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Abstract: Micropores are one of the critical factors affecting materials’ performance and service life.
As the need for a deeper understanding of micropore evolution and damage mechanisms grows,
assessing the mechanical properties of materials containing micropores and predicting the lifespan of
related metal structural components becomes increasingly complex. This paper focuses on the evolu-
tion process, regularities, and research methods of micropores in metal materials. Based on recent
research and practical applications, the key stages of micropore evolution are discussed, encompass-
ing nucleation, growth, coalescence, collapse, interaction, and the influence of other microstructures.
Firstly, the advantages and limitations of commonly used characterization methods such as scanning
electron microscopy, transmission electron microscopy, and X-ray computed tomography are intro-
duced in the study of micropore evolution. Subsequently, critical theoretical models for micropore
evolution, such as the Gurson model and its extensions, are summarized. By using a multiscale
approach combining the crystal plasticity finite element method, dislocation dynamics, and molecular
dynamics, the factors influencing the micropore evolution, such as external stress conditions, internal
microstructures, and micropore characteristics, are specifically elaborated, and the basic physical
mechanisms of micropore evolution are analyzed. Finally, a comprehensive review and summary of
current research trends and key findings are provided, and a forward-looking perspective on future
research directions is presented.
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1. Introduction

Metal materials, such as nickel, titanium, aluminum, etc., are widely used in various
industries due to their excellent mechanical properties, including marine transportation,
aviation, agricultural machinery, and other fields. Metal materials undergo different types
of damage during service life, with fatigue fracture, wear, and corrosion emerging as the
predominant degradation modes. Fatigue fracture stands out as the most prevalent form
of failure. In the metal materials molding process, technical constraints frequently result
in the formation of defects such as inclusions, orientation deviations, and micropores.
Micropores refer to tiny spaces or pore structures at the nanometer to micrometer scale,
usually caused by defects, gas, stress concentration, dislocation movement, etc., within the
material. They can significantly impact the mechanical properties, fatigue life, corrosion
resistance, and other properties of materials. The size of micropores typically ranges
from a few nanometers to several micrometers. It can be observed under high-resolution
microscopes such as metallographic microscopes, transmission electron microscopes, and
industrial X-ray computed tomography (XCT) scans.
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For example, in the casting process, micropores can form when the gases generated
during the solidification of molten metal are not efficiently vented. Furthermore, the insuffi-
cient replenishment of molten metal due to volume shrinkage during the solidification stage
may lead to the formation of shrinkage micropores. Irregularities in composition within the
grains can result in segregation, and micropores may occur due to plastic changes between
inclusion particles and matrix particles [1]. Additionally, during the heat treatment or pro-
cessing of metal materials, issues such as excessive burning, expansion, and delamination
may occur, adversely affecting material properties and leading to the formation of micro-
pores. Throughout casting and heat treatment processes, current technology inevitably
leads to defects such as micropores and microcracks in metal materials [2]. Subsequently,
this leads to considerable changes in the material’s mechanical properties, especially the
emergence of complex morphological micropores, which pose a challenge to evaluating the
mechanical properties.

Moreover, new micropores can form when metal materials are subjected to service
loads. The mechanisms and processes of pore formation determine the shape of the
micropores. Inside grains, pores are typically spherical or approximately spherical, while
pores formed near grain boundaries or around dislocations may exhibit irregular shapes.

Micropores are prevalent in metallic materials, encompassing nickel-based single-
crystal superalloys for aero-engine turbine blades, high-strength and high-toughness spe-
cial steel, titanium alloys, cast aluminum alloys, and additive manufacturing polycrystalline
(as shown in Figure 1). Micropores, in particular, can significantly impact the utilization
rate, yield of finished products, overall performance, and production efficiency of these
materials, having a profound effect on the fatigue life of ductile metal materials [3]. They
have emerged as a critical issue leading to performance degradation during metal mate-
rials’ preparation, subsequent processing, and service life. As a result, comprehensively
evaluating the mechanical characteristics of metal materials with micropores in complex
service environments and forecasting the lifespan of associated metal structural compo-
nents becomes increasingly challenging. The morphological changes that occur during
the evolution of micropores lead to a stress concentration around the pores, triggering
premature material failure and significant losses. Therefore, a comprehensive assessment
of the mechanical properties of metal materials in complex operating environments and
the prediction of the lifespan of the related metal structural components must consider the
impact of morphological changes during the evolution of micropores.
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Figure 1. Micropores’ critical role and characterization in various metals: (a) GW63K magnesium [4];
(b) GW63K magnesium [4]; (c) ductile iron [5]; (d) aluminum [6]; (e) TC4 titanium [7]; (f) nickel single
crystal [8]. Reprinted from ref. [4–8]; 2024 University of Science and Technology of China, Foundry
Technology, General Institute of Mechanical Science Research, Shenyang Aerospace University.

Nickel-based single-crystal turbine blades in aerospace engines serve as a representa-
tive example. Beyond common defects such as impurities, freckles, orientation deviations,
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and minor misalignments, micropores have emerged as a critical factor influencing the
mechanical properties of nickel-based single-crystal alloys [3,9]. After experiencing an over-
temperature or overload, micropores in aero-engine turbine blades undergo significant
changes when subjected to thermal shock loads. This process initiates micro-damage in
the nickel-based single-crystal material. Scanning electron microscopy (SEM) observations
illustrate the substantial impact of micropores on the material’s performance, leading
to the formation of initial microcracks due to interactions among these micropores [10].
Micropores’ nucleation, growth, and coalescence are widely considered as the primary
factors contributing to material fracture failure [11–13]. Since micropores are inevitable,
their presence significantly influences the plastic deformation mechanism of the material.

Hot isostatic pressing (HIP) technology alleviates micropore-related issues in materials
and diminishes their adverse effects on material properties. In metal material processing,
only one or two directions can usually be applied with pressure to the material simultane-
ously to obtain a dense product. However, equal pressure can be applied to the material
from all directions during the HIP process to achieve a more compact product. The material
undergoes high temperatures and high-pressure conditions, causing plastic deformation
and the collapse of micropore regions, which reduces micropore volume, promoting diffu-
sion and bonding between the micropore walls and the surrounding material.

Consequently, porosity decreases, improving material density and enhancing mechani-
cal properties. While HIP effectively mitigates micropores to some extent, it is crucial to note
that the complete elimination of micropores is unattainable [14–16]. Therefore, further re-
search into the evolution of micropores in operational environments is essential to enhance
the understanding of their impact on material performance. Various studies, utilizing both
experimental and simulation methods, have been undertaken to better characterize the duc-
tile fracture process, with a focus on the evolution of micropores. Typically, the traditional
method for studying micropores involves subjecting material samples to tensile, fatigue,
or creep experiments to simulate natural working conditions. These tests are then halted
at the critical deformation stage, and the cross-section of the sample is scrutinized using
equipment such as an SEM or a transmission electron microscope (TEM). Image processing
extracts two-dimensional (2D) plane information about the micropores [11–13,17–21]. SEM
and TEM observations have inherent limitations, as they are restricted to capturing specific
time points and cannot trace the dynamic evolution of micropores over time.

Furthermore, the observation process in these techniques may damage the material,
introducing the possibility of errors in the obtained results [22]. The in-situ SEM/TEM
techniques developed on top of SEM/TEM technologies enable researchers to directly
observe the deformation, fracture, phase transformation, and other processes of materials
during loading, which is essential for studying the failure mechanisms, phase transforma-
tion behaviors, lattice distortions, and other aspects of materials. However, employing 2D
characterization methods proves inadequate for comprehensively capturing micropores’
complete three-dimensional (3D) attributes, especially their intricate morphology, spatial
distribution, and porosity, leading to significant biases in the results [23].

XCT studies have unveiled the connectivity of certain neighboring micropores ob-
served in 2D metallography, indicating a three-dimensional interconnection. This finding
implies that relying solely on 2D analyses derived from cross-sectional views may lead
to the underestimation of micropore quantity and a reduction in their apparent size and
morphological intricacy [24]. XCT provides the capability to non-destructively visualize the
spatial morphology of micropores within a material, offering a clear and undistorted repre-
sentation of their spatial characteristics. In our research on the evolution of micropores in
nickel-based single-crystal superalloys, our research group has obtained two-dimensional
and three-dimensional views of micropores in the material using XCT. Additionally, we
have successfully obtained information regarding these micropores’ size, shape, and loca-
tion, enabling the non-destructive detection of micropore information within the material.
The detection results are presented in Figure 2.
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Figure 2. The XCT examination results of micropores in nickelbased singlecrystal alloys.

