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Abstract: This paper studies the plastic deformation of a rotating disk made of aluminum dispersion-
hardened alloys using mechanical tensile tests and a structured study using optical microscopy
methods. Alloys such as AA5056 and A356 with dispersed Al3Er and TiB2 particles are used as the
initial materials. Tensile strength testing of the obtained alloys shows that the addition of Al3Er
particles in the AA5056 alloy composition leads to an increase in its ultimate stress limit (USL) and
plasticity from 170 to 204 MPa and from 14.7 to 21%, respectively, although the modifying effect is
not observed during crystallization. The addition of TiB2 particles to the A356 alloy composition
also leads to a simultaneous increase in the yield strength, USL, and plasticity from 102 to 145 MPa,
from 204 to 263 MPa, and from 2.3 to 2.8%, respectively. The study of the stress-strain state of the
disk was carried out in the framework of deformed solid mechanics. The equilibrium equations were
integrated analytically, taking into account the hardening conditions obtained from the experimental
investigations. This made it possible to write the analytical relations for the radial and circumferential
stresses and to determine the conditions of plastic deformation and loss of strength. The plastic
resistance of a disk depends on the ratio between its outer and inner radii. The plastic resistance
decreases with increasing disk width at a constant inner radius, which is associated with a stronger
effect from the centrifugal force field. At a higher rotational rate of narrow disks, the tangential
stresses are high and can exceed the USL value. A356 and A356–TiB2 alloys are more brittle than the
AA5056 and AA5056–Al3Er alloys. In the case of wide rotating disks, AA5056 and AA5056–Al3Er
alloys are preferable.

Keywords: rotating disk; stress-strain state; dispersion-hardened materials; nanoparticles; strain
hardening; plastic strain; mathematical model

1. Introduction

The improvement of process facility performance requires the creation of materials
that provide the appropriate levels of reliability and life. Such materials must possess high
strength and sufficient plastic potential. In order to achieve these goals, it is advisable to
utilize composite materials consisting of high-strength fillers (dispersed phases) and plastic
binders (matrices).

According to Matthews and Rawlings [1], dispersion-hardened materials with nanopar-
ticles in their matrix are of particular interest. These alloys manifest unique properties
compared to conventional alloys. Unlike reinforced and laminated materials, the main
advantages of dispersion-hardened alloys are the isotropy of mechanical properties, high
plasticity, and strength [2,3]. Compared to fibers, dispersion-hardened composite materials
are characterized by a load-bearing matrix. An ensemble of dispersed particles strengthens
the material due to its resistance to dislocation motion under loading [4]. This hinders
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plastic deformation and improves the strength and stress–strain properties of materials.
Since the strength properties of dispersion-hardened materials depend on the particle shape
and size, a variation in the matrix composition, particle size, and volume fraction makes it
possible to create materials with the required properties. Kröpfl et al. [5] considered the
deformation process in dispersion-hardened aluminum materials during uniaxial creep in
a wide temperature range. It was found that the yield strength was significantly reduced
at elevated temperatures. Stobrawa et al. [6] reported a considerable improvement in the
properties of nanoparticle-strengthened composites.

The addition of strengthening particles greatly increases the mechanical properties
(ultimate stress limit and hardness) and performance (wear resistance) of materials [7].
Dispersion-hardened metallic materials demonstrate an excellent strength/plasticity ratio.
According to [8], a wide range of materials with the required property set can be obtained
by changing the matrix, particle size, and volume fraction. The modification of these
parameters provides a wide spectrum of materials with the required property set [9].

The use of nonmetallic particles is a promising technique to improve the structures
of cast alloys. There are currently a number of experimental data on the use of metal
oxides (Al2O3, TiO2), carbides, and borides for the grain structure modification of Al–Si
alloys [10–14].

In our early research [15], we studied the microstructure and mechanical properties of
the aluminum alloy A356 strengthened by the scandium trifluoride (ScF3) nanoparticles
with a negative thermal expansion coefficient. The alloy demonstrated a highly efficient
use of ScF3-based modifiers and additional ultrasonic treatment. The mechanical mixing
and vibration treatment used in [16] affected the structure and mechanical properties of the
aluminum alloy A356–C consisting of ≤1 wt.% nanodiamonds. It was shown that the yield
strength and ultimate stress limit (USL) of the A356 alloy increased without changing its
plasticity. In [17], we conducted an integrated study of the alloy production process and
the treatment effect on its physical and mechanical properties. It was found that the grain
structure of the alloys consisting of TiB2 particles was completely formed. The addition of
TiB2 particles increased the yield strength, USL, and plasticity of the alloys. The highest
effect from the ground structure of the cast alloys was achieved by using a master alloy
consisting of 1 µm TiB2 particles.

As shown in [18], the strength properties of dispersion-hardened materials depend
on the particle shape and size, strain temperature, and rate. Alloy strengthening depends
on the particle type, volume fraction, and particle distribution in the matrix. Aluminum-
based composites strengthened with particles are used in automobile construction, the
construction industry, and aircraft engineering.

The plastic shear and strain hardening of heterophased alloys were studied by Orowan,
Ashby, Hirsch [19–29], and others. It was found that the strain hardening of materials with
nanoscale and nanodispersed strengthening phases independent of the matrix interface
was more intensive than that of the materials with coarse particles at the same volume
fraction of the strengthening phase.

The stress–strain state of copper pipe walls subjected to elastoplastic deformation was
investigated in [30–32] by using the flow plasticity model combined with solid mechanics
modeling.

