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Abstract: In order to explore a wider range and lower cost of raw materials for the preparation of
magnesium silicate hydrate (M-S-H), an acid-leaching method was employed to extract and separate
high-purity magnesium hydroxide (Mg(OH)2) with a purity higher than 97% and amorphous silica
with a purity higher than 90% from four types of natural silicate minerals (serpentine, peridotite,
zeolite, and montmorillonite). These two intermediate products, which are amorphous silica and
magnesium hydroxide, were used to prepare M-S-H, and the influence of curing at two temperatures,
50 ◦C and 80 ◦C, on the properties of M-S-H was investigated. The results showed that with the
increase in curing temperature, the bound water content, tetrahedral polymerization degree, and
Mg(OH)2 content increased. There was a good correlation between the increase in strength and the
bound water content of M-S-H. This work provides a possible technological route for expanding
the raw materials for preparing magnesium silicate hydrate cementitious materials and utilizing the
abundant magnesium silicate minerals in the Earth’s crust.

Keywords: magnesium silicate minerals; magnesium silicate hydrate; acid-leaching method; strength

1. Introduction

Hydrated magnesium silicate (M-S-H) cementitious material is considered to be a
low-carbon cementitious material [1] and is typically prepared by reaction of MgO or
Mg(OH)2 with amorphous, reactive silica in the presence of water [2]. Mg(OH)2 and MgO
are usually obtained from carbonate rocks such as magnesite and dolomite or Mg2+ in
salt lakes and seawater. These methods result in direct or indirect CO2 emissions. Silica
fume is the most common source of Si in the solution reaction method for preparing M-
S-H [3–6]. In addition, amorphous SiO2 present in rice husk ash [7], fly ash [8], fluidized
bed bottom ash [9], finely ground waste glass, and diatomaceous earth [10] can also serve
as reactants for the formation of M-S-H. Amorphous SiO2 and silicic acid [11,12] exhibit
higher reactivity compared to crystalline SiO2. As a supplementary cementitious material,
the high cost and specific locality of silica fume limit its use as a cementitious material.

The molar ratio of magnesium to calcium (Mg:Ca) in the continental crust is approx-
imately 1.06, as reported by Hans [13]. This brings to light an intriguing question: is it
feasible to utilize naturally occurring magnesium silicate minerals for the synthesis of
hydrated magnesium silicate cementitious materials? The potential use of natural magne-
sium silicate minerals as raw materials in the production of such cementitious materials
offers a dual advantage. First, it presents an opportunity to significantly reduce carbon
dioxide emissions, as this process circumvents the need for calcining magnesium carbonate.
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Second, it proposes a cost-effective route for manufacturing hydrated magnesium silicate,
thus making it an attractive alternative to traditional cementitious materials.

Ruiter’s research delineates the serpentinization process of olivine-rich rocks, which
leads to the formation of brucite. This brucite subsequently dissolves, yielding a magnesium-
rich fluid with a notably high pH level (exceeding 9). This alkaline fluid facilitates the
dissolution of quartz, culminating in the emergence of a nanocrystalline magnesium sil-
icate hydrate phase [14]. Among magnesium silicate rocks such as serpentine, olivine,
sepiolite, and chlorite, there is a notable absence of cementing properties. But, after under-
going dehydration, natural serpentine demonstrates commendable cementitious qualities
upon rehydration within autoclave conditions, achieving a compressive strength of up to
17 Mpa [15]. Furthermore, within acidic environments, the trio of minerals—serpentinite,
leaf serpentinite, and fiber serpentinite—are capable of dissolving Mg2+ and amorphous
SiO2. The purpose of this study is to use natural magnesium silicate minerals as raw mate-
rials to prepare hydrated magnesium silicate gelling materials. The characteristics of the
magnesium silicate hydrate (M-S-H) derived from isolated Mg(OH)2 and amorphous SiO2
were meticulously analyzed through the dissolution of serpentine, peridotite, sepiolite, and
chlorite in sulfuric acid. It provides a new path for preparing hydrated magnesium silicate
cementing materials.