XCT has obtained a large amount of data and three-dimensional information on micro-
pores in materials, allowing us to professionally transform this data and three-dimensional
information into geometric models that better approximate the geometric information of
micropores in actual materials. While these geometric models prove useful for subsequent
finite element simulations, the observation of micropore evolution from a three-dimensional
perspective is still under investigation. In recent years, significant progress has been made
in the study of micropore evolution thanks to advancements in in-situ observation equip-
ment using XCT [25–33], which allows for observing micropore evolution during experi-
ments, contributing to a more detailed and precise understanding of the process [24]. Chen
et al. [34] used in situ XCT to observe micropores’ nucleation and growth behavior during
the tensile deformation process of dual-phase steel, quantifying the changes in pore quan-
tity and porosity during pore evolution. Similarly, Zhang et al. [35] also utilized in situ XCT
to reconstruct a three-dimensional visualization model of low-carbon steel, quantitatively
analyzing the characteristics of micro-pore evolution from a three-dimensional perspective.
The characterization results are shown in Figure 3. Visualizing the three-dimensional
evolution process of micropores is a unique advantage of in situ XCT. It is expected to play
a significant role in future research on micropore evolution.

Nevertheless, more than relying solely on experimental observations is required for
a comprehensive analysis of the evolution behavior and damage effects of micropores.
Advanced numerical simulation methods such as dislocation dynamics (DD) [36–43] and
molecular dynamics (MD) [44–52] are used to elucidate the evolutionary mechanism of
micropores. The crystal plastic finite element method (CPFEM) [53–64], employing XCT
for three-dimensional micropore reconstruction, is used to investigate the correlation be-
tween micropores’ 3D characteristics and the mechanical behavior of materials. However,
accurately describing the evolutionary mechanism of micropores proves to be challenging
using this approach. The CPFEM faces challenges in accurately characterizing nonlinear
behaviors, including phase transformation, phase boundary transformation, and fracture,
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in materials undergoing significant deformation and complex loading conditions. This
limitation stems from CPFEM’s reliance on assumptions about the microstructure evolu-
tion process, assuming a uniform distribution of dislocation density and strain within the
crystal. Moreover, it solely accounts for the elastic and plastic behavior of the material,
neglecting crucial processes such as dislocation generation and destruction, along with
interactions between microstructures like grain boundaries and twins. Consequently, a
comprehensive understanding of the microstructure evolution mechanism remains con-
strained, and depending solely on the CPFEM may not provide precise results. Researchers
have progressively integrated the CPFEM with DD and MD to address these challenges to
form a multiscale model. DD simulations offer intricate details about dislocation activities
and distributions. By simulating dislocation dynamics, the motion and interactions of
dislocations can be scrutinized, revealing the plastic behavior and microstructure evolution
mechanisms of crystals. Furthermore, MD simulations can model the behavior of crystals
at the atomic level, capturing interactions between atoms. Through MD simulations, crys-
tals’ atomic structure and dynamic behavior can be investigated, providing precise input
parameters for the CPFEM. This multiscale method offers an effective method for analyzing
the plastic behavior and microstructure evolution mechanisms of materials, making it a
crucial direction in advancing research on the evolution of micropores. For example, Niu
et al. [65] proposed toughness fracture criteria related to micropore nucleation, growth, and
coalescence by utilizing a multiscale model combining finite element analysis with molecu-
lar dynamics. Of course, multiscale models are wider than the three methods mentioned
above. They also include phenomenological models that summarize objective phenomena
and advanced numerical simulation methods.
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Figure 3. In situ XCT characterization of the evolution process of micropores in low carbon steel [35].
(a) Engineering stress versus engineering strain curve; (b) Sequence of 2D X-ray tomography images
at different strain levels; (c) Porosity versus engineering strain curve; (d) Size distribution of pores at
various strain levels; (e) 3D spatial distribution of pores in selected central region at different strain
levels. Reprinted with permission from ref. [35]; 2023 Engineering Fracture Mechanics.

To comprehensively depict the research progress and potential development in micropore-
related fields, this article conducts a detailed review of various aspects of micropore
evolution, as shown in Figure 4. This encompasses micropore nucleation, growth, collapse,
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interference, coalescence, and interaction with other microstructural elements. This article
outlines research methods for studying micropore evolution, organizes the theoretical
model of micropore evolution, categorizes the main mechanical properties affected by
micropores, and discusses the atomic-level complexity and manifestations of micropore
evolution. The purpose is to clarify the fundamental physical principles governing the
complex micropore evolution process described above. Additionally, this article addresses
the limitations of current micropore research and provides insights into future directions
and emerging trends in the field.
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2. Nucleation Causes and Principles

Among the failure mechanisms observed in ductile metals, micropore nucleation
remains the least understood, primarily due to its occurrence at microscopic or even
nanoscale levels, presenting challenges for direct observation and study. The nucleation
of micropores results from damage induced by external factors, including loading and
temperature variations. In experiments conducted by Pathak et al. [66], high-strength
steels DP780 and CP800 were utilized. Their analysis unveiled a direct connection between
micropore nucleation and macroscopic stress states. Particularly noteworthy was the
observation that CP800 steel exhibited a higher nucleation strain and a faster micropore
nucleation rate than DP780 steel under identical conditions, emphasizing the critical role
of stress state as a determining factor in micropore nucleation. Therefore, the influence
of the stress state on micropore nucleation has been a central focus of the investigation,
emphasizing a correlation between the mechanism of micropore nucleation and stress
triaxiality. The critical strain for micropore nucleation depends on stress triaxiality [67].
Furthermore, the inherent properties of materials serve as the fundamental influencing
factors for micropore nucleation. To comprehensively grasp the micropore nucleation
mechanism, it is crucial to take into account the material’s microstructure.

In previous research, the nucleation of micropores in various material mediums, in-
cluding uniformly elastic, perfectly plastic, nonlinearly elastic, and power-law hardening
materials, has been interpreted as a cavitation instability phenomenon [68,69]. Currently,
the nucleation of micropores is widely believed to be closely linked to second-phase parti-
cles [53,64,70–77]. Encountering at least two distinct phase structures or other inclusion
particles in metallic materials is commonplace. Based on extensive experimental observa-
tions, two primary mechanisms for micropore nucleation have been summarized: stress
nucleation and deformation nucleation [78–81]. Stress nucleation occurs when the inter-
phase structures separate or when the phase structures themselves undergo destruction
because the interface stress surpasses critical threshold stress. Deformation nucleation is
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linked to separating the phase structure/matrix interface when the equivalent plastic strain
attains a critical value, following the dislocation accumulation model.

Subsequent microscopic investigations have put forth various hypotheses regarding
nucleation, as shown in Figure 5. Firstly, micropores are thought to originate from the
interaction of edge dislocations and external impact forces. Secondly, stress accumula-
tion and subsequent nucleation of micropores can occur in regions where the slip zone
intersects grain boundaries or various defects, a phenomenon known as the Zener–Stroh
mechanism [82]. Thirdly, when the material undergoes applied plastic strain, it can experi-
ence vacancy supersaturation. Unless the vacancies are stabilized through the trapping of
interstitial gases or the application of hydrostatic stress, they will collapse to form planar
defects when their size exceeds the critical limit of 10 vacancies [83–87]. Lastly, due to the
presence of second-phase particles or inclusions within the matrix, and the consistency of
inclusions with the matrix is usually lower than the consistency of the material itself, the
nucleation of pores is induced [88,89].

Figure 5. Micropore nucleation mechanisms [89]; (a) dislocation interaction; (b) dislocations accumu-
late at grain boundaries; (c) vacancy coalescence; (d) loss of inclusions to the matrix. Reprinted with
permission from ref. [89]; 2023 Progress in Materials Science.

Differences in microstructure among various metallic materials lead to variations in
the nucleation mechanisms of micropores. Nevertheless, a consensus has been reached
regarding the probable nucleation sites of micropores, typically found in the weaker regions
within the material. Micropores tend to nucleate at joints and interfaces, including defects,
grain boundaries, and phase interfaces. These regions disrupt the continuity and integrity
of the material’s microstructure, leading to substantial dislocation accumulation and stress
concentration. This, in turn, can induce local deformation and facilitate micropore nucle-
ation. Recent advancements in testing technologies, such as SEM, TEM, and XCT, have
facilitated the direct observation of the micropore nucleation mechanisms mentioned. How-
ever, these techniques are restricted to observing the evolution of micropores as they grow
to a sufficient size. More advanced microscopic characterization equipment and techniques
are required to investigate micropores’ initial formation and early evolution occurring at
more minor scales. Additionally, complementary microscale theoretical calculation meth-
ods, such as DD and MD, become essential for a more comprehensive understanding of
these processes.