Rotating disks are the most important elements in many mechanisms and
devices [33–36]. Disk strength determines the high performance and lifetime of the mecha-
nisms. Most of the up-to-date turbo-machines are provided with disks operating at higher
loads, causing plastic deformation. These loads are mostly centrifugal forces induced by
the rotation process. Due to the increased requirements for the safety and efficiency of
up-to-date turbo-machines, it is necessary to develop new methods of investigating stress–
strain states. In addition to solid disks, annular disks are used to study the stress–strain
state of turbo-machine parts. This is also relevant for disks that are separately attached to
a shaft.
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The stress analysis of rotating disks and shafts is a classical problem in solid mechan-
ics. Many studies are devoted to solving these problems using various methods [37–39].
Analytical solutions to the rotating disk problem are common in classical works devoted
to theories of elasticity [40] and plasticity [41,42]. This problem is also discussed in many
engineering studies. The simplest analytical modeling and preliminary design involve the
use of a uniform solid or annular disk with a constant thickness subjected to one external
centrifugal force. Most of the previous studies considered the Tresca–Saint Venant crite-
rion and the material hardening conditions [43]. Another popular approach to this issue,
proposed by Jahromi et al. [44], is the use of the von Mises yield criterion.

Apatay and Eraslan [45] suggested analytical solutions in terms of hypergeometric
functions for the elastic deformation of rotating parabolic discs made of isotropic and ho-
mogeneous materials. Theoretical studies in [46] were used to investigate the stress–strain
state of rotating hyperbolic disks fabricated from isotropic and homogeneous materials
subjected to variable thermal loads. Using Tresca’s yield condition, Güven [47] investigated
a linearly hardening rotating solid disk with variable thickness. A theoretical stress analysis
was given in [48] for rotating hyperbolic disks made of isotropic and homogeneous materi-
als. Using Tresca’s yield condition, Eraslan [49] suggested analytical solutions for stress
distribution in rotating parabolic solid disks also made of an isotropic and homogeneous
material with linear strain hardening. It was shown that the deformation behavior of a
parabolic convex disk was similar to that of a uniform disk of the same thickness, but in
the case of a parabolic concave disk, it was different. Based on Tresca’s yield condition,
the associated plastic flow rule, and linear material hardening, Eraslan [50] suggested an
analytical solution for the elastic–plastic deformation of rotating parabolic disks under
pressurized and radially constrained boundary conditions.

Vebil Yildirim [51] conducted a parametric study on the centrifugal force-induced
stress and displacements in power-law graded hyperbolic discs, depending on inhomo-
geneity, profile, and boundary conditions. The radial thickness of the discs was selected
such that it was governed by the hyperbolic function determined by either the convergent
or divergent function.

Seth’s transition theory was used in [52] to analyze elastoplastic stresses in a thin
rotating disk with inclusion and edge loading. The obtained results could be used for both
compressible and incompressible materials. It was found that at a high rotational rate of a
loaded disk, it was necessary to account for material compressibility.

In terms of continuum mechanics, Aleksandrova et al. [53,54] considered the stress–
strain state of a rotating disk with a constant thickness. The disk material was assumed
to be homogeneous, elastic, and ideally plastic. A continuum-level solution was obtained
for both the stresses and radial displacement using the von Mises yield criterion and the
related plastic flow rule. In [55], a complete solution was suggested for practical engineering
applications.

Afsar and Go [56] presented the finite element analysis of a thermoelastic field in a
rotating thin circular disk with a concentric hole under a thermal load. The solution was
obtained in [57] for a disk with a uniform thickness with regard to centrifugal forces and
compressive stress.

The aim of this study is to determine the plastic deformation conditions for a rotating
disk made of dispersion-hardened aluminum alloys, as illustrated in Figure 1.

In order to calculate stresses in the disk material, we used the approach described
in detail in [58–61]. Based on this approach, stresses in the disk material were calculated
using solid mechanics equations [62–65].
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Figure 1. 3D view of uniform disk profiles.

2. Experimental Procedure and Results
2.1. AA5056–Al3Er Alloy

The aluminum alloy AA5056 (91.9–94.68% Al, 4.8–5.8% Mg) was used as the initial
material. The Al–Al3Er master alloy was obtained by erbium (Er) hydrogenation in a
chemical reactor with successive mixing with Al micropowder, compaction, and dehy-
drogenation in a vacuum furnace. A total of 1 kg of the AA5056 alloy was placed in a
crucible and molted in a muffle furnace at 780 ◦C for 2 h. When the crucible was removed
from the furnace, the Al–Al3Er master alloy was introduced into the melt via simultaneous
ultrasonic treatment at a temperature of 730 ◦C. The ultrasonic treatment was performed
using a magnetostriction water-cooling actuator at 4.1 kV voltage and 17.6 kHz frequency.
After the complete dissolution of the master alloy, the melt was ultrasonically treated for
2 min. The melt was cast in a mold at 720 ◦C and underwent vibration treatment until
complete crystallization. The initial AA5056 alloy was obtained under the same conditions
but without the master alloy.

2.2. A356–TiB2 Alloy

The aluminum alloy A356 (Al base metal, 6.9% Si, 0.339% Mg, 0.136% Ti, 0.124% Fe,
and <0.05% other elements) was used as the initial material. Titanium diboride (TiB2)
particles were used to modify the alloy structure. The particle introduction and distribution
in the A356 melt were performed by using master alloys with 60 wt.% Al and 40 wt.% TiB2
obtained by gas-free burning of a mixture of aluminum, titanium, and boron powders [66].
The alloy was fabricated by melting 1 kg of the A356 alloy in a crucible at 750 ◦C for at
least 4 h in a closed furnace. Master alloys were incorporated at 730 ◦C and mixed in a
mechanical mixer [67] for 1 min in an open furnace. In order to reduce the porosity, obtain
a homogeneous structure, and improve the distribution of alloying elements in the melt,
vibration treatment was applied during 700 ◦C casting into the crucible. Vibration was
conducted at a frequency of 60 Hz and 0.5 mm amplitude. An alloy without TiB2 particles
was created under the same conditions for comparison.

2.3. Methods

The metallographic analysis of the grain structure was conducted using an Olympus
GX71 Inverted Microscope (Olympus, Tokyo, Japan). The alloy surface was then mechan-
ically polished. Uniaxial tensile tests were carried out on an Instron 3369 Dual Column
Tabletop Testing System (Instron, Norwood, MA, USA) at a 0.2 mm/min strain rate.