2. Materials and Methods
2.1. Materials

Serpentine, peridotite, sepiolite, and chlorite are derived from Shanlin Shiyu Mineral
Products Co., Ltd., Guzhang County, Xiangxi Prefecture, Hunan Province. The chemical
composition is shown in Table 1, the X-ray diffraction is shown in Figure 1, and the particle
size distribution of the raw materials is shown in Figure 2. Serpentine consists mainly of
serpentine group minerals such as Elisserite, fibrous serpentine and leaf serpentine, and
plagiochlorite and contains a small amount of magnetite. Peridotite is mainly composed of
magnesium olivine. Chlorite is mainly composed of plagiochlorite and brittle chlorite. The
silica and magnesium contents of the four minerals are high, which provide rich silicon
and magnesium sources for the preparation of hydrated magnesium silicate cementing
materials. The particle size distribution analysis of raw materials (as shown in Figure 2)
indicates that the mean particle size of serpentine, olivine, sepiolite, and chlorite is 70 µm,
80 µm, 80 µm, and 70 µm, respectively.
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Figure 1. XRD of raw materials. 
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Figure 2. Particle size distribution of raw materials. 
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Table 1. Chemical composition of raw material wt%.

Materials MgO SiO2 Al2O3 Fe2O3 CaO K2O Na2O TiO2

Serpentine
Olivine

43.48
47.89

45.95
41.77

0.62
0.23

9.11
9.97

0.37
0.08

0.02
0.01

0.11
0.04

0.02
0.01

Sepiolite 28.47 67.45 2.03 0.49 0.44 0.65 0.28 0.09
Chlorite 34.71 42.12 12.70 6.96 3.12 0.12 0.05 0.22
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Figure 1. XRD of raw materials. 
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Figure 2. Particle size distribution of raw materials. 
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Figure 2. Particle size distribution of raw materials.

2.2. Methods

The schematic diagram of the experiment is shown in Figure 3. The raw materials
(serpentine, olivine, sepiolite, and chlorite) were dissolved in a 30% H2SO4 solution with
a solid–liquid ratio of 1:5 and heated at 90 ◦C for 3 h. After dissolution, the solution was
separated from the residue using a centrifuge. The residue was washed five times with
deionized water and then dried in an oven at 50 ◦C until a constant weight was reached.
The dried residue was sealed and stored for later use.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 18 
 

The resulting residue was then mixed evenly with MgO powder in a mass ratio of 

6:4, and a paste was prepared using deionized water at a water-to-solid ratio of 1:2. After 

sealing, the paste was cured in a constant temperature water bath at 50 °C and 80 °C for 3 

days, 7 days, 14 days, and 28 days, respectively. Subsequently, the cured samples were 

dried in a vacuum drying oven at 40 °C for 24 h. 

 

Figure 3. A schematic diagram of the experiment. 

The mineral phase analysis was undertaken using an XRD (D8, Bruker, Berlin, 

Germany) with CuKα radiation operating at 40 kV/30 mA and scanning the range from 5 

to 80 at a speed of 3°/min. Particle size distribution (PSD) was determined by using a laser 

particle size analyzer. Thermogravimetric analysis (TGA) was performed by using a 

METTLER (Bern, SwiUerland) Toledo TGA/DSC1/1600 thermal analysis system with a 

temperature accuracy of +/−0.5 °C. Fourier transform infrared (FTIR) spectra were 

obtained by using a spectrometer (Nicolet IS50, Thermo Fisher, Madison, WI, USA). The 

FTIR analysis had a resolution of 4 cm−1 and co-addition of 32 scans. The magic-angle 

rotating solid high-resolution NMR experiments were carried out using an AVANCE400 

(SB) fully digital NMR spectrometer of Bruker (Bern, SwiUerland), and a solid 15 N~31 P 

probe of 4 mm/15 kHz. 

The strength of the mortar samples was tested according to the GB/T 17671-1999 [17]. 

The mass ratio of the residue to MgO in the cementing material was 6:4, with 0.2% 

polycarboxylate superplasticizer. The water–cement ratio for the mortar samples was 0.5. 

The specimen size was 40 mm × 40 mm × 160 mm, and the specimens were cured in a 

water bath at 50 °C and 80 °C for the specific age to measure compressive strength. 