In particular, MD simulations are crucial in offering a more comprehensive atomic-
scale perspective for studying micropore nucleation mechanisms. Zhao et al. conducted
MD simulations to investigate micropore nucleation in an ideal lattice exposed to static
water tension [90]. Their results indicated that plasticity must commence before uniform mi-
cropore nucleation. Moreover, they also considered the influence of hydrogen on micropore
nucleation and developed a relevant mathematical model. This work lays the theoretical
groundwork and provides novel insights for the research and development of hydrogen
storage materials and equipment. Yang et al. utilized MD simulations to investigate the
effects of temperature, strain rate, initial pressure, and grain size on micropore nucleation
under both isotropic and triaxial stress conditions [91]. The advancement of precision
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equipment, nuclear industries, and advanced manufacturing has substantially expanded
the application scope of metal materials, elevating the significance of micropore defects
in these materials. Understanding the mechanisms of micropore nucleation has become
a pressing need, yet characterizing and observing these details using existing techniques
remains challenging. Consequently, there is an urgent demand to develop micro-nano
mechanics theory and conduct further research on dislocation and atomic scales to address
this issue.

3. Growth Law and Research Methods

Micropore growth is a crucial aspect of material damage, signifying a non-uniform
plastic deformation process that persists over an extended period during micropore evolu-
tion. Consequently, existing research on micropore evolution predominantly centers on the
growth of these micropores. Factors influencing the micropores’ growth can be primarily
categorized into the following three groups, as shown in Figure 6: external stress condi-
tions [53,92–95] (stress triaxiality, Lode parameter), internal microstructure [61,63,96–101]
(such as grain orientation, grain size, etc.), and micropores’ characteristics [31,53,102–105]
(such as initial micropore volume, micropore size, shape, etc.).
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Research on micropore growth has emerged from the understanding that micropore
evolution significantly influences ductile material damage. Initially, studies concentrated
on the growth of micropores in an infinite elastic solid with a single micropore, assuming a
round or spherical shape for the micropore. Subsequent research investigated the growth
of micropores with multiple cylindrical holes, considering the interaction between adjacent
micropores. It is apparent that these models still exhibit notable gaps and limitations
when compared to the actual micropores in materials. Further studies are incorporating the
evolution of porosity into the constitutive equation and considering material damage within
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a plastic constitutive framework. Presently, numerous models utilize this methodology to
examine micropore growth, with the Gurson model [106] and its extended models among
the most classic models in this category.

Mandel [107] and Hill [108] pioneered the standard method of homogenization theory,
coupling the representative volume elements of the microstructure with the macroscopic
ones through volume averaging. Subsequently, Gurson [109], based on the von Mises solid
matrix with a hollow sphere model under uniform boundary strain rate conditions, pro-
posed a micro–macro limit analysis method. Gurson established the classic Gurson model
by introducing a ductile yield criterion and flow law for porous ductile materials based
on damage mechanisms. The original Gurson model assumes isotropic strain hardening
locally by combining plasticity theory with the homogenization of “basic units” in plastic
porous materials. It overlooks the influence of internal microstructure, such as crystal
orientation, and treats the pure tensile yield stress of the material as constant. They have
promoted research in the field of pore growth. However, Gurson’s analysis utilized the
kinematic limit analysis approach to obtain an upper bound on the macroscopic criterion
for spherical porous materials. As a result, this model tends to overestimate material
strength and underestimate material porosity due to the restriction on pore growth.

The original Gurson criterion has undergone multiple extensions, with one of the
most notable being the introduction of three additional calibration parameters q1 q2 q3
by Tvergaard to enhance the consistency between the Gurson yield criterion predictions
and experimental data [110]. Tvergaard also proposed a widely used pore coalescence
method within this framework, leading to the Gurson–Tvergaard–Needleman (GTN) model.
Tvergaard suggested q1 = 1.5, q2 = 1, q3 = q2

1, but later, Koplik and Needleman [111]
pointed out that the values of qi are not fixed and are arbitrary parameters that ensure
the correlation between equivalent plastic strain and pore growth, influenced by the
stress triaxiality T. However, Tvergaard’s suggested values still hold some merit. In the
1980s, Tvergaard, Needleman, and others introduced additional terms related to micropore
nucleation to incorporate porosity into yield criteria and associated flow rules [110,112–116].

The cubic sphere pore model may undergo shear yielding under low-stress conditions,
which the Gurson model cannot predict. Therefore, Hom et al. [117] also proposed a
modified form of the Gurson yield criterion. Later, Leblond [118] derived another yield
function in analyzing representative volume elements with spherical pores and proposed a
pore growth model related to shear, known as the Leblond–Perrin–Devaux (LPD) model.
This model overcomes some limitations of the Gurson model: (1) the Gurson model
cannot simultaneously determine the yield stress of the hardening matrix under pure shear
and pure tensile stress with the same accuracy, (2) the Gurson model’s predictions are
incompatible with analytical solutions for a hollow sphere made of rigid hardening material
under tensile stress, and (3) the Gurson model cannot reproduce the relationship between
pore growth rate and matrix hardening function [119].

The models mentioned above are limited to analyzing spherical pores. Gologanu
and others [120], as well as Castañeda et al. [121], have proposed constitutive models
that incorporate changes in pore shape. Gologanu and colleagues used micromechanical
analysis to study pores in elongated and flattened spheres [122], considering the influence
of the aspect ratio of the pores. They extended the Gurson model, now commonly called
the Gologanu–Leblond–Devaux (GLD) model.

Additionally, Mear, Hutchinson (1985), and Leblond (1995) have significantly ad-
vanced the extension of the Gurson model, enhancing the accuracy of pore growth pre-
dictions [118,123]. Numerous extensions and modifications to the Gurson model have
been proposed, including incorporating Eshelby-type velocity fields in the limit analysis
of hollow spheres and considering a matrix that follows Tresca’s criterion instead of von
Mises’ [124]. Due to space limitations, mentioning all these variants in this article is impos-
sible. The descriptions of some relevant models are provided in Table 1. The meanings of
the parameters in Table 1 are shown in Table 2
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Table 1. Introduction to some micropore growth models.

Model Equation Description

Gurson
model
1977

Φ(σ, fv) =
σ2

eq

σ2
0
+ 2 fv cosh( 3Σh

2σ0
)− 1 − f 2

v = 0

Changes in porosity during the plastic
deformation process:

.
f v = d

dt
(

ω
Ω
)
=

(
1 − ω

Ω
) .

Ω
Ω or

.
f v = (1 − fv)trDp

Changes in porosity during the elastic
deformation process:

fv = 1 − (1 − fv0)
V0
V

[
1 + 3(1−2v)

E Σh

]

The earliest pore growth model
based on a plastic constitutive

framework only considers
spherical pores and
material isotropy.

GTN
model

1980, 1981

σ2
eq

σ2
e
+ 2q1 f ∗v cosh( 3q2Σh

2σe
)− 1 − q3 f ∗v

2 = 0

f ∗v ( fv) =

{
fv, fv ≤ fvC

fvC +
fvU− fvC
fvF− fvC

, fv > fvC

Extension of the Gurson model:
To enhance the consistency
between the Gurson yield
criterion predictions and
experimental data, three

additional calibration parameters
qi(i = 1, 2, 3) have been

incorporated into the structure of
the criterion. Furthermore, a

widely adopted pore clustering
method has been proposed.

LPD
model
2006

σ2
eq

σ2
e1
+ 2q1 f ∗v cosh( ln(q1 f ∗v )

ln( fv)
3q2Σh
2σe2

)

−1 − q3 f ∗v
2 = 0

σe1 = 1
b3−a3

b3∫
a3

σe(⟨εr
e⟩r)dr3

σe2 = 1
ln(b3/a3)

b3∫
a3

σe(⟨εr
e⟩r)

dr3

r3

⟨εr
e⟩r =

2
3

[
sinh−1(u)−

√
1+u2

u

]u= 2
3 Ep

kk/(Ep
eq R3)

u= 2
3 Ep

kk/(Ep
eqr3)

b3 = exp(Ep
kk), a3 = exp(Ep

kk)− fv0 − 1
R3 = r3 − b3 = 1

Incorporating a correction factor
to account for the overestimation

of pore growth in the Gurson
model under shear loading.