As can be seen in Figure 2a, the average grain size of the AA5056 alloy is 390 µm. The
diffusion of Al3Er particles does not modify the alloy structure, and the average grain size
is 410 µm, as shown in Figure 2b.
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Figure 2. Grain structure of different alloys. (a) AA5056; (b) AA5056–Al3Er; (c) A356; (d) A356–TiB2.

For the A356 alloy, the TiB2 particle diffusion decreases the average grain size from
180 to 140 µm due to the formation of new crystallization centers on the particle surface.
Due to the structural proximity of TiB2 and Al crystals, titanium diboride is an effective
nucleation center in the Al melt, which, in turn, leads to the formation of the fine structure
of ingots. Based on the data obtained, it can be assumed that the modified aggregative
state (crystallization) of the introduced (nano- or submicron-sized) particle surface has
a significant effect on the grain size of the fabricated alloys. This is associated with the
low-stability state of the melt–particle system, which provides a weak thermal effect
from the inoculator microparticles on the final state of the alloy, namely, its structure and
physical/mechanical properties. After the thermal interaction between the particles and
the melt, the temperature of which approaches crystallization, the alloy crystallizes on the
particle surface.

Tensile strength testing of the fabricated AA5056 alloy (see Figure 3, Table 1) shows
that the introduction of Al3Er particles into the melt improves the USL and plasticity from
170 to 204 MPa and from 14.7 to 21%, respectively, despite the absence of the modifying
effect during crystallization. This effect is achieved through the introduction of Al3Er
particles, which contribute to the deflection of the potential crack from the grain boundaries
into its volume, as well as increase the role of the aluminum matrix in the deformation and
fracture processes. The TiB2 particle diffusion in the A356 alloy also leads to a simultaneous
increase in the yield strength, USL, and plasticity from 102 to 145 MPa, from 204 to 263, and
from 2.3 to 2.8%, respectively.

The approximation of the experimental stress–strain curve allows us to obtain the
function of σ(ε) with an error not exceeding 0.1%:

σ =

Γeffσ
(n−1)/n
0.2 ε, if ε ≤ (σ0.2/Γeff)

1/n

Γeffε
n, if (σ0.2/Γeff)

1/n < ε
(1)

where Γeff is the effective modulus of plasticity and n is the non-linearity parameter.
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Figure 3. Loading diagrams of AA5056, AA5056–Al3Er, A356, and A356–TiB2 alloys.

Table 1. Parameters of initial and fabricated alloys.

Materials σ0.2, MPa σB, MPa εmax,% G, GPa ρ, g/cm3 ν

A356 102 204 2.3 27.2 [68] 2.66 [69] 0.33 [70]

A356–0.5TiB2 145 263 2.8 - - -

TiB2 - - - 250 [71] 4.52 [72] 0.11 [73]

AA5056 63 170 14.75 27 [74] 2.65 [75] 0.34 [76]

AA5056–Al3Er 64 204 21.37 - - -

Al3Er - - 118 [77] 5.55 [78] 0.188 [79]

Parameters Γeff and n for different alloys are summarized in Table 2.

Table 2. Material constants: Γeff and n (1).

Alloys Γeff [MPa] n

A356 1762 0.52

A356–0.5TiB2 2580 0.66

AA5056 343 0.34

AA5056–Al3Er 314 0.30

3. Mathematical Model

Let us consider the stress–strain state of the thin disk induced by its rotation at a
constant rotational rate ω. The gravity force effect on the stress–strain state is neglected.
The proposed mathematical model is based on balance equations, which take the following
form in the cylindrical system of coordinates [80]:

∂σrr

∂r
+

1
r

∂σrϕ

∂ϕ
+

∂σrz

∂z
+

σrr − σϕϕ

r
+ ρω2r = 0 (2)
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∂σrϕ

∂r
+

1
r

∂σϕϕ

∂ϕ
+

∂σϕz

∂z
+ 2

σrϕ

r
= 0 (3)

∂σrz

∂r
+

1
r

∂σϕz

∂ϕ
+

∂σzz

∂z
= 0 (4)

The system of Equations (2)–(4) can be simplified using the following assumptions.
Since this problem is axially symmetric (the symmetry relative to one and the same axis is
a deformed solid contour and lading conditions), normal stresses do not depend on the
angular coordinate ϕ, and circumferential displacement and tangential stress are zero, viz.
uϕ = 0, σrϕ = 0, σϕz = 0. Therefore, (2) is identically satisfied.

We consider that the centrifugal force appearing during the disk rotation distributes
symmetrically relative to the middle disk surface. If the disk base is free from external
forces, the following conditions must be applied to it:

z = ±H (5)

With respect to (4) and (5), we can conclude that at z = ±H, not only σzz becomes zero
but so does its derivative ∂σzz

∂z . On the strength of the symmetry conditions, in the center
section, the axial shift and radial motion ur on the axial coordinate are both zero, i.e., uz = 0
and ∂ur

∂z = 0, respectively. Therefore, at rather low disk thickness, σzz and σrz stresses are
small. Thus, it can be considered that these stresses are zero throughout the disk, whereas
the radial motion depends on the radial coordinate ur = ur(r) only.

In the thin disk, the plane state is implemented approximately. It is enough to use (2)
to describe the plane state, which takes the form as follows:

∂σrr

∂r
+

σrr − σϕϕ

r
+ ρω2r = 0 (6)

Next, we formulated the boundary conditions for (6). The pressure onto the inner and
outer walls of the disk is suggested to be absent. Therefore, the boundary conditions are as
follows:

r = Rin: σrr = 0, r = Rex: σrr = 0 (7)

Equation (6) contains two unknown values, namely, σrr and σϕϕ stress tensor compo-
nents. The additional relation for elastic deformation can be obtained from the equation of
strain compatibility, which in the plane state takes the form as follows:

∂εϕϕ

∂r
−

εrr − εϕϕ

r
= 0 (8)

During the plastic deformation of the hardening medium, an additional condition,
which links the stress tensor components, is plastic strain hardening [80]:

max
[∣∣σrr − σϕϕ

∣∣, ∣∣σϕϕ − σzz
∣∣, |σzz − σrr|

]
≥ σ0.2 (9)

