oversampling 0.7049–0.7264 0.3928–0.4373 0.7789–0.8106 0.3638–0.3920 0.6559–0.6839

MLP Random
undersampling 0.6262–0.6509 0.6045–0.6655 0.6271–0.6518 0.4041–0.4408 0.6973–0.7079

ML Models with Feature Selection

Model Balancing
Strategy

Number of
Features
Retained

Accuracy Sensitivity Specificity F1 Score AUC

SVM SMOTE 50 0.7292–0.7292 0.2000–0.2000 0.8684–0.8684 0.2353–0.2353 0.6763–0.6763

Random Forest Random
undersampling 70 0.7083 0.3000 0.8158 0.3000 0.5289

XGBoost Random
undersampling 18 0.5625 0.7000 0.5263 0.4000 0.6500

Abbreviations: SVM, support vector machine; XGBoost, extreme gradient boosting; MLP, multilayer perceptron;
AUC, area under the receiver operating characteristic curve; SMOTE, synthetic minority oversampling technique.
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3.3. Feature Importance
3.3.1. Feature Importance Using Best-Performing Random Forest

The top five predictive features in AF detection on an ILR are heart rate, estimated
glomerular filtration rate (eGFR), age, height, and HDL-C, before optimizing the number
of features retained (Supplementary Materials: Figure S1).

3.3.2. Feature Importance via SHAP in SVM

The mean absolute SHAP values of features were obtained from our best performing
model—SVM with random oversampling only and with hyperparameter tuning—of which
the top 20 features are displayed in Figure 1. The five features with the highest mean
absolute SHAP values were peak mitral A-wave velocity (MitralAVel), HDL-C, age, heart
rate, and left atrial volume (LAV), three of which correspond with the five most important
features in random forest (Figure 1 and Figure S1). Corresponding violin and beeswarm
plots are visualized in Figure 2 and Figure S2, respectively. Force plots are visualized in
Supplementary Materials: Figures S3 and S4.
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3.4. Feature Selection Using SVM, Random Forest, and XGBoost

Feature selection using the SVM model resampled with SMOTE generated an AUC of
0.676–0.676, sensitivity of 0.200–0.200, and specificity of 0.868–0.868 and retained 50 features
(Table 3). The top five most important features were eGFR, sex, height, creatinine levels,
and laterality of stroke (left) (Figure 3a). Feature selection using random forest resampled
with random undersampling generated an AUC of 0.529, sensitivity of 0.300, and specificity
of 0.816 and retained 70 features (Table 3). The top five most important features were
sex, peak mitral A-wave velocity, HDL-C, admitting heart rate, and triglyceride levels
(Figure 3b). Feature selection using XGBoost resampled with random undersampling
generated an AUC of 0.650, sensitivity of 0.700, and specificity of 0.526, while retaining
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18 features (Table 3). The top five most important features were height, left atrial diameter,
peak mitral A-wave velocity, BMI, and admitting heart rate (Figure 3c).
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Figure 3. (a) Feature selection using SVM model with SMOTE; (b) feature selection using random
forest with random undersampling; (c) feature selection using XGBoost with random undersampling.
Abbreviations: SVM, support vector machine; SMOTE, synthetic minority oversampling technique;
XGBoost, extreme gradient boosting. Abbreviations of all features can be found in Supplementary
Materials: Table S2.
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4. Discussion

In this study, we have presented a series of ML models to identify variables that may
be important in the prediction of AF occurrence through ILR monitoring to aid decision-
making for ILR implantation in ESUS. Our SVM model performed the best in this prediction
(AUC = 0.736–0.737) when compared to XGBoost, random forest, and MLP.

To our knowledge, there has been little research specifically regarding the detection
of pAF after ESUS using ML algorithms. Our study is one of the few to incorporate an
extensive list of pre-reported echocardiogram results with clinical and biochemical data
into the predictive modeling of AF on ILRs.

The C2HEST score was developed using a large French nationwide cohort to predict
AF after ischemic stroke, comprising of coronary artery disease, chronic obstructive pul-
monary disease, hypertension, advanced age, systolic heart failure, and thyroid disease [18].
Other scoring systems were previously developed using traditional statistics to predict
AF specifically after cryptogenic stroke, namely the Brown ESUS-AF [19], HAVOC [20],
AS5F [21], and AF-ESUS scores [22]. The Brown ESUS-AF score was developed using mul-
tivariable logistic regression, comprising age and left atrial enlargement, which predicted
AF using cardiac monitoring in ESUS [19]. The HAVOC score stratified patients into low-,
medium-, and high-risk groups and evaluated the probability of AF detection after ESUS
in each group using seven clinical variables, namely age, obesity, congestive heart failure,
hypertension, coronary artery disease, peripheral vascular disease, and valve disease [20].
The AS5F score comprised age and stroke severity [21]. The AF-ESUS score assigned
positive weights for age, hypertension, left atrial diameter > 40 mm, and supraventricular
extrasystole and negative weights for left ventricular hypertrophy, left ventricular ejection
fraction < 35%, subcortical infarct, and non-stenotic carotid plaques [22].