GLD
model
1995

C∗
(

Σz−Σr+ηΣh
σe

)
+ 2q(g + 1)(g + fv)

cosh
(

k Σh
σe

)
− (g + 1)2 − q2(g + fv)

2 = 0

e1 =
√

1 − exp(−2|S|)(
1−e2

1
1−e2

2

)n∗

= fv

(
e1
e2

)3

with n∗ =

{
1, f or prolate shape : ‘p′

1/2, f or oblate shape : ‘o′

Considering the influence of pore
shape, a model was used to

describe the materials’ dynamic
behavior and constitutive

relationship.

The integration of finite element subroutines and theoretical models for micropores
growth, operating under specific assumptions about material properties, has spurred
extensive research on the influence of stress triaxiality [53,125,126], porosity [127], size
effects [102], crystal orientation [96,128,129], and temperature [130]. Among these factors,
stress triaxiality has been identified as the predominant driving factor governing micro-
pore growth and coalescence [89], which is highly similar to micropore nucleation. The
growth of micropores is characterized as a function of the stress state, revealing significant
variations in the evolution and shape changes of micropores under different stress triax-
iality. Substantial alterations in micropore volume within materials occur at high-stress
triaxiality, and material failure is primarily ascribed to the “porosity” effect. Conversely,
under low-stress triaxiality, the shape changes in the micropores become more pronounced,
and material failure is typically attributed to the “necking” of the micropores [131].
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Table 2. Parameters in Table 1.

Model Parameter Meaning

σeq The macroscopic von Mises equivalent stress.
σ0 The tensile yield stress of the ideal plastic matrix material.

fv0, fv Pore volume fraction.
Σh The macroscopic hydrostatic stress.

ω, Ω A porous representative volume element Ω containing
pores that occupy volume ω.

V0, V The initial and current volumes of the cell.

Gurson
model

E Young’s modulus.

GTN model

q1, q2, q3 Calibration parameters.
f ∗v Functions related to fv.
σe The flow effective stress of the matrix material.

fvC, fvF, fvU

For most engineering alloys, fvC is approximately 0.15.
The pore volume fraction at the fracture.

The pore volume fraction at the ultimate value of the pore
volume fraction.

R, r The initial and current radial distances of the RVE point
from a fixed origin, respectively.

LPD model
σe1, σe2

Result from a re-calculation of the homogenization
problem for hardening material.

GLD model

S Aspect ratio.
e1, e2 Parameters related to fv and S.

C∗, Σz, Σr, Σh, η, q, g Parameters that can be exported from σe1 and σe2.

Porosity describes the influence of the quantity and size of micropores on material
performance. Higher porosity leads to poorer structural continuity and inferior material
performance. In subsequent studies, numerous researchers have explored the impact of
micropore size on material performance. Shu investigated the size effect of micropores
under minor strain conditions using the elastic–viscoplastic strain gradient crystal plasticity
theory [132]. Similar studies by Fang et al. [133] and Zeng et al. [134] have also employed
the strain gradient crystal plasticity theory to explore the impact of micropore size on
micropore growth. Their research consistently indicates that the growth of micropores
exhibits a strong size effect, with smaller micropores often showing lower growth rates.
Early research based on the Gurson criterion yielded results opposite to those of the studies
mentioned above, suggesting that the growth of the micropores is independent of their size.
However, with further research, the existence of size effects in ductile metallic materials
has become undisputed.

Due to the limitations of macroscopic continuum models in understanding the mi-
crophysical mechanisms of the aforementioned micropore evolution, researchers have
explored the stress variation trends around micropores at the mesoscale. Wang et al. in-
vestigated the interaction between micropore size and dislocations based on DD, finding
that the critical stress required for dislocation emission depended on the size of the micro-
pore. There was a decrease in the critical stress required for dislocation emission as the
micropore size increased, thus affecting micropore growth [135]. The dislocation migration
rate around micropores significantly influences micropore growth [136]. Small micropores
have fewer dislocation sources, while large micropores have more, resulting in the faster
growth of larger micropores. A DD simulation by Chang et al. further validated these
findings [102], as shown in the corresponding simulation data in Figure 7.

With the development of single-crystal materials, the effect of crystal orientation
on the growth of micropores is another area of research that has attracted widespread
attention. This research aims to provide a unified explanation for the growth of micropores
in single-crystal materials. Deng et al. [137], Murdoch et al. [138], Liu et al. [139] and
Zhu et al. [140] conducted research on various materials under different conditions and
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concluded that crystal orientation significantly influences the growth of micropores. Their
research indicated that, under the same stress conditions, the shape changes in micropores
and different loading directions can alter the orientation of the long axis of the micropore.
Furthermore, the influence of crystal orientation on micropore growth is not uniform, with
stress triaxiality and crystal orientation having competing effects on micropore growth [141].
Under low-stress triaxiality, the deformation mode mainly depends on crystal orientation.
However, under high-stress triaxiality conditions, the rate of micropore growth is primarily
determined by stress triaxiality and the initial pore volume fraction. Especially for smaller
initial pore volume fractions, the growth rate of micropores is higher, emphasizing the
significant influence of the initial crystal orientation.
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At a deeper microscale level, MD simulations have provided physical mechanisms
for a significant amount of research [46,47,142]. Specifically, it has been observed that
the tensile strength of the model increases as the ratio of micropore radius to system
size decreases. This phenomenon is attributed to the scale-dependent stress required
for micropore growth, which decreases with decreasing pore size. Consequently, the
availability of the optimal shear surface decreases while the stress needed for initiating
shear band nucleation increases. This is consistent with the experimental results of size
effects in finite element simulations [143].

Our research group has conducted extensive MD simulations of micropore growth,
investigating the effects of typical crystal orientations on the initial stress distribution,
dislocation nucleation and emission, dislocation morphology, and stress–strain response
in a nickel-based single-crystal matrix [144–146]. For instance, in one of our research
projects [146], a size system 64.416 × 27.0336 × 5.28 nm3 was chosen to investigate the
orientation effect. Considering that the size of the model must be a multiple of the lattice
spacing, the lattice spacing in the [109] oriented z is different from that of [99,108]. Periodic
boundary conditions (PBCs) were applied to the z direction, and x and y were the shrink-
wrapped boundary. A reasonable simulation of fracture and damage can be obtained
considering that the potential energy can describe the bonding capacity in a metal system
and the dependence of the strength of a single bond on the local environment (e.g., surface
and defects) well. In addition, this EAM potential, based on the first principles, can
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reproduce many fundamental properties, such as vacancy migration energy and unstable
and stable stacking fault energy. Therefore, the embedded atom method of Ni developed
by Mishin et al. [147] was used to simulate the uniaxial tensile behavior of single-crystal
nickel with nanopores. A microcanonical ensemble was taken during the simulation
process, and the temperature of the thermostat atom was controlled by rescaling the atomic
velocity by 40 picoseconds in 1 fs time step. Finally, the open visualization tool (Ovito) of
Stukowski [148] was used to observe and analyze the atomic configuration throughout the
stretching process. The model’s dimensions, boundary conditions, and simulation results
are shown in Figure 8.

Based on the research achievements in crystal orientation, our research group has
systematically summarized the impact of orientation deviation on the creep performance of
nickel-based single-crystal superalloys [149]. Orientation deviation represents an essential
form of crystal orientation affecting material performance, which arises due to the difficulty
in precisely controlling temperature gradients and directions during the material solidifica-
tion process. High-temperature creep experiments were conducted at two typical operating
temperatures to evaluate the influence of orientation deviation. In addition, a constitutive
model considering orientation deviation was proposed using the CPFEM finite element
simulation method. The experimental results demonstrate that the orientation deviation
effect on nickel-based single crystals under high-temperature and low-stress conditions
gradually diminishes with increasing temperature. The specific experimental conditions
and results are illustrated in Figure 9.
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For polycrystalline materials, the crystal orientation of the polycrystal is random, and
due to the influence of crystal orientation and grain geometry, sometimes tiny pores grow
faster than larger micropores [151]. In addition, MD simulations are more often used to
elucidate the micropore growth mechanism [104,135,152–154]. Previous studies on the
physical mechanisms of micropore growth have proposed two main mechanisms that
influence this process: vacancy condensation and dislocation release [153,155,156]. The
applicability of these theories depends on factors such as temperature, strain rate, and the
localization of plastic flow. Under low-temperature and high-strain-rate conditions, the
primary mechanism of micropore growth is dislocation emission triggered by high-stress
concentrations. Prism and shear dislocation loops are carriers for atomic transfer radially
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from the pore front. As the dislocation loop propagates from the pore front, existing
micropores grow, leading to the eventual coalescence of initially separated micropores.
This coalescence further enhances micropore growth.
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Davila [157] proposed the theory of prism loops and shear loops (as shown in Figure 10)
to describe the microscale mechanism of internal micropore growth in various materials.
Before this, prism loops were already well-known among researchers, with studies by
Seppälä et al. demonstrating that prism loops are the primary form of micropore growth,
achieved through the emission of dislocation loops [158]. The concept of shear loops is
relatively novel. However, the emission of shear dislocation loops from the surface of
micropores, similar to Ashby’s geometrically necessary dislocations, is consistent with
experimental observations. Therefore, there is considerable controversy regarding the
microscale growth mechanisms for prism loops and shear loops in micropores. Meyers et al.
conducted a series of studies and confirmed, through relevant uniaxial tension simulation
results, that shear dislocation loops are the primary mechanism for micropore growth.
Their simulation results noted no prism dislocation loops [53,126,159–161]. Tang et al.
found that the emission of dislocation loops is the primary cause of micropore growth,
and that the continuous nucleation of dislocations and the increase in shear loops promote
micropore growth [54].