The strength analysis of the disk is the most important task of calculating its stress–
strain state. According to the maximum shear theory (Saint Venant’s theory), material
disintegration occurs due to the shear that is induced by tangential stresses [81]. This theory
is well-proven for plastic materials, which resist equally to tension and compression. It is
assumed that the material fracture occurs when the highest tangential stress achieves the
limit value. In this case, the strength condition takes the following form [82,83]:

max
[∣∣σrr − σϕϕ

∣∣, ∣∣σϕϕ − σzz
∣∣, |σzz − σrr|

]
≥ σB (10)
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Strain tensor components are determined by Cauchy relations and, in our case, they
are determined as follows:

εrr =
∂ur

∂r
, εzz =

∂uz

∂z
, εϕϕ =

ur

r
, εϕz = 0, εrϕ = 0, εrz = 0 (11)

Thus, the complete mathematical arrangement of the problem includes the balance
Equation (6) with the boundary conditions (7), closing relations (8) and (9), and physical (1)
and geometrical (11) relationships.

The disk deformation is determined by the rotational rate ω. If the latter is low,
the disk deformation is elastic. When the rotational rate grows, the inner disk surface
undergoes plastic deformation [84]. The plastic zone occupies the ring domain with an
increasing rotational rate, i.e., Rin ≤ r ≤ Rpl. The outer ring remains in the elastic state, i.e.,
Rpl < r ≤ Rex. Thus, we can identify four situations for the deformation process of the
rotating disk:

1. The whole disk is in the elastic state (ω < ωel).
2. The disk is in the elastic state, but its inner surface is in the plastic state (ω = ωel).
3. Inner disk layers r ≤ Rpl are in the plastic state, while outer layers r > Rpl are in the

elastic state (ωel < ω < ωpl).
4. The disk material is in the plastic state throughout its width (ω = ωpl).

Let us discuss the elastic deformation of the disk. In this case, stress and strain are both
determined by Hooke’s law. Since σzz = 0, the following relations result from Hooke’s law:

εrr =
1

2Geff(1+ν)

(
σrr − νσϕϕ

)
, εϕϕ = 1

2Geff(1+ν)

(
σϕϕ − νσrr

)
,

εzz = − ν
2Geff(1+ν)

(
σrr + σϕϕ

)
,

(12)

where ν is the Poisson ratio, Geff = Γ1/n
eff σ

(n−1)/n
0.2 is the effective shear modulus.

Tangential stresses can be derived from (6) and applied to (12). We then use the
equation of strain compatibility (8). The resulting differential second-order equation, which
describes the radial stress σrr is as follows:

1
r

∂

∂r

[
r3 ∂σrr

∂r

]
+ (3 + ν)ρω2r2 = 0 (13)

After integration of this equation with respect to the boundary conditions (7), we can
determine the radial stress in the disk:

σrr = −
(3 + ν)

8
ρω2

(
r2 −

(
R2

in + R2
ex

)
+

R2
inR2

ex

r2

)
(14)

The tangential stress σϕϕ is derived from the balance equation (6):

σϕϕ = r
∂σrr

∂r
+ σrr + ρω2r2 (15)

Substitution of (14) into (15) yields

σϕϕ = − (3 + ν)

8
ρω2

(
3r2 −

(
R2

in + R2
ex

)
−

R2
inR2

ex

r2

)
+ ρω2r2 (16)

The stress in the disk grows with an increasing rotational rate. When the latter reaches
a certain value ωel, plastic deformation occurs on the inner disk surface. The rotational
rate describes the elastic limit of the disk. In order to determine the rotational rate, at
which plastic deformation occurs on the inner surface, we use the tangential stress from
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(16) at r = Rin. Note that the strain intensity relating to the elastic-plastic transition is
εpl = σ0.2/Geff. Thus, we obtain the following:

ωel =

√
4σ0.2

ρ
(
(3 + ν)R2

ex + (1− ν)R2
in
) (17)

Let us now determine the conditions of the elastic–plastic transition for the whole disk
material. It occurs when the rotational rate is ω = ωpl.

The analysis of plastic deformation is based on the Tresca–Saint Venant criterion. Since
the radial σrr and tangential σϕϕ stresses are tensile, they are positive, viz. σrr > 0, σϕϕ > 0.
Moreover, we take into account that tangential stresses exceed radial (σϕϕ > σrr). Due to
the plane state, the axial stress σzz is absent (σzz = 0). Hence, the conditions of the material
hardening (9) and fracture (10) are calculated as follows:

σϕϕ = Γeffε
n, σϕϕ ≥ σB (18)

According to multiple experiments, the volume does not change during plastic defor-
mation, and the following condition is satisfied:

εV = εrr + εϕϕ + εzz = 0 (19)

Taking the plane problem and (10) and (19) into consideration, it can be concluded
that the axial strain εzz does not depend on the coordinate z and can be either the function
of radial coordinate r or a constant. The absence of the shear stress (σrz = 0) implies that
the axial strain is a constant value.

Using (11), the condition of incompressibility (εV = 0) is written as follows:

∂ur

∂r
+

ur

r
+ εzz = 0 (20)

The integration of (20) within the accuracy of integration constants allows us to
determine the displacement field:

ur = −εzz
r
2
+

C1

r
(21)

Considering Cauchy relations (11), the radial and tangential strains are written as
follows:

εrr = −
εzz

2
− C1

r2 ; εϕϕ = − εzz

2
+

C1

r2 (22)

In solid mechanics, an invariant variable is introduced to describe the deformation
field called the shear strain intensity, which, according to Il’yushin [84,85], is determined
by the following expression:

ε =

√
2
3

√(
εrr − εϕϕ

)2
+
(
εzz − εϕϕ

)2
+ (εrr − εzz)

2 (23)

Substituting (22) into (23), we obtain the dependence between the shear strain intensity
and radial coordinate:

ε =

√
4
(

C1

r2

)2
+ 3ε2

zz (24)