3. Results and Discussion 

3.1. Composition and Particle Size Distribution of the Residue and Mg(OH)2 

The chemical composition of the residue and Mg(OH)₂ are shown in Table 2. The 

XRD paKerns of the residue, Mg(OH)₂ and MgO calcined, are shown in Figures 4 and 5. 

In Table 2, the chemical composition of the residue is mainly SiO2, a minor of SO3 

introduced from sulfuric acid, and other components. The XRD paKern reveals diffraction 

peaks of amorphous SiO2 in the range of 2θ = 15° to 30°, while no distinct crystal diffraction 

peaks are observed for residue dissolved from serpentine, olivine, and sepiolite. 

Based on Figures 4 and 5 and Table 2, the obtained Mg(OH)2 and the MgO derived 

from calcination at 350 °C exhibit relatively high purity. The particle size distribution 

Figure 3. A schematic diagram of the experiment.



Buildings 2024, 14, 1188 4 of 17

To obtain precipitation, NaOH solution was added dropwise to the separated filtrate
using a Pasteur pipette. The resulting precipitation was clarified, separated, and dried to
obtain Mg(OH)2. Since the newly formed Mg(OH)2 is more conducive to the formation of
M-S-H [16], in this experiment, Mg(OH)2 was calcined to produce MgO, which served as
the magnesium source for the preparation of M-S-H. The dried precipitated sample was
calcined at 350 ◦C in a muffle furnace for 1 h, resulting in white MgO powder.

The resulting residue was then mixed evenly with MgO powder in a mass ratio of
6:4, and a paste was prepared using deionized water at a water-to-solid ratio of 1:2. After
sealing, the paste was cured in a constant temperature water bath at 50 ◦C and 80 ◦C for
3 days, 7 days, 14 days, and 28 days, respectively. Subsequently, the cured samples were
dried in a vacuum drying oven at 40 ◦C for 24 h.

The mineral phase analysis was undertaken using an XRD (D8, Bruker, Berlin, Germany)
with CuKα radiation operating at 40 kV/30 mA and scanning the range from 5 to 80 at a
speed of 3◦/min. Particle size distribution (PSD) was determined by using a laser particle
size analyzer. Thermogravimetric analysis (TGA) was performed by using a METTLER
(Bern, Switzerland) Toledo TGA/DSC1/1600 thermal analysis system with a temperature
accuracy of +/−0.5 ◦C. Fourier transform infrared (FTIR) spectra were obtained by using
a spectrometer (Nicolet IS50, Thermo Fisher, Madison, WI, USA). The FTIR analysis had
a resolution of 4 cm−1 and co-addition of 32 scans. The magic-angle rotating solid high-
resolution NMR experiments were carried out using an AVANCE400 (SB) fully digital NMR
spectrometer of Bruker (Bern, Switzerland), and a solid 15 N~31 P probe of 4 mm/15 kHz.

The strength of the mortar samples was tested according to the GB/T 17671-1999 [17].
The mass ratio of the residue to MgO in the cementing material was 6:4, with 0.2% poly-
carboxylate superplasticizer. The water–cement ratio for the mortar samples was 0.5. The
specimen size was 40 mm × 40 mm × 160 mm, and the specimens were cured in a water
bath at 50 ◦C and 80 ◦C for the specific age to measure compressive strength.

3. Results and Discussion
3.1. Composition and Particle Size Distribution of the Residue and Mg(OH)2

The chemical composition of the residue and Mg(OH)2 are shown in Table 2. The
XRD patterns of the residue, Mg(OH)2 and MgO calcined, are shown in Figures 4 and 5. In
Table 2, the chemical composition of the residue is mainly SiO2, a minor of SO3 introduced
from sulfuric acid, and other components. The XRD pattern reveals diffraction peaks of
amorphous SiO2 in the range of 2θ = 15◦ to 30◦, while no distinct crystal diffraction peaks
are observed for residue dissolved from serpentine, olivine, and sepiolite.

Based on Figures 4 and 5 and Table 2, the obtained Mg(OH)2 and the MgO derived
from calcination at 350 ◦C exhibit relatively high purity. The particle size distribution
analysis of the residue (amorphous silica) and Mg(OH)2 precipitation (as shown in Figure 6)
indicates that the mean particle size of the amorphous SiO2 prepared from serpentine is
approximately 20 µm, while that from olivine and sepiolite is around 30 µm. For chlorite,
the mean particle size is approximately 65 µm. Similarly, the maximum particle size of
Mg(OH)2 precipitated from the four types of minerals is approximately 65 µm.