Research on the micropore growth mechanism has made relevant progress. However,
a comprehensive and universally applicable description has yet to be obtained. Therefore,
it is necessary to establish micropore growth theories and models at the micron and
nanoscale levels, considering additional influencing factors, including 3D morphology,
spatial distribution characteristics, stress states, and external environment. By incorporating
these factors into the model, a more complete understanding of micropore growth can
be obtained.
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The multiscale model formed by CPFEM, DD, and MD coupling comprehensively
describes the performance and behavior of materials from the macroscopic scale to the
atomic level. In the study of pore growth mentioned above, the advantage of CPFEM lies
in the simulation, while its role in studying the fundamental physical mechanisms at small
scales is limited. In contrast, MD is suitable for describing the atomic-scale behavior of
materials, simulating atomic interactions and the microstructure of materials, and exploring
the fundamental physical laws that control material behavior. Many studies [65,162–164]
have utilized multiscale models to analyze materials comprehensively. This type of multi-
scale model can more accurately predict the mechanical properties, damage behavior, and
deformation mechanisms of materials, providing a deeper understanding and support for
material design and engineering applications.

4. Collapse

The growth and collapse of micropores in ductile metallic materials are fundamental
processes that ultimately lead to material failure under tensile and compressive loads [165].
In other words, the growth or collapse of micropores in materials is a consequence of
deformation under varying stress conditions. Factors like crystal orientation and other
intrinsic material properties likely exhibit considerable similarity in their impact on micro-
pore behavior. Nevertheless, additional research is necessary to investigate whether these
influencing factors and stress conditions compete or interact synergistically. Due to the
similarities among these influencing factors, numerous scholars have directed their efforts
toward comprehending the connections and distinctions between micropore growth and
collapse. In the study conducted by Liu et al. [166], the critical strain for micropore growth
and collapse was investigated using homogenized micromechanics. They identified the
load parameter and stress triaxiality associated with the crucial strain during micropore
growth and collapse. Significantly, as depicted in Figure 11, it was observed that the stress
state corresponding to the transition from pore growth to collapse is discontinuous, exhibit-
ing a transitional zone in between. Within this transition region, the material experiences
neither growth nor collapse.

While considerable attention has been dedicated to comprehending the response of
materials to impact and compression, there has been relatively less investigation into the
ductile failure stemming from micropore collapse. Theoretical examinations of the defor-
mation behavior of individual micropores in power-law materials under uniform stress
have unveiled that an initially spherical micropore can transform shape into an ellipsoid
before collapsing structures resembling cracks or needles [167]. Detailing the mathematical
formulation of pore collapse has been crucial in developing material constitutive equations
for impact compression scenarios. However, research explicitly addressing shock-induced
pore collapse remains relatively limited, with only theoretical models based on dislocation
mechanisms proposing rapid sliding prismatic dislocation ring emission as the mechanism
for micropore collapse. The models mentioned above were successfully applied to shock
wave propagation in porous materials [168–171]. The introduction of one of the models
is shown in Table 3, and the meanings of the parameters in Table 3 are shown in Table 4.
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However, the physical processes leading to micropore collapse remain unresolved, and the
underlying mechanisms remain poorly understood.
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MD simulation has been extensively employed since 2000 to investigate its microscopic
atomic mechanism and comprehensively understand micropore collapse. Through MD
simulations, Solanki et al. [172] explored cylindrical pores’ partial and complete collapse
behavior in high-strain-rate monocrystalline copper and nickel. They compared the results
with finite element analysis and experimental data, particularly regarding local inelastic
flow. Interestingly, despite the substantial spatiotemporal scale difference between the
methods, the results exhibited high consistency. Non-equilibrium molecular dynamics
(NEMD) calculations conducted by Davila [157] demonstrated that impact-induced mi-
cropore collapse in copper occurs through the emission of shear rings, differing from the
prismatic rings assumed by conventional continuum mechanics models. Liao et al. system-
atically investigated the collapse of micropores in np-Ni with graded micropores under
NEMD. Their findings reveal that the collapse rate of micropores is linearly dependent on
the impact loading speed. Furthermore, the initial surface dislocation location of micropore
collapse is influenced by the position of the micropores in the sample and the size gradient
of the micropores [171]. Prasad et al. Investigated the micropore collapse mechanism of
nickel single crystals using atomic simulation methods and explored the impact of temper-
ature micropore collapse [173]. Their results revealed that the emission and interaction of
dislocation rings around micropores were the primary mechanisms of micropore collapse,
and the rate of micropore collapse was almost temperature-insensitive. Furthermore, more
and more studies have suggested that the shear ring mechanism of micropore growth
also plays a significant role in micropore collapse and is one of the primary mechanisms
involved. Guan et al. investigated the collapse behavior and mechanism of micropores
in single-crystal aluminum through 1D and 3D MD compression simulations. The results
of the simulations demonstrated that dislocation shear rings, as depicted in Figure 12,
were emitted from the surface of micropores during both 1D and 3D compression. The
distinction was that, in 3D, dislocation shear rings converged to form two intersecting
tetrahedrons, thereby reducing the collapse rate of the micropores [174].
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Table 3. A pore growth/collapse model based on iterative methods.

Model Equation Description

Basic equations Q = en ⊗ ên

By iterating the method, the
pore model gradually

approximates the complex
deformation of the actual pore.

Equilibrium
equation

σij,j = 0
Neglecting the inertia term and

ignoring the pore rotation
caused by elastic deformation.

Equation of motion
relationship

ui,j = (d(e)ij + w(e)
ij ) + (d(p)

ij + w(p)
ij )

d(p)
ij = pα

ij
.
γ

α, w(p)
ij = ωα

ij
.
γ

α

pα
ij =

1
2 (s

α
i nα

j + sα
j nα

i )

wα
ij =

1
2 (s

α
i nα

j − sα
j nα

i )

The velocity gradient is
decomposed into elastic and
plastic contributions to make

the motion equation
more accurate.

Constitutive
equation

.
σij = Lijkld

(e)
kl

Lijkl = λδijδkl + µδijδkl + µδilδjl
.
γ = η(τ/τn)

n

The constitutive relations are
simplified by the assumption

that the contribution due to the
rotation of the frame, caused by

elastic lattice distortion,
is negligible.

Table 4. Parameters in Table 3.

Model Parameter Meaning

Xn, xn
Two coordinate systems. Xn are fixed and xn

rotating along the central axis of the pore.

ên, en
The orthonormal triads in Xn and xn

coordinate system.
Basic equations

Q The rotation tensor, which transforms en into ên.

Equilibrium equation σij,j The Cauchy stress.

vi,j The velocity vector.

d, w; e, p

d and w are the deformation rate tensor and the
spin tensor, respectively, and the superscript e

stands for the elastic part, while the superscript
p stands for the plastic part.

α
.
γ

α α is summed over all active slip systems and
.
γ

α

is the slip rate of the α slip system.

Equation of motion
relationship

sα, nα
sα and nα are the tangential and normal unit

vectors of the α slip system, respectively.

Constitutive equation

L L is the fourth-order elasticity tensor.

λ, µ
λ and µ are the Lame constants, δi,j is the

Kronecker delta.