In order to derive the axial strain εzz, let us use (12). It follows that the axial strain is
as follows:

εzz = −
ν

2Geff(1 + ν)

(
σrr + σϕϕ

)
= − ν

2Geff(1 + ν)
σ0.2 (25)
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Since the axial strain εzz is constant, (25) holds for the whole disk. Considering the
plastic state of the whole disk, the radial stress on its outer boundary equals the yield
strength:

r = Rex: σϕϕ = σ0.2 (26)

Now we can derive the integration constant C1 according to (24) and (26):

C1 =
R2

ex
2

√(
σ0.2

Geff

)2
− 3ε2

zz =
R2

ex
4(1 + ν)

σ0.2

Geff

√
4 + 8ν + ν2 (27)

Let us consider the nonlinear hardening described by (18) to calculate the stress–strain
state of the disk and the rotational rate limit at which the plastic zone covers the whole disk.

Using (18), (22), (24), we can find the tangential stress σϕϕ for the case of nonlinear
hardening:

σϕϕ = σ0.2

(√
3

2
ν

(1 + ν)

)n(
4 + 8ν + ν2

3ν2
R4

ex
r4 + 1

)n/2

(28)

To simplify further integration, we write (28) in the form as follows:

σϕϕ = σ∗

(
R4
∗

r4 + 1
)n/2

(29)

where σ∗ = σ0.2

(√
3

2
ν

(1+ν)

)n
and R∗ =

(
4+8ν+ν2

3ν2

)1/4
Rex.

The radial stress σrr is derived from the balance Equation (6), which can be written as
the following relation with regard to the nonlinear dependence between hardening and
deformation:

∂rσrr

∂r
= σ∗

(
R4
∗

r4 + 1
)n/2

− ρω2r2 (30)

The integration of (30) results in the σrr dependence on the radial coordinate r:

σrr =
σ∗

1− 2n
·
(

R∗
r

)2n

2F1

(
1
4
− n

2
,−n

2
;

5
4
− n

2
;− r4

R4∗

)
− 1

3
ρω2r2 + C2

Rex

r
(31)

In (31), C2 is the integration constant and 2F1 is the hypergeometric Gaussian function
determined by the Gaussian series sum:

2F1(a, b; c; z) = 1 +
∞

∑
k=1

[
k−1

∏
l=0

(a + l)(b + l)
(1 + l)(c + l)

]
zk (32)

At the disk boundary (r = Rout), radial stresses are assumed to be absent (σrr = 0).
Hence, the integration constant C2 is as follows:

C2 =
1
3

ρω2R2
ex −

σ∗
1− 2n

·
(

R∗
Rex

)2n

2F1

(
1
4
− n

2
,−n

2
;

5
4
− n

2
;−R4

ex
R4∗

)
(33)

The rotational rate of the disk, at which its material transfers to the plastic state
(ω = ωpl), is obtained from the condition of the inner disk boundary, viz. r = Rin, σrr = 0:

ωpl =

√√√√ 3σ∗
ρ(1− 2n)

Rin

R3
in − R3

ex
·
[(

R∗
Rin

)2n

2F1

(
1
4
− n

2
,−n

2
;

5
4
− n

2
;−

R4
in

R4∗

)
− Rex

Rin

(
R∗
Rex

)2n

2F1

(
1
4
− n

2
,−n

2
;

5
4
− n

2
;−R4

ex

R4∗

)]
(34)
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4. Mathematical Simulation

Plastic strain in the disk is conditioned by the centrifugal force field. The impact of
these forces is evaluated by the resulting centrifugal bulk force:

f ∗ =
2
3

ρω2 R2
ex + RexRin + R2

in
Rex + Rin

(35)

Thus, the centrifugal force increases with increasing outer radius Rex at the constant
inner radius Rin, i.e., h = Rex − Rin, and increasing inner radius at a constant outer radius,
i.e., with decreasing disk width h.

Figure 4 presents plots of the rotational rate at which plastic strain ωel begins and the
disk width h = Rex − Rin. As can be seen in Figure 4, the circular disk resistance to plastic
strain depends on the Rin/Rex ratio. When the disk width expands at the constant Rin, the
resistance reduces due to the increase in the centrifugal force field. On the contrary, when
the disk width expands at the constant Rex, the centrifugal force reduces and the plastic
transfer occurs at a higher rotation frequency. Note that the width effect on the plastic
strain ωel is more significant for a small Rin/Rex ratio. The plastic strain slightly increases
with the increasing Rin/Rex ratio. When the inner and outer radii increase at the same disk
width, the centrifugal force applied to the disk increases. This results in a reduction in the
plastic resistance, which occurs at a lower plastic strain.
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Figure 4. Dependences of disk width and rotational rate, at which plastic strain ωel begins in dif-
ferent alloys and different Rin: (a) A356; (b) A356–0.5TiB2; (c) AA5056; (d) AA5056–Al3Er; 1—15 
mm, 2—30 mm, 3—45 mm, 4—60 mm, 5—75 mm, 6—90 mm, 7—105 mm, 8—120 mm, and 9—135 
mm. 

Figure 4. Dependences of disk width and rotational rate, at which plastic strain ωel begins in different
alloys and different Rin: (a) A356; (b) A356–0.5TiB2; (c) AA5056; (d) AA5056–Al3Er; 1—15 mm,
2—30 mm, 3—45 mm, 4—60 mm, 5—75 mm, 6—90 mm, 7—105 mm, 8—120 mm, and 9—135 mm.

The plastic strain of the inner radius is also affected by the conventional yield strength
σ0.2. Due to its growth, the plastic resistance increases, which requires a more intensive
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disk rotation. Thus, the plastic strain ωel becomes the highest for the A356–0.5%TiB2 alloy,
whereas, for the AA5056 alloy, it is the lowest.