Comparing random forest’s feature importance to the feature importance via mean
absolute SHAP values using SVM, among the ten most important features in each of the
two models, six were identical (admitting heart rate, eGFR, age, HDL-C, peak mitral A-
wave velocity, and systolic blood pressure). Among the top five most important features
in each of the two models, three were identical (age, HDL-C, and admitting heart rate)
(Figures 1 and S1). SHAP values provide an interpretable approximation of the original
model with a unique additive measure that adheres to three desirable properties and defines
simplified inputs using conditional expectations [17]. Amongst all the aforementioned
clinical scores and features of importance in our ML models, age was identified as an
important predictor of pAF detection in ESUS. This corroborates the results of past studies
that found age to be a predictor of AF in ESUS [23] and age above 60 years old to be a robust
indicator of occult AF after cryptogenic stroke [24]. The mechanism could be attributed to
age-related atrial myocardial electrical and structural remodeling [25]. Thus, this reinstates
the usefulness of age to stratify patients who require extended cardiac monitoring in
ESUS. Mitral A-wave velocity is an echocardiography parameter that assesses blood flow
through the mitral valve due to atrial contraction. While it is poorly understood whether
transmitral inflow waves and filling can be used to predict AF, studies have reported that
patients with progression to permanent AF had lower peak A velocity than those without
progression [26]. In our study, peak mitral A-wave velocity was identified as an important
variable in feature selection using random forest and XGBoost (Figure 3b,c). However, no
association was found on traditional descriptive statistics.

Left atrial volume was identified as important in our ML feature importance assess-
ment, which concurs with a past study that found left atrial volume to be significantly
higher in the group with AF detected via ILR in unexplained stroke [27]. Similarly, left atrial
enlargement and left atrial diameter are also variables included in the Brown ESUS-AF
score and AF-ESUS score, respectively.

Estimated glomerular filtration rate (eGFR) was the second most important feature
in our best-performing random forest model and the most important feature in SVM
with feature selection (Supplementary Materials: Figures S1 and S3). An explanation
is that AF is a prothrombotic state that causes microthrombi of the renal vasculature.
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This reduces renal perfusion and results in renal ischemia, causing kidney impairment
reflected as reduced eGFR [28]. The converse process may be plausible as well. Initial
renin–angiotensin–aldosterone system (RAAS) activation in patients with renal impairment
may itself be arrhythmogenic, where oxidative stress mediates changes in cellular ion
channels [29], resulting in paroxysmal AF. Furthermore, the RAAS has been found to be
closely connected to AF development through inflammation and structural and electrical
cardiac remodeling [30]. Sex was identified as the most important and second most
important feature in the random forest and SVM models, respectively. It is possible that
the attributable proportions of etiologies of ESUS may differ between genders. In males,
the size, composition, and morphology of carotid atherosclerotic plaques were found to be
more pronounced than in females [31]; thus, ESUS etiology in males may be more greatly
attributed to non-stenotic atherosclerotic plaques than paroxysmal AF. In the AF-ESUS
score, variables with negative weights assigned were more predictive of an absence of new
AF detection. Similarly, our ML models were able to identify an ordered list of features
that are predictive of absence of AF detection on an ILR, such as eGFR, height, and systolic
blood pressure (Figures 2 and 3a).

An extensive 48-country survey of stroke units found prolonged cardiac monitoring
not to be a routine workup for cryptogenic stroke even in high-income nations [10]. With
ESUS patients having a notable risk of stroke recurrence of 4–5% yearly [22], optimizing
resource allocation for patients who require prolonged cardiac monitoring after ESUS
remains important to reduce the high costs associated with implementing prolonged cardiac
monitoring. Our study provides an ML approach to aid decision-making for prolonged
cardiac monitoring in ESUS patients and provides future studies with a supplemental list
of variables for evaluation.

5. Strengths and Limitations

Machine learning models have been used to predict outcomes of stroke. However, re-
porting standards have been suboptimal, such as the exclusion of hyperparameter selection
reporting, lack of clear reporting regarding the handling of imbalanced datasets, and the
absence of feature selection [32]. In our study, we have presented four distinct ML models
with data imbalance addressed and hyperparameters tuned and with feature selection for
selected models. Multiple resampling techniques were evaluated to handle the imbalanced
target class, including random oversampling, random undersampling, SMOTE, and a
combination of these, which facilitated the development of the best performing model for
each distinctive ML type. The directional relationship of variables with outcomes should be
observed using our violin plots of SHAP values generated with our best performing SVM
model and the SVM feature selection plot (Figures 2 and 3a) instead of our random forest
feature importance plot as the latter was unable to discern direction of outcome prediction.
Thus, absolute predictive ability should not be confused with directional predictability.
Internal validation was performed through performance evaluation on unseen validation
(test) data. Generalizability should be further evaluated in the future. The performance of
our MLP model should be interpreted with discretion as it is a neural network algorithm
limited by a relatively small patient cohort. In our study, many features were used to
predict the presence of AF on ILRs, compared to several used in existing clinical scores.
In the pre-processing stage, imputation of missing values of categorical features may be
explored using multiple imputations to compare with the current imputation by mode.
Future studies should further explore discordances between important features identified
via descriptive statistics and traditional logistic regression compared to machine learning
modalities in larger international ESUS datasets.

6. Conclusions

Machine learning modeling incorporating clinical and echocardiographic variables
predicted AF in ESUS patients with moderate accuracy.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm14050534/s1. Figure S1: Feature Importance of Best-performing
Random Forest Model; Figure S2: Beeswarm Plot of Best-performing SVM Model (top 20 features
displayed); Figure S3: SHAP Global Importance/Explanations: Force Plot with Best-performing SVM
Model; Figure S4: SHAP Local Importance/Explanations: Force Plot with Best-performing SVM
Model for single patient (index patient); Table S1: Set of Hyperparameters Tuned using Grid Search in
Machine Learning Models; Table S2: List of Features included in ML Models and their Abbreviations.
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