η, τr, n, τ
η and τr are n regarded as material parameters,
and τ is the resolved shear stress component in

the slip direction.
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In addition to face-centered cubic metals, as mentioned above, relevant studies have
also explored the collapse behavior of micropores in body-centered cubic and close-packed
hexagonal metals [175,176]. Furthermore, additional factors, such as temperature and
hydrostatic pressure, have been considered [173,177,178]. Vacancy diffusion contributes to
dislocation movement at higher temperatures and promotes continuous micropore collapse.
At lower temperatures, the collapse behavior of micropores in body-centered cubic and
close-packed hexagonal metals has been improved. Mass transport and micropore collapse
occur through dislocation formation, slip, and interaction, resulting in strain hardening.
Due to the strain hardening around micropores at lower temperatures, compared to higher
temperatures, the collapse of micropores is delayed after the initial stage of closure, further
enhancing the understanding of micropore collapse. However, a substantial gap exists in
the research on micropore collapse compared with micropore growth. More complex factors
must be considered, and the synergistic and competitive effects between different factors
must be discussed in detail. Moreover, current simulation studies on micropore collapse
mainly focus on high-impact rates, and the influence mechanism under the low-speed
action has not been thoroughly studied and understood.

5. Interference between Micropores

When micropores reach a certain extent of growth or collapse, they coalesce with
neighboring micropores. However, the interaction between micropores is often overlooked
in the later stages of growth and deformation, as well as before coalescence. An interactive
relationship exists between micropores even before they physically come into contact,
as shown in Figure 13. Currently, a mutual disturbance between micropores has been
observed in experimental phenomena. This interaction between micropores can also be
referred to as micropore interference.

Tvergaard and Niordson studied the interaction between large and small pores. They
found that the growth of tiny pores was significantly limited by the stress concentration
effect of nearby large pores when their size length was comparable to the material’s charac-
teristic length scale [179]. Furthermore, other researchers have investigated the influence
of initial pore spacing on the evolution of two pores before coalescence [131,180–182]. For
instance, Cui et al. studied the interaction between two elliptical pores under uniaxial
loading. By controlling the direction of the long axis of the elliptical pores and the ratio of
their long axis length (2a1) to short axis length (2a2), three shape combinations, as shown in
Figure 14, were formed. Their study also discussed the influence of the initial pore spacing
(ILD0) Different shape combinations will affect the number of dislocation emissions around
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the micropores, especially when the micropore spacing is small. The micropores’ shape
combination determines whether dislocation emission is promoted or suppressed. The
starting point of multi-elliptic micropores cluster dislocation emission mainly depends on
the micropores whose central axis is perpendicular to the uniaxial loading direction [180].
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The two-pore system exhibits a higher likelihood of yield than the single-pore system,
with a more minor critical yield stress [183]. This behavior can be attributed to local elastic
and plastic deformation fields forming around each micropore. Each micropore generates
a local elastic strain field, typically associated with the expansion center, which expands
their interaction range. For instance, the shear stress decreases as the distance from the
micropores increases, and when micropores are sufficiently close, the neighboring pore’s
stress field can alter each micropore’s growth rate. The changes in the elastic field affect the
activation of plastic deformation and subsequent expansion of the plastic zone surrounding
the micropores. Micropores can also interact through their plastic fields, which may increase
local hardening rates, heat softening, and shear localization.

The concept of a transition to shear deformation, proposed by Brown and Embury
based on simple geometric considerations, suggests that the critical inter-pore ligament
distance should be equal to the diameter of a micropore [184]. In other words, when
the surfaces of a pair of micropores are separated by a distance equivalent to a single
micropore’s diameter, they transition from independent growth to interaction. According
to this idea, it is at this point that the dominant micropore process changes from radial
plastic flow around isolated growing micropores to shear deformation, facilitating the
rapid coalescence of micropore pairs. However, recent studies have indicated that the
micropore growth rate increases for distances between micropores up to six times the
diameter [185–187]. This necessitates additional research on microscopic mechanisms. E. T.
Seppälä conducted extensive studies using 3D MD simulations to investigate micropore
interactions. This included quantifying the reduction in distance between micropores,
directional growth of micropores, and corresponding shape evolution. In agreement with
Brown and Embury’s thesis, the growth rate of micropores was examined, revealing that
the interaction between micropores is not reflected in the volume growth rate [158].
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Numerous macro and micro studies have demonstrated that interpore interference
originates from the slip zone [91]. In prior research [91,104,106,110,112,113,152,188,189], the
authors conducted MD simulations on multiple micropores with varying configurations to
examine the evolution of micropores from the elastic to the plastic stage. They compared
the effects of micropore evolution and interaction on fundamental mechanical properties
under different configurations and analyzed the alterations in stress distribution and stress
triaxiality throughout the evolution process. The additional analysis involved studying
dislocation nucleation, dislocation density, and stacking fault trends to understand the
different forms of micropore interactions. Two distinct interference mechanisms were
identified: (1) local plastic deformation and (2) uniform plastic deformation.

Furthermore, local plastic deformation was subdivided into local necking and local
shear, enabling an assessment of the mechanisms behind micropore interference and plastic
deformation. The distinction between these two deformation mechanisms is primarily
attributed to the competition and synergy between stacking faults and dislocation density.
Stacking faults predominantly influence local plastic deformation, whereas uniform plastic
deformation is mainly governed by dislocation motion, with minimal occurrences of
stacking shear motion, as shown in Figure 15.

The dynamic evolution and deformation behavior of micropores and the interactions
between multiple micropores are highly complex, involving intricate physical and me-
chanical processes, including stress transfer, concentration, and strength degradation. Due
to the complexity of micropore evolution and the current limitations in microscale pore
characterization, most studies on pore–pore interactions still rely on simplified models to
investigate interactions between pores, such as geometric arrangements, pore shapes, and
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distances between pores. At the same time, some factors involving complex influencing
mechanisms may be overlooked.
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(f3) ε = 0.2373, and micropore interaction [190]. Reprinted with permission from ref. [190]; 2019 Jour-
nal of Applied Physics.

In the future, it is necessary to develop advanced experimental techniques and nu-
merical models to delve deeper into the quantitative characterization of inter-particle
interactions. The ultimate goal is to understand the underlying mechanisms governing
these interactions comprehensively. In addition to simple inter-pore interactions, future
research should consider the influence of other microstructural features, such as grain
boundaries, inclusions, and precipitates. Furthermore, investigations should encompass
different material systems and loading scenarios to comprehensively understand how these
interactions vary under diverse material compositions and loading conditions. The aim is
to achieve a comprehensive understanding of the interaction mechanisms.

6. Coalescence

The coalescence of micropores is a crucial damage mechanism that significantly im-
pacts material deformation [141,191]. Diverse methodologies have been employed to
investigate micropores coalescence. Some crucial models related to pore coalescence
are also proposed. For example, McClintock’s model [192], the model of Hancock and
McKenzie [193], the model of Budiansky, Hutchinson, and Slutsky [194], and Thomason’s
model [195–198]. Thomason [197] proposed a method in 1985 to locate the onset of pore
coalescence. Subsequently, Benzerga and Leblond [199] revisited Thomason’s work and
derived a fully analytical solution for pore coalescence by considering circular cylindrical
geometric shapes and velocity fields suitable for constrained plastic flow configurations.

Presently, the computation and exploration of micropore coalescence primarily con-
sider factors such as crystal orientation, stress triaxiality, spatial configuration of the mi-
cropores, micropore spacing, shape, and strain hardening coefficient [200–202]. Certain
studies simulate the coalescence behavior by considering adjacent micropores’ spatial
configuration or the size/spacing ratio [203]. Others investigate the plastic loading limit de-
formation of non-hardened materials containing regular arrays of micropores [96,139,204].
In subsequent studies, Pardoen and Tekoglu classified micropores’ coalescence into stretch
coalescence or shear coalescence based on the ligament orientation between the two coalesc-
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ing micropores [205,206]. Liu et al. explored the coalescence behavior of single-crystal mi-
cropores, grain boundary micropores, and two-grain micropores employing a twin-crystal
model [207]. Under strain-controlled boundary conditions, micropores in soft-oriented
grains demonstrated a greater inclination to coalesce than those in hard-oriented grains. In
the coalescence of grain boundary micropores, the deformation mismatch between grains
is heightened with the difference in orientation factor, fostering micropores’ growth along
the grain boundary. A notable distinction in orientation factors expedited the coalescence
of micropores at grain boundaries while decelerating the coalescence of micropores within
grains. Any micropore coalescence model must integrate microstructural details, includ-
ing micropore/ligament length and geometry. Deng et al. employed MD simulations to
explore the impact of micropore configuration on the coalescence of single-crystal copper
micropores under impact loading [137]. During the tension stage, the micropores initially
grew independently, followed by a coalescence process resembling the nucleation of micro-
pores observed in the spallation of simulated single-crystal copper [204]. Numerous small
micropores formed along the spatial ligaments of the two micropores and rapidly coalesced
to create a channel wherein the two micropores merged. However, the coalescence rate
of micropores varied with different loading angles, with a higher likelihood of micropore
coalescence occurring when the impact direction was connected to the center of the two
micropores at a 60◦ angle.