In Figure 5, one can see plots of the radial stress and coordinate. Since the outer and
inner radii are not subjected to radial loads, at r = Rex and r = Rin, the radial stress is zero,
viz. σrr = 0. The maximum radial stress σm

rr occurs at the Rm =
√

RinRex point, which is
the geometric average of the inner and outer radii. The radial stress increases with an
increasing disk width and rotational rate:

σm
rr =

(3 + ν)

8
ρω2h2 (36)

As mentioned above, the plastic state occurs on the inner disk surface at ω = ωel. In
this case, the maximum radial stress is calculated as follows:

σm
rr =

(3 + ν)

2
σ0.2

(Rex − Rin)
2

(3 + ν)R2
ex + (1− ν)R2

in
(37)

Equation (36) can be written as the following:

σm
rr =

(3 + ν)

2
σ0.2

1− 2ξ + ξ2

(3 + ν) + (1− ν)ξ2 (38)

where ξ = Rin/Rex is the ratio between the inner and outer radii. The maximum radial
stress σm

rr monotonically decreases with increasing ξ. In the case of the solid disk (ξ = 0),
this stress is 50% of the conventional yield strength, viz. σm

rr = 0.5σ0.2.
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Figure 5. Stress σrr distribution over the disk radii: (a) 15in =R mm, Rex = 20 mm; (b) 15in =R  
mm, Rex = 30 mm; (c) 15in =R  mm, Rex = 75 mm; (d) 15in =R mm, Rex = 150 mm; (e) 145in =R
mm, Rex = 150 mm; (f) 135in =R mm, Rex = 150 mm; (g) 75in =R mm, Rex t = 150 mm; (h) 

30in =R mm, Rex = 150 mm; 1—A356, 2—A356–0.5 TiB2, 3—AA5056, and 4—AA5056–Al3Er. 
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Figure 5. Stress σrr distribution over the disk radii: (a) Rin = 15 mm, Rex = 20 mm; (b) Rin = 15 mm,
Rex = 30 mm; (c) Rin = 15 mm, Rex = 75 mm; (d) Rin = 15 mm, Rex = 150 mm; (e) Rin = 145 mm,
Rex = 150 mm; (f) Rin = 135 mm, Rex = 150 mm; (g) Rin = 75 mm, Rex = 150 mm; (h) Rin = 30 mm,
Rex = 150 mm; 1—A356, 2—A356–0.5 TiB2, 3—AA5056, and 4—AA5056–Al3Er.

The radial distribution of tangential stress σϕϕ is presented in Figure 6. The tangential
stress σϕϕ is the highest on the inner disk radius and is calculated as follows:

σϕϕ(Rin) =
ρω2

4

[
(1− ν)R2

in + (3 + ν)R2
ex

]
(39)

The tangential stress monotonically decreases with the increasing radial coordinate r
and its lowest value is observed at the outer disk radius:

σϕϕ(Rex) =
ρω2

4

[
(1− ν)R2

ex + (3 + ν)R2
in

]
(40)

Nonuniform tangential stress distribution in the disk material describes the ratio
between the stresses on the outer and inner disk boundaries. This ratio θ is obtained from
the following:

θ =
σϕϕ(Rex)

σϕϕ(Rin)
=

(1− ν) + (3 + ν)ξ2

(1− ν)ξ2 + (3 + ν)
(41)

It is interesting to note that the ratio θ does not depend on the material and the
rotational rate, and is rather determined by the disk geometry. At ξ = 0 (solid disk), this
ratio is the lowest, i.e., θ = (1− ν)/(3 + ν), whereas at a higher ξ, θ → 1 .

When the inner disk surface is in the plastic state, which occurs at ω = ωel, the
tangential stresses at the disk boundaries are as follows:

σϕϕ(Rin) = σ0.2, σϕϕ(Rex) =
(1− ν) + (3 + ν)ξ2

(3 + ν) + (1− ν)ξ2 σ0.2 (42)
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Now we consider the case when the rotational rate is ω = ωpl and the whole disk
is in the plastic state. The lowest tangential stress σϕϕ appears on the outer disk bound-
ary (r = Rex) and equals σ0.2. The highest tangential stress is observed on the inner disk
boundary (r = Rin) and is obtained from the following:

σϕϕ(Rin) = σ∗

(
R4
∗

R4
in
+ 1

)n/2

= σ0.2

((
4 + 8ν + ν2)ξ−4 + 3ν2

4(1 + ν)2

)n/2

(43)
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30in =R  mm, Rex = 150 mm; 1—A356, 2—A356–0.5 TiB2, 3—AA5056, and 4—AA5056–Al3Er. 
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It follows from (43) that at low ξ values, tangential stresses are higher and can ex-
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The ξB parameter values characterizing the disk strength at plω=ω  are given in 
Table 3. 

Table 3. Parameter ξB values (45). 

Alloys ξB 
A356 0.508 

A356–0.5TiB2 0.631 
AA5056 0.229 

AA5056–Al3Er 0.143 

Note that the disk fracture may occur at plω<ω , when the inner and outer disk 
boundaries are deformed plastically and elastically, respectively. The analysis of this case 
falls outside the scope of this work and will be addressed in our future works. 
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Rex = 30 mm; (c) Rin = 15 mm, Rex = 75 mm; (d) Rin = 15 mm, Rex = 150 mm; (e) Rin = 145 mm,
Rex = 150 mm; (f) Rin = 135 mm, Rex = 150 mm; (g) Rin = 75 mm, Rex = 150 mm; (h) Rin = 30 mm,
Rex = 150 mm; 1—A356, 2—A356–0.5 TiB2, 3—AA5056, and 4—AA5056–Al3Er.

It follows from (43) that at low ξ values, tangential stresses are higher and can exceed
the USL σB. At the disk rotational rate ω = ωpl and with respect to (18) and (43), the
condition of the disk strength retention can be defined as follows:

σB > σϕϕ(Rin) (44)

Equations (43) and (44) help to determine the geometrical parameter ξ, at which the
disk fracture does not occur:

ξB =

 (
4 + 8ν + ν2)

4(1 + ν)2
(

σB
σ0.2

)2/n
− 3ν2


1/4

< ξ (45)

The ξB parameter values characterizing the disk strength at ω = ωpl are given in
Table 3.