Table 2. Results of chemical analysis of residue and Mg(OH)2 wt%.

Materials SiO2 MgO SO3 Al2O3 Fe2O3 CaO K2O Na2O TiO2

Residue

Serpentine
Olivine

94.68
95.74

0.78
1.35

3.97
1.33

0.09
0.25

0.34
0.92

0.06
0.16

0.01
0.02

0.05
0.08

0.02
0.15

Sepiolite 95.69 1.72 1.45 0.65 0.20 0.15 / / 0.14
Chlorite 90.87 5.44 0.88 / 2.61 / / / 0.20

Mg(OH)2

Serpentine
Olivine

0.52
2.03

98.22
96.82

0.52
0.32

0.06
0.21

0.64
0.19

/
0.12

/
0.01

0.04
0.30

/
0.01

Sepiolite 0.38 98.69 0.05 0.60 / 0.08 / 0.20 /
Chlorite 1.94 97.12 0.24 0.33 0.24 / 0.02 0.11 /
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size of Mg(OH)2 precipitated from the four types of minerals is approximately 65 µm. 

Table 2. Results of chemical analysis of residue and Mg(OH)2 wt%. 

Materials  SiO₂ MgO SO3 Al2O3 Fe2O3 CaO K2O Na2O TiO2 
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3.2. XRD and FTIR Analysis

Figures 7–10 are XRD patterns of the paste of the residue and MgO in 50 ◦C and
80 ◦C water. In the Figures 7–10, there is no distinct MgO diffraction peak, indicating that
most of MgO has hydrated after 3 d. The characteristic peaks of M-S-H at the 2θ value of
5.0◦–10.0◦, 35.0◦, and 59.9◦ can be observed [18,19] after 3 d. With the hydration time and
the curing temperature, the height of these diffraction peaks gradually increases, while
the corresponding Mg(OH)2 diffraction peaks decrease. The mineral diffraction peaks
observed around 2θ at 35◦ in the samples prepared from chlorite may be attributed to
minerals such as augite-Ca (PDF No. 24-0201) present in the chlorite raw materials.
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cm−1 is aKributed to the Q3 Si-O vibration, while the absorption band within the range of 

870 to 920 cm−1 is aKributed to the Q2 Si-O vibration [5,19]. Additionally, the absorption 

peak observed near the wavenumber of 650 cm−1 can be aKributed to the bending vibration 

of Si-O-Si [20]. With an increase in curing time, the intensities of these three absorption 

bands are significantly enhanced, indicating a gradual increase in the formation of 
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Figure 10. XRD of filter residue and MgO pastes of chlorite at 50 ◦C and 80 ◦C.

Figures 11–14 show the FTIR spectra of the residue and MgO paste at different reaction
times under curing at 50 ◦C and 80 ◦C. The two absorption bands correspond to the
formation of M-S-H. Specifically, the absorption band within the range of 950 to 1100 cm−1

is attributed to the Q3 Si-O vibration, while the absorption band within the range of 870 to
920 cm−1 is attributed to the Q2 Si-O vibration [5,19]. Additionally, the absorption peak
observed near the wavenumber of 650 cm−1 can be attributed to the bending vibration of
Si-O-Si [20]. With an increase in curing time, the intensities of these three absorption bands
are significantly enhanced, indicating a gradual increase in the formation of hydration
products. The absorption band at the wavenumber of 1080 cm−1 assigned the vibration of
Si-O-Mg in M-S-H [7,21,22] also increases with age. These results are consistent with the
XRD results.
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Figure 11. M-S-H FTIR spectra of serpentine cured at 50 ◦C and 80 ◦C.
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Figure 12. M-S-H FTIR spectra of olivine cured at 50 ◦C and 80 ◦C.
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Figure 13. M-S-H FTIR spectra of sepiolite cured at 50 ◦C and 80 ◦C.
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Figure 14. M-S-H FTIR spectra of chlorite cured at 50 ◦C and 80 ◦C.