Interference between micropores has been identified through experimental observa-
tions. Various mechanisms related to micropore coalescence have been summarized [103,
111,208–213]: The primary and most prevalent mechanism entails coalescence through
the internal neck constriction of the inter-micropores’ ligament, with the critical ligament
distance parameter determining the coalescence point (Figure 16a). The second type in-
volves connection through narrow shear plates, a phenomenon frequently observed during
shear-induced micropore deformation (Figure 16b). A third, less common mechanism is
referred to as columnar coalescence or neck condensation, wherein micropores coalesce
along their length (Figure 16c). This situation is encountered in steels with elongated
inclusions [214] or alloys with arranged clusters of particles [215]. Figure 16d presents an
example of the first mechanism of micropore coalescence, while Figure 16e illustrates an
example of the second coalescence mechanism.

By replicating the structural evolution at the atomic scale, involving dislocation motion
and atomic diffusion [143,216], MD simulations of micropore coalescence can offer insights
into evolution mechanisms inaccessible in larger-scale simulation studies. Seppälä, through
MD studies, discovered that the coalescence process of isolated micropore pairs at the mi-
croscale significantly differs from the coalescence process of single micropores at periodic
boundaries, emphasizing the limitations of the latter in describing coalescence in typical
low-symmetry configurations [158]. Zhao et al. conducted MD simulations to investigate
the growth and coalescence of two micropores in single-crystal copper, considering two
influential factors: the initial radius and spatial distance between the micropores [182].
They observed that the peak stress triaxiality increased with the initial distance of the micro-
pores ligament until reaching the critical coalescence point, after which it decreased. This
suggests that stress triaxiality may be a significant indicator for determining micropores
coalescence. Besides the coalescence mechanisms, the conditions under which micropore
coalescence occurs have also received extensive attention. Le et al. described coalescence
as happening when the long axis of a micropore is an order of magnitude of the average
spacing between adjacent planes [209]. Koplik and Needleman determined the onset of
micropores coalescence through single-cell analysis, identifying the transition to a uniaxial
stretching state in the macroscopic deformation of the cell [111]. These findings empha-
size the significance of micropore growth and coalescence in the plastic deformation of
porous materials.
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Figure 16. Mechanism and examples of micropore coalescence [217,218]. Reprinted with permission
from ref. [217,218] (a) Coalescence occurs through the contraction of the inner neck of the microporous
ligament; (b) Coalescence of micropores caused by shear; (c) Columnar coalescence; (d) Example of
a coalescence mode; (e) Example of b coalescence mode; 2008 Acta Materialia, 2002 Modelling and
Simulation in Materials Science and Engineering.

In addition to studying the evolution mechanism of micropores themselves, MD
simulations are commonly used to explore the impact of micropore aggregation on the
mechanical properties of materials, providing a theoretical basis for designing and con-
trolling advanced materials. For instance, using MD simulations, Tran et al. investigated
the deformation mechanism and mechanical properties of Cu-Ta metallic glass nanofilms
containing one and two micropore defects during the tensile process [182]. They found
that the tensile strength of the specimen with two micropores was higher than that of the
specimen with one micropore, although the failure rate was faster. This phenomenon has
been previously reported in studies conducted by Mi et al. [219]. The findings suggest that
porous samples generally exhibit higher yield stress and greater load-bearing capacity than
single micropore samples, primarily due to the enhanced dislocation interaction under
constant porosity conditions. This observation indicates that sample stress resistance can
be improved by redistributing a large micropore into multiple smaller micropores at the
nanoscale. However, the evolution of the micropores’ ratio appeared to be independent of
the number of micropores, and no significant acceleration in the micropores’ expansion
resulting from the coalescence of adjacent micropores was observed. Gao et al. investigated
the influence of micropores on the mechanical properties of FeNiCrCoCu high-entropy
alloys [220]. They examined different micropore sizes, applied strain rates, and temper-
atures, analyzing the evolution behavior of micropores using a model with one or two
micropores. The research team also conducted MD simulations to study the coalescence of
micropores, explicitly discussing the coalescence evolution behavior of micropores in the
matrix phase of nickel-based single-crystal alloys. The study explored the effects of crystal
orientation and initial radius of micropores, obtaining mechanical property parameters
such as stress-strain curves, as well as micro deformation mechanisms such as micro error
evolution [183].

Additionally, it was observed that materials with two micropores were more malleable
and deformable compared to those with only one micropore (Figure 17). In conclusion,
micropore coalescence behavior, a crucial aspect of the fracture failure process in ductile
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materials, has garnered increased attention, particularly in emerging materials and high-
end manufacturing industries. In the later stages, it becomes imperative to consider the
service performance of micro–nano processing and nanocrystalline materials. Indeed, the
advancement in multi-scale calculation methods such as MD, DD, and CPFEM, along
with complementary microscopic observation and characterization technologies, holds
great promise. These developments contribute to micropore coalescence research and
provide a solid theoretical and experimental foundation for performance design, control
strategies, and the evaluation of performance and service life in materials at the atomic and
microstructural levels.
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Figure 17. The influence of the number, size, and crystal orientation of micropores on materials [183].
(left) Comparison of stress–strain curves of single-pore and two-pore models; (right) variation trend
of yield strain and yield stress under different orientations and different second micro pore radii:
(a) R2 = 3 nm, ε = 3.5%; (b) R2 = 3 nm, ε = 3.7%; (c) R2 = 4 nm, ε = 3.6%; (d) R2 = 4 nm, ε = 3.7%.
Reprinted with permission from ref. [183]; 2018 Current Applied Physics.

7. Interaction between Micropores and Other Microstructures

The predominant focus of studies on the growth and coalescence behavior of microp-
ores has been on single-phase materials. However, the mechanical properties of most metal
materials in their natural state are anisotropic. These materials exhibit diverse microstruc-
tures with varying properties, including different crystal orientations and phase interfaces,
which significantly influence the evolution of micropores. In the case of polyphase or
polycrystalline materials, the external environment surrounding micropores also impacts
the material’s mechanical properties. In particular, when micropores appear in phase
interfaces, the load-bearing capacity of the material is significantly reduced.

Moreover, the deformation and growth of micropores differ due to variations in the
structure and physical properties of different phases. Hence, it becomes imperative to
study the influence of the local environment (i.e., the matrix material with different mi-
crostructures) on the deformation and growth behavior of micropores and the resulting
mechanical properties of the material. Recently, there has been a growing emphasis on
studying defects like micropores and exploring their interactions with different microstruc-
tures [221–224]. Figure 18 shows the synergistic effect between dislocation and micropore
spacing on pore growth at the finite element scale. The small size of the micropores and
microstructures makes it challenging to directly observe material deformation mechanisms
using existing experimental testing methods, with only a few high-cost and high-resolution
TEM in situ tests available. As a convenient method for observing atomic motion in real
time and understanding the interaction mechanisms between micropores and various



Metals 2024, 14, 522 25 of 36

microstructures, MD simulation has found widespread application in nuclear reactor mate-
rials [40,225,226], advanced high-temperature alloys [187,227], and other studies related
to internal micropores and dislocations [228–230]. Moreover, it has been employed to
investigate the interaction between precipitated phases, microcracks, and other internal
micropores, considering changes in mechanical properties and radiation resistance [222].
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of Plasticity.