Table 3. Parameter ξB values (45).

Alloys ξB

A356 0.508

A356–0.5TiB2 0.631

AA5056 0.229

AA5056–Al3Er 0.143

Note that the disk fracture may occur at ω < ωpl, when the inner and outer disk
boundaries are deformed plastically and elastically, respectively. The analysis of this case
falls outside the scope of this work and will be addressed in our future works.

In Figure 7, the dependences of the limit frequency ωpl of rotation and the width
h show the plastic zone, which occupies the whole disk with different radii Rin. At the
constant value of the inner radius Rin, the centrifugal forces increase with an increasing
width h. Therefore, the plastic strain of the disk occurs at a lower limit frequency ωpl.
The plastic resistance increases with the decreasing inner radius Rin, and total plastic
deformation of the disk occurs at higher values of the limit frequency ωpl. In wide annular
disks (Rin(1/ξB − 1) < h), the strength loss occurs at the inner disk boundary at ω = ωpl,
and the disk fracture begins. In Figure 7, one can see two zones for different geometrical
parameters: A denotes no fracture, and B denotes a fracture at the inner disk boundary.
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AA5056; (d) AA5056–Al3Er; 1—Rin = 15 mm, 2—Rin = 30 mm, 3—Rin = 45 mm, 4—Rin = 60 mm, 5—Rin 
= 75 mm, 6—Rin = 90 mm, 7—Rin = 105 mm, 8—Rin = 120 mm, and 9—Rin = 135 mm. A—no fracture, 
B—fracture on the inner disk boundary. 
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parameter increases. This means that there is a wide range of rotational rates, which de-
termines the transition of plastic strain on the inner boundary to the plastic strain of the 
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Figure 7. Dependences between the limit frequency ωpl of the rotation and disk width when
the plastic zone occupies the whole disk made of different alloys: (a) A356; (b) A356–0.5TiB2;
(c) AA5056; (d) AA5056–Al3Er; 1—Rin = 15 mm, 2—Rin = 30 mm, 3—Rin = 45 mm, 4—Rin = 60 mm,
5—Rin = 75 mm, 6—Rin = 90 mm, 7—Rin = 105 mm, 8—Rin = 120 mm, and 9—Rin = 135 mm. A—no
fracture, B—fracture on the inner disk boundary.

The parameter δ =
(

ωpl −ωel

)
/ωel can be used to describe the disk plastic properties.

At low δ values, a slight increase in the rotational rate leads to the expansion of the plastic
zone from the inner to the outer disk boundary. At a high δ parameter, the limit frequency
ωpl must be significantly higher than the plastic strain ωel to gain total plastic deformation.

Figure 8 illustrates δ and width h dependence plots when the plastic zone occupies the
whole disk with different inner radius Rin. In the narrow disks (h ≤ 5 mm), the parameter
δ contributes only a few percent. At the increased width h and fixed Rin, the δ parameter
increases. This means that there is a wide range of rotational rates, which determines the
transition of plastic strain on the inner boundary to the plastic strain of the whole disk. At
a higher inner radius and constant width, the δ parameter decreases.

The distribution of the radial σrr and tangential σϕϕ stresses is presented in
Figures 9 and 10. These curves are similar to those given in Figures 4 and 5. The ra-
dial stress σrr is characterized by the maximum, which increases with increasing Rin/Rex
ratio. In our case, this stress is zero on the outer and inner radii as they are not loaded with
radial forces.



Metals 2023, 13, 1028 17 of 23
Metals 2023, 13, 1028 17 of 23 
 

 

h, mm
0 10 20 30 40 50

δ, %

0

20

40

60 1
2
3

 h, mm
0 10 20 30 40 50

δ, %

0

20

40

60

80

1
2
3

 
(a) (b) 

h, mm
0 10 20 30 40 50

δ, %

0

10

20

30

40

50

60

1
2
3

 h, mm
0 10 20 30 40 50

δ, %

0

10

20

30

40

50

1
2
3

 
(c) (d) 

Figure 8. Parameter δ/width dependence for different alloys and radii: (a) A356; (b) A356–0.5TiB2; 
(c) AA5056; (d) AA5056–Al3Er; 1—Rin = 30 mm, 2—Rin = 60 mm, and 3—Rin = 105 mm. 
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Figure 8. Parameter δ/width dependence for different alloys and radii: (a) A356; (b) A356–0.5TiB2;
(c) AA5056; (d) AA5056–Al3Er; 1—Rin = 30 mm, 2—Rin = 60 mm, and 3—Rin = 105 mm.

The tangential stress σϕϕ monotonically decreases with increasing radial coordinate
r. The lowest tangential stress is observed on the outer disk boundary (r = Rex). At
ω = ωpl, the tangential stress on the outer disk boundary equals the yield strength. When
approaching the inner diameter, the tangential stress increases. It is worth noting that at the
disk geometrical parameters in Figures 8 and 9, its fracture does not occur. Additionally,
with increasing Rin/Rex ratio, the tangential stress decreases.
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Figure 9. Stress σrr distribution over the disk radii: (a) 15in =R mm, ξ = 0.7; (b) 15in =R  mm, ξ = 
0.8; (c) 15in =R  mm, ξ = 0.9; (d) Rin = 60 mm, ξ = 0.7; (e) Rin = 60 mm, ξ = 0.8; (f) Rin = 60 mm, ξ = 0.9; 
1—A356, 2—A356–0.5TiB2, 3—AA5056, and 4—AA5056–Al3Er. 
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, the tangential stress on the outer disk boundary equals the yield strength. When ap-
proaching the inner diameter, the tangential stress increases. It is worth noting that at the 
disk geometrical parameters in Figures 8 and 9, its fracture does not occur. Additionally, 
with increasing Rin/Rex ratio, the tangential stress decreases. 
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Figure 9. Stress σrr distribution over the disk radii: (a) Rin = 15 mm, ξ = 0.7; (b) Rin = 15 mm, ξ = 0.8;
(c) Rin = 15 mm, ξ = 0.9; (d) Rin = 60 mm, ξ = 0.7; (e) Rin = 60 mm, ξ = 0.8; (f) Rin = 60 mm, ξ = 0.9;
1—A356, 2—A356–0.5TiB2, 3—AA5056, and 4—AA5056–Al3Er.