3.3. TG and DSC Analysis

The mass loss between 50 ◦C and 300 ◦C (∆m1) in the TG curve indicates the removal
of interlayer water from M-S-H, and the weight loss between 300 ◦C and 750 ◦C (∆m3)
relates to the dehydroxylation of magnesium hydroxide and the decomposition of M-S-H
(Figures 15–18, Table 3). Notably, this part of the mass loss includes the removal of the
dehydroxylation of brucite at about 400 ◦C (∆m2) [20,23]. With the increase in curing time,
the water content between the layers of M-S-H gradually increases, reaching its maximum
value at 7 days, followed by a decrease. The M-S-H phase itself acts as a gel-like material
that can retain water within its structure; the continuous formation of it leads the increase in
the interlayer water. But as the reaction progresses, the M-S-H phase becomes more densely
packed, limiting the amount of water that can be accommodated in the interlayer spaces.
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Figure 15. TG curve of serpentine of hydrated magnesium silicate.
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Figure 17. TG curve of sepiolite of hydrated magnesium silicate. 
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Upon curing at 50 ◦C for 3 days, the mass loss due to Mg(OH)2 dehydroxylation (∆m2)
reaches maximum value, gradually decreasing thereafter. Furthermore, at 28 days, the
Mg(OH)2 content is only about 70–80% of that of the four samples cured in 50 ◦C for 3 days.
A higher-temperature curing accelerates the hydration reaction. For samples cured at 80 ◦C,
this ratio decreases to 48–68%.
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Table 3. The mass loss between different temperature wt%.

Curing Tem. Mass Loss Minerals 3 d 7 d 14 d 28 d

50 ◦C

∆m1

Serpentine 11.34 14.55 14.07 14.07
Olivine 13.92 15.25 14.43 15.09

Sepiolite 15.21 18.02 14.56 17.43
Chlorite 11.32 9.34 10.61 11.00

∆m2

Serpentine 13.07 10.70 9.16 9.02
Olivine 11.75 10.72 8.87 9.33

Sepiolite 11.41 8.28 9.10 6.02
Chlorite 12.58 11.56 10.14 10.14

∆m3

Serpentine 18.44 16.25 15.28 15.35
Olivine 17.36 16.44 15.43 16.32

Sepiolite 16.61 13.97 15.18 13.32
Chlorite 18.28 17.98 16.28 15.94

∆m3 − ∆m2

Serpentine 5.37 5.56 6.13 6.34
Olivine 5.61 5.72 6.56 6.99

Sepiolite 5.20 5.69 6.08 7.30
Chlorite 5.70 6.42 6.14 5.80

80 ◦C

∆m1

Serpentine 14.63 19.18 18.49 18.17
Olivine 13.92 14.30 14.15 18.73

Sepiolite 14.64 19.43 18.70 18.70
Chlorite 14.48 12.46 12.09 13.99

∆m2

Serpentine 8.74 6.54 5.29 4.62
Olivine 11.93 11.23 10.25 5.83

Sepiolite 10.96 6.16 6.62 6.23
Chlorite 8.60 7.60 6.60 5.89

∆m3

Serpentine 15.02 12.96 11.84 11.42
Olivine 17.36 17.71 17.54 13.08

Sepiolite 16.60 12.75 13.60 13.12
Chlorite 15.13 13.60 13.00 12.50

∆m3 − ∆m2

Serpentine 6.28 6.42 6.57 6.80
Olivine 5.43 6.48 7.29 7.25

Sepiolite 5.64 6.59 6.98 6.89
Chlorite 6.53 6.00 6.40 6.61

Compared to the 3-day sample, the 28-day sample exhibited an increase in the mass
loss (∆m3 − ∆m2) of 118% to 140%. This means that the hydration rate decreased over
time. A more compact structure, creating barriers for water transportation and decreasing
the availability of reactants, hinders further hydration.