The interaction between micropores and other microstructures in a material is dictated
by their sizes, shapes, and positions, consequently influencing the material’s properties.
The size of micropores, termed the size effect, is intricately linked with dislocation move-
ment. Previous studies [136,231–233] have explored the interaction between micropores
and dislocations in face-centered cubic crystals, utilizing MD simulations with nickel and
copper materials. In industrial concerns regarding the degradation of mechanical prop-
erties of reactor materials due to irradiation-induced defects, Yabuuchi et al. employed
MD simulations to unravel the relationship between dislocations and defects. Their focus
was probing the interaction between edge dislocations and geometric configurations of
micropores with varying surface features. The goal was to comprehend the influence
of cutting mechanisms and micropores on the irradiation hardening of pure iron [40].
Furthermore, researchers have investigated the interaction between dislocations and micro-
pores in iron, molybdenum, and binary alloys like Fe/Cu, Fe/Ni, Ni/Al, and Al/Mg, all
possessing body-centered cubic crystal structures [102,135,136,173,234–243]. The quantity
and mobility of dislocations surrounding micropores impact the growth rate, resulting
in a faster growth rate for larger micropores, thus elucidating the observed size effect
in micropores’ growth. In polycrystalline materials, the factors influencing micropore
growth become more complex. Micropores may exist within individual grains or at grain
boundaries, and consequently, the microstructure, including grain boundaries (GBs), con-
tributes to the evolution of micropores. In actual polycrystalline materials, micropores
frequently nucleate at the junction of two adjacent GBs or multiple GBs. The features
of GBs play a crucial role in influencing complex interface behaviors, such as GB slip
and slip transfer, which subsequently impact mechanical properties and the evolution
of micropores [244,245]. Understanding the interaction between micropores and GBs is
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crucial for designing radiation-resistant materials and achieving high-quality metallurgical
diffusion connections through GB engineering. Migrated GBs can exhibit diverse behaviors
when interacting with micropores, such as fixation to the micropores, unhindered passage
through the micropores, or complete dissolution of the micropores [226]. MD simulations
indicate that higher temperatures significantly enhance the dissolution capability of high-
angle GBs toward micropores. Studies on the interaction between cracks and micropores
reveal that the propagation behavior of cracks is easily influenced by the distribution of
micropores [96]. Moreover, a single micropore at the crack tip can impact the direction and
velocity of crack propagation through interactions with the micropores. In a related study,
Cui et al. investigated the interaction of shock waves with pre-existing nano micropores
and the role of shear stress in iron phase transitions [227]. Nanopores were identified as
preferred nucleation sites for iron phase transitions, accelerating the growth of the tran-
sition region. Additionally, the presence of micropores lowered the threshold pressure
and increased the nucleation rate, facilitating the formation and growth of the new phase.
The results also suggested that the size of the micropores influenced the phase transition
process. Considering the intricate microstructure of nickel-based single-crystal superalloys
employed in aero-engine turbine blades, Yang et al. developed Ni, Ni3Al, and Ni/Ni3Al
interface models to assess the expansion dynamics of micropores within these three dis-
tinct microstructure configurations [221]. The author has similarly conducted research,
employing tensile MD simulations to investigate the evolutionary behavior of columnar
pores within the aforementioned diverse microstructure matrix models (Figure 19) [187].
Additionally, Cui et al. explored the impact of micropores on the deformation mechanism
of nickel-based single-crystal superalloys by analyzing the interaction between dislocations
and strengthening phases. Their investigation revealed that defects, such as micropores,
can lower the difficulty of dislocation penetration into the strengthening phase, conse-
quently diminishing the strengthening effect and resulting in a decline in the mechanical
properties of nickel-based single-crystal superalloys [227]. The above findings indicate
significant advancements in research related to the interaction between micropores and
microstructures or the evolution of microstructures considering the influence of micropores,
especially in the nuclear industry. This progress is evident in understanding the mechanical
properties of nuclear reactor materials and the design and development of materials for
radiation damage deformation, such as advanced aero-engine blade materials like super-
alloys. As more advanced materials and specialized porous materials are developed, the
impact of micropores is gaining increased attention from researchers. MD simulations of
interactions between micropores and microstructure evolution are gradually expanding
to more demanding environments (thermal–mechanical–electrical coupling), achieving
higher precision (micro–nano machining and micro–nano manufacturing), deeper levels
(unified theoretical frameworks), and larger scales (spatiotemporal consistency calculations
aligning with experimental conditions).
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8. Discussion and Outlook

Micropores are the primary sources of crack initiation in material damage and failure.
Their presence poses significant safety risks during service, as the evolution of micropores
in service conditions exhibits complex 3D features such as morphology, size, and distri-
bution. This rapidly leads to the degradation of the surrounding tissue and nucleation of
cracks, resulting in significant performance discrepancies and severely constraining the ap-
plication of metal materials. Therefore, a clear understanding of the influence of micropore
evolution on material performance is an essential aspect of the continuous development of
metal materials.

At present, research on micropore evolution is predominantly centered on the growth
and coalescence of micropores, considering various influencing factors such as stress state,
porosity, dislocations, crystal orientation, and initial pore shape, with relatively limited
investigations into micropore nucleation, collapse, inter-pore interactions, and the influence
of micropores on other microstructural features. Nucleation represents the initial stage of
micropore evolution, typically occurring at the microscale. However, our understanding
of nucleation mechanisms is restricted due to the immaturity of current observation tech-
niques. Similarly, the collapse process is often rapid, especially at the microscale, making
direct observation and measurement challenging through experimental methods.

In situ XCT allows for the simultaneous and continuous observation of micropore
evolution during experiments, but it may come with higher costs. Relying solely on
experimental observations is insufficient to analyze micropore evolution and damage
effects comprehensively. Advanced numerical simulation methods like DD and MD are
used to understand micropore evolution mechanisms. By combining the strengths of DD
and MD, CPFEM can effectively predict microstructure deformation damage in metallic
materials and establish the relationship between microstructure and macroscopic properties.
Incorporating pore evolution models such as the Gurson model and its extensions into
crystal plasticity models allows for considering pore evolution within the crystal plasticity
framework. This comprehensive multiscale approach is crucial for studying micropores’
plastic behavior and evolution mechanisms.

The Gurson model is a classic model in research on the growth of pores. It is widely
used to study the evolution of pores in materials. Since then, numerous scholars have
expanded upon it, resulting in theoretical models such as GTN, LPD, and GLD. These
theoretical models consider various factors, including different stress states, the influence
of micropore nucleation, pore shape, and temperature impact, making them applicable
under different conditions. The study of material damage using models like Gurson, GTN,
LPD, and GLD has dramatically facilitated research by making assumptions about certain
material characteristics. However, these assumptions also limit the ability of such studies
to consider all influencing factors in real-world scenarios simultaneously. Each model can
only investigate pore evolution under specific conditions. Future developments in this
field should focus on incorporating more influencing factors and improving the descriptive
capabilities of the models. Furthermore, applying these models to more complex pore
morphologies and material systems is necessary to enhance their accuracy and applicability.

Indeed, with the growing demands across various application fields, understanding
and controlling the evolution of micropores is becoming increasingly crucial. Integrating
advanced observation and characterization techniques with sophisticated numerical meth-
ods provides more experimental data and theoretical support for an in-depth exploration
of the relationship between micropores and material properties. This integration allows for
optimizing material performance, enhancing mechanical strength, electrical and thermal
conductivity, and accurate material lifespan and degradation predictions. This, in turn,
ensures the reliability, durability, and expansion of application domains for materials. Fur-
thermore, a thorough investigation into micropores’ formation and evolution mechanisms
offers more precise guidance for the design and fabrication of advanced materials. By
exerting control over the distribution, morphology, and size of micropores, it becomes
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possible to enhance the performance and functionality of materials, thereby propelling the
advancement of advanced materials.

In conclusion, the evolution of micropores leads to the degradation of the surrounding
area and the nucleation of cracks, which limits the application of advanced metal materials.
The evolution process occurs at the microscale, making direct observation and measurement
through SEM, TEM, and XCT challenging. Advanced numerical simulation methods
such as DD and MD have been employed to understand the evolutionary mechanism of
micropores. Combined with CPFEM, the deformation and damage of the microstructure of
metal materials can be effectively predicted, and the relationship between microstructure
and macroscopic performance can be established.

Incorporating theoretical models such as the Gurson model and its extensions into
crystal plasticity finite element models allows for discussing micropore evolution processes
within the framework of crystal plasticity theory, providing great convenience for related
research. However, the Gurson model and its extensions only include partial material
parameters such as porosity and pore shape factor, which limits the ability to consider
all influencing factors in the real world simultaneously. Additionally, these parameters
are difficult to accurately measure through experiments, resulting in significant adverse
effects on the model’s accuracy. Therefore, each model can only investigate the evolution
of micropores under specific conditions. Future developments should focus on incorpo-
rating more influential factors and improving the descriptive capabilities of the models.
Additionally, these models need to be applied to more complex pore morphologies and
material systems to improve accuracy and applicability. Advanced observation and charac-
terization techniques and sophisticated numerical methods will provide more experimental
data and theoretical support to explore the relationship between micropores and material
properties further.
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