The inner radius Rin values do not affect the distribution of radial σrr and tangential
σϕϕ stresses in the disk material. The stress distribution over the disk width η = r− Rin
calculated for different inner radii is identical.

Metals 2023, 13, 1028 18 of 23 
 

 

 r, mm
60 65 70 75 80 85

σrr, MPa

0

2

4

6

8

10

1
2
3
4

 
(c) (d) 

  
(e) (f) 

Figure 9. Stress σrr distribution over the disk radii: (a) 15in =R mm, ξ = 0.7; (b) 15in =R  mm, ξ = 
0.8; (c) 15in =R  mm, ξ = 0.9; (d) Rin = 60 mm, ξ = 0.7; (e) Rin = 60 mm, ξ = 0.8; (f) Rin = 60 mm, ξ = 0.9; 
1—A356, 2—A356–0.5TiB2, 3—AA5056, and 4—AA5056–Al3Er. 

The tangential stress σφφ monotonically decreases with increasing radial coordinate 
r. The lowest tangential stress is observed on the outer disk boundary (r = Rex). At plωω =

, the tangential stress on the outer disk boundary equals the yield strength. When ap-
proaching the inner diameter, the tangential stress increases. It is worth noting that at the 
disk geometrical parameters in Figures 8 and 9, its fracture does not occur. Additionally, 
with increasing Rin/Rex ratio, the tangential stress decreases. 

r, mm
15 16 17 18 19 20 21

σϕϕ, MPa

40

60

80

100

120

140

160

180

200

220

240

260

1 
2
3
4 

 r, mm
15 15 16 16 17 17 18 18

σϕϕ, MPa

40

60

80

100

120

140

160

180

200

220

1 
2
3
4 

 
(a) (b) 

Figure 10. Cont.



Metals 2023, 13, 1028 19 of 23Metals 2023, 13, 1028 19 of 23 
 

 

r, mm
15 15 15 16 16 16 16 16 17

σϕϕ, MPa

40

60

80

100

120

140

160

180

1 
2
3
4 

 r, mm
60 65 70 75 80 85

σϕϕ, MPa

40

60

80

100

120

140

160

180

200

220

240

260

1 
2
3
4 

 
(c) (d) 

r, mm
60 62 64 66 68 70 72 74

σϕϕ, MPa

40

60

80

100

120

140

160

180

200

220
1 
2
3
4 

 r, mm
60 61 62 63 64 65 66

σϕϕ, MPa

40

60

80

100

120

140

160

180

1 
2
3
4 

 
(e) (f) 

Figure 10. Stress σrr distribution over the disk radii: (a) 15in =R mm, ξ = 0.7; (b) 15in =R  mm, ξ = 
0.8; (c) 15in =R  mm, ξ = 0.9; (d) Rin = 60 mm, ξ = 0.7; (e) Rin = 60 mm, ξ = 0.8; (f) Rin = 60 mm, ξ = 0.9; 
1—A356, 2—A356–0.5TiB2, 3—AA5056, and 4—AA5056–Al3Er. 
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the A356 alloy composition also led to a simultaneous increase in its yield strength, USL, 
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ξ = 0.9; 1—A356, 2—A356–0.5TiB2, 3—AA5056, and 4—AA5056–Al3Er.

5. Conclusions

This paper investigated the stress–strain state, elastoplastic deformation, and disinte-
gration conditions of the rotating circular disk made of the aluminum alloy strengthened
with dispersed nanoparticles.

Aluminum alloys AA5056 and A356 with the use of master alloys AA5056–Al3Er
and A356–TiB2 were employed as initial materials. According to tensile strength testing
of the obtained alloys, the diffusion of Al3Er particles improved the USL and plasticity
of the AA5056 alloy from 170 to 204 MPa and from 14.7 to 21%, respectively, although a
modifying effect was not observed during crystallization. The addition of TiB2 particles to
the A356 alloy composition also led to a simultaneous increase in its yield strength, USL,
and plasticity from 102 to 145 MPa, from 204 to 263 MPa, and from 2.3 to 2.8%, respectively.

The annular disk’s ability to resist plastic depended on the ratio between its outer and
inner radii. This plastic resistance decreased with increasing disk width at a constant inner
radius, which was associated with a stronger effect from the centrifugal force field. On
the contrary, when the disk width expanded at the constant Rex, the centrifugal force was
reduced, and the plastic transfer occurred at a higher rotation frequency.

The radial stresses on the outer and inner disk radii were zero since the radii were
not loaded with radial forces. The maximum radial stress σm

rr was observed at the point
inside the disk. The maximum radial stress increased with increasing Rin/Rex ratio and
with increasing disk width and rotational rate. The tangential stress σϕϕ monotonically
decreased with increasing radial coordinate r. The lowest tangential stress was achieved at
the outer disk boundary (r = Rex), whereas the highest tangential stresses were observed at
the inner disk boundary (r = Rin).
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At ω = ωpl and low values of ξ = Rin/Rex, the tangential stresses were high and
could exceed the USL. The critical disk widths were 0.97Rin and 0.58Rin for A356 and A356–
0.5TiB2 alloys, respectively. Additionally, for AA5056 and AA5056–Al3Er alloys, the values
were 3.37Rin and 5.99Rin, respectively. Thus, A356 and A356–0.5TiB2 alloys were more
brittle than AA5056 and AA5056–Al3Er alloys. It was found that at h < Rin(1/ξB − 1),
the alloy sequence was A356–0.5TiB2, A356, AA5056, and AA5056–Al3Er for the disks to
withstand the highest rotational rate without fracture. For wide disks (Rin(1/ξB − 1) < h),
AA5056 and AA5056–Al3Er alloys were preferable for fabrication.
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