The DSC curves of M-S-H pastes prepared with serpentine, olivine, sepiolite, and
chlorite are presented in Figures 19–22. On the DSC curve, the endothermic valley between
50 and 300 ◦C is caused by the removal of interlayer water from M-S-H. The second
endothermic valley near 300~400 ◦C corresponds to the dehydroxylation of Mg(OH)2. The
heat release peak at about 850 ◦C is the heat release during the M-S-H recrystallization to
form SiO2 and enstatite (MgSiO3) [6,24] or SiO2 and Mg2SiO4 [25]. The heat release peak
area of this region is calculated and illustrated in the figures. The heat release of the sample
cured at 80 ◦C is greater than that of the sample cured at 50 ◦C; that is, the amount of M-S-H
formed is higher at 80 ◦C. Furthermore, with the extension of the curing time, the heat
release gradually increases, reaching its maximum at 14 days and slightly decreasing at
28 days (except for the sample prepared with olivine).

In Figures 19–22, an interesting observation can be made regarding the heat release
peak at 850 ◦C. Initially, this peak exhibits a single peak or a double peak pattern at early
age, but with extended curing time, it transitions into a single peak or a weakening of the
double peaks (except for the sample prepared with olivine). This change is considered to
be an indicative manifestation of M-S-H maturity [26].
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3.4. NMR Analysis

Figure 23 displays the 29Si NMR spectra of the amorphous silica and M-S-H samples
cured at 50 ◦C and 80 ◦C. The deconvolution results for these spectra at 28 d are summarized
in Table 4. According to references [27–29], the chemical environment of 29Si is denoted
by Qn, where n indicates the number of bridging oxygen atoms shared between a silicon
tetrahedron and the surrounding silicon tetrahedra. In the spectrum of amorphous silica,
the chemical shift at −112 cm−1 corresponds to the Q4 signal, while −102 cm−1 represents
the Q3 signal [30]. The 29Si MAS NMR spectra of amorphous silica obtained from the
dissolution of four silicate minerals show no significant distinction for the aforementioned
Q3 and Q4 signals. It is noted that the Q4 signal in the M-S-H sample nearly vanishes
after 28 days of curing. Furthermore, after 28 days of curing at 50 ◦C, the remaining Q3

(−102 cm−1) signal is slightly higher than that which underwent curing at 80 ◦C. From the
relative content of the remaining Q3 (−102 cm−1) signal, a higher degree of hydration occurs
at elevated curing temperatures. Due to the highest residual Q3 content in amorphous
silica, the M-S-H prepared from sepiolite has the lowest degree of hydration. Conversely,
the M-S-H prepared using olivine as the raw material has the highest degree of hydration.

The 29Si MAS NMR spectrum of M-S-H is primarily composed of chain end-group
Q1, branched silicon–oxygen tetrahedron Q2, and layered silicon–oxygen tetrahedron
Q3 [28,31]. According to Bernard [3,32], the chemical shifts at ∼−78.3 ppm, −80 ppm,
−85.5 ppm, −92.7 ppm, −94.7 ppm, and −96.7 ppm represent Q1

a, Q1
b, Q2, Q3

a, Q3
b, and

Q3
c, respectively. The relative content of Q1 in the samples cured at 80 ◦C is lower compared

to that in the samples cured at 50 ◦C, indicating that high-temperature curing enhances the
polymerization of silicate tetrahedra in M-S-H. As can be seen from the spectral peak shapes
and Table 4, the formation rate of the Q3 structure in M-S-H prepared with serpentine,
olivine, and sepiolite exceeds that of the Q2 structure within the first 28 days. Unlike
these three minerals, the M-S-H prepared from chlorite has a higher relative content of Q2

than of Q3. This indicates that the M-S-H prepared from chlorite has the lowest degree of
polymerization of silicate tetrahedra. In all samples, the relative amount of Q3

b, which
represents the talc-like T:O:T structure with a chemical shift at −94.7 ppm, is lower than
that of Q3

a, which represents the chrysotile-like T:O structure. This indicates that the
silicate tetrahedral structure of the M-S-H prepared using these four silicates is closer to the
chrysotile-like T:O structure.

Owing to the characteristic layered structure of the M-S-H samples, the M-S-H derived
from sepiolite demonstrated a greater relative Q3/Q2 concentration compared to the M-S-H
derived from other sources. This indicates a higher degree of tetrahedral polymerization
when sepiolite is used as the raw material. Compared to other minerals, sepiolite has the
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highest content of residual unreacted silica, resulting in the highest Mg/Si ratio in the
system. A higher Mg/Si ratio leads to an increase in the Q3/Q2 of the produced M-S-H.
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Figure 23. Deconvolution demonstration of 29Si SSNMR spectra for MSH pastes at 28 d.

Table 4. Relative concentrations of different silicon sites of MSH pastes obtained from deconvolution
demonstration of 29Si SSNMR spectra.

Curing Tem. Minerals
I/% Unreacted Silica I/%

Q3/Q2
Q1

a Q1
b Q2 Q3

a Q3
b Q3 Q4

SiO2

Serpentine 31.4 68.6
Olivine 31.8 68.2

Sepiolite 30.9 69.1
Chlorite 32.4 67.6

50 ◦C

Serpentine 4.6 7.8 41.1 32.6 10.1 3.8 1.04
Olivine 5.8 7.3 43.8 35.6 7.5 0 0.98

Sepiolite 1.2 4.2 36.1 43.7 5.1 9.7 1.35
Chlorite 0 23.8 40.7 18.9 14.7 1.9 0.83

80 ◦C

Serpentine 4.3 7.1 43.6 35.9 7.9 1.2 1.00
Olivine 4.1 6.1 46.4 37.1 6.3 0 0.94

Sepiolite 0.7 5.4 38.9 45.9 5.2 3.9 1.31
Chlorite 0 24.4 43.4 20.2 11.6 0.4 0.73
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3.5. Compressive Strength Analysis

The compressive strength of hydrated magnesium silicate paste is shown in Figure 24.
The figure clearly demonstrates that the compressive strength of M-S-H gradually increases
with the curing time, surpassing 38 MPa at 28 days. The M-S-H specimens cured at
80 ◦C exhibit higher strength compared to those cured at 50 ◦C. However, the strength
ratio of specimens cured at 80 ◦C to those at 50 ◦C gradually decreases, indicating that
curing temperature has a more significant impact on the early compressive strength of the
specimens. With an increase in curing time, the strength difference caused by environmental
temperature gradually diminishes.
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Figure 24. Compressive strength of M-S-H cured at different temperatures at 3 d, 7 d, 14 d, and 28 d. 
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Analyzing the relationship between compressive strength and mass loss at different
temperature ranges in Figure 25, it is observed that the mass loss (∆m1) between 50 ◦C and
300 ◦C shows the weakest correlation with strength. This is because the water evaporated
during this temperature range includes not only interlayer water from M-S-H but also
a certain amount of free water or adsorbed water. On the other hand, the removal of
hydroxyl groups (∆m2) from brucite, which acts as a reactant in M-S-H formation, exhibits
a strong negative correlation with M-S-H strength. Subtracting the mass loss of brucite at
approximately 400 ◦C (∆m2) from the mass loss between 300 ◦C and 750 ◦C (∆m3) provides
the remaining mass loss, which represents the decomposition of M-S-H. The mass loss
demonstrates the strongest correlation with strength.
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Figure 25. The relationship between the strength and mass loss at different temperature ranges.

4. Conclusions

In this study, four types of natural magnesium silicate minerals were used as raw
materials. Through the acid-leaching method, high-purity amorphous silica and magne-
sium hydroxide were obtained. Using these intermediates, magnesium silicate hydrate
cementitious materials were prepared. The main conclusions drawn are as follows:

(1) The amorphous silica obtained from the acid leaching of serpentine, olivine, sepiolite,
and chlorite reach a purity of over 90%. The silica derived from serpentine, olivine,
and sepiolite has an average particle size of about 20 µm, while the silica from acid-
leached chlorite has an average particle size of about 65 µm.

(2) Amorphous silica and magnesium oxide prepared using magnesium hydroxide could
form magnesium silicate hydrate within 3 days of hydration. Although there are
certain numerical differences between the minerals used as raw materials, in general,
the hydration reaction accelerates by 10–20% with increased curing time and temper-
ature, and the degree of polymerization of the silicate tetrahedra of newly formed
M-S-H increases.

(3) The M-S-H prepared using four types of magnesium silicate minerals forms a silicate
tetrahedral structure predominantly characterized by the chrysotile-like T:O structure.
The resulting magnesium silicate hydrate cementitious materials could achieve a
compressive strength of 40 MPa at 28 days, and the compressive strength shows a
good correlation with the reduction in magnesium hydroxide content and the increase
in magnesium silicate hydrate.
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