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Abstract: Over the last two decades, the UAE’s construction sector has grown significantly with the
development of tall buildings, but the region faces seismic risks. Similar concerns in China led to
earthquake simulation research on a city scale. The objectives include developing programming for
parallel computing and creating simplified models for estimating losses. The challenges include
computational complexity and uncertainties in various modules. In 1995, the structural engineering
community adopted performance-based engineering principles, shifting to a probabilistic design
process. The Computational Modeling and Simulation Center (SimCenter) implemented this into
a generic software platform, with the 2010 release of Regional Resilience Determination (R2D)
automating the methodology. A research plan aims to advance realistic seismic simulation in the
UAE, integrating studies and custom developments. The goal is to create an end-to-end seismic risk
assessment framework aligned with digital trends, such as BIM and GIS. The investigation focuses
on a virtual dataset for tall buildings, considering variations in location, material properties, height,
and seismic activity. For the studied archetypes, the average expected losses include a 3.6% collapse
probability, a 14% repair cost, 22 days repair time per asset, and almost 1.5% total population injuries,
ranging from 1% for the lowest severity to 0.15% for the highest.

Keywords: seismic damage; high-fidelity city-scale structural model; regional seismicity; parallel
computing simulation; tall buildings; loss estimation; non-linear time history analysis

1. Introduction

Since the beginning of 2010, there have been approximately 120 super-high-rise build-
ings taller than 300 m, based on a statistical inventory by the Council on Tall Buildings and
Urban Habitat (CTBUH). This survey included either completed or under-construction
tall buildings and determined that they are mainly located in regions with rapid economic
development: China, UAE, and the USA (there are 47 in China, 28 in the UAE, and 18
in the USA). However, most developing cities are threatened by severe seismic disasters.
This risk created a critical and motivational need to develop a scientific prediction of
seismic damage platform, providing early warning of potential seismic risks. The main
challenges consisted of (1) achieving precise flexural–shear deformations for each build-
ing with efficient computational techniques, which would require limited time, practical
computational demand, and storage resources and (2) implementing a performance-based
engineering framework, which would include all uncertainties and probabilistic inputs
and present stakeholders’ outputs, such as injuries and economic losses. The following
paragraphs present the progress achieved by several studies on related objectives, such as
implementing a more brilliant programming architecture to minimize computational costs
and developing simplified numerical models to accurately reflect the inter-story earthquake
damage with fewer DOFs.
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1.1. Open-Source Packages for Regional Earthquake Simulations

A scientific workflow was proposed in order to provide an open-source platform
and a standard architecture for solving regional hazard simulations and loss estimation
problems [1]. Conceptually, the workflow is divided into a sequence of modules, where
each one is determined to provide the resulting data based on defined inputs. This design
allows for future developments or enhancements in modules. It can also smoothly replace
the proposed applications with others while preserving the format of the inputs/outputs
used in other models. The source code is published on the GitHub hosting platform. Some
applications, programmed in C++ or Python, are provided for each module, while the
data exchange through workflow modules is saved in JSON format. The definition of
inputs, outputs, primary function, and available applications for each module, as well as
the assumptions considered, are briefly plotted in Figure 1, which is adapted from [1].
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On 13 January 2021, the SimCenter team released the first version of the Regional
Resilience Determination (R2D) tool [2], a graphical user interface for the SimCenter appli-
cation framework. It facilitates defining the studied events, building databases, and visual
representations of the maps and resulting DL ratios through integration with ESRI-ArcGIS
SDK libraries. The application was designed with an architecture of two components: front-
end user interface (UI) and back-end applications. The front end was developed using the
cross-platform QT framework to generate user inputs in the local machine. However, the
back end is an application workflow in C++ or Python, which processes the critical analysis
on a remote server (a high-performance computer (HPC) utilizing the resources available
through DesignSafe). This design utilizes cloud computing concepts, particularly for large
datasets, which require specific computational resources and cannot fit with the available
personal computer (PC) potentials. The user manual, downloading source configurations,
and solved examples are available on their website [2,3].

1.2. UAE Seismicity Uncertainties

In recent years, the real estate sector in the UAE has witnessed significant development
in the construction of tall buildings and iconic structures. Unfortunately, this area lacks data
regarding seismic events and definitions of structural design considerations to be applied.
Generally, the UAE is subjected to relatively high seismic risks, according to Table 1. The
data in Table 1 is from [4,5]. Several studies indicate that, on average, three seismic events
per year affect the UAE based on observations from 2000 to 2006. For example, a moderate
earthquake (Mb = 5) shook a vast area in the northeast of UAE on 11 March 2002, and it
was accompanied by smaller foreshocks and aftershocks [6]. On 27 November 2005 and
10 September 2008, more complex earthquakes with magnitudes of Mb = 5.9 and 6 started
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in the Qeshm Island region in the Hormozgan province of southern Iran. Their impacts
extended and were widely felt in northern UAE, leading to the evacuation of some areas.
In addition, two local earthquakes (with Mb = 3.7 and 3.9) occurred in the eastern region of
UAE on 10 March and 13 September 2007, respectively. In 2018, a seismic hazard analysis
(SHA) study obtained many of the UAE’s geophysical parameters, such as PGA, soil type,
geology, slope, and fault line distance [7].

Table 1. The primary seismic risk sources in the UAE. The data is from [4,5].

Seismic Risk Source Description

The Zagros Fold and Thrust Belt A series of major blind thrust faults capable of generating Mb~7 earthquakes.

The Makran Subduction Zone A shallow dipping seismic source ~6◦, which steepens to ~19◦ south of Iran’s
coastline. It produced an Ms = 8 earthquake in 1945.

The Zendan-Minab Fault System
A complex faulting system created by the Makran subduction zone, joining the
Zagros fold and thrust belt. It is capable of generating
moderate/large earthquakes.

The Sabzevaran Jiroft Fault System It has a similar seismogenic potential to the Zendan-Minab fault system, located
further east.

Oman Mountains and the Dibba Line The region exhibits features of faulting and a history of active tectonics. The 2002
Masafi earthquake originated in this region.

The West Coast Fault It crosses the cities of Dubai and Abu Dhabi and passes very close to Ra’s Al
Khaymah. There is limited information regarding its activity (debatable existence).

The previous UAE seismic hazard investigation studies reported a high variation, from
no seismic hazard to very high seismicity, as shown in Table 2. The data in Table 2 is from [8].
In 2006, the Dubai Seismic Network (DSN) [9] was established to record earthquakes from
local and distant resources through four stations. From 2006 to 2014, many regional seismic
activities were recorded from faults surrounding the UAE. Additionally, local seismic
activities are noticed from three primary sources: (1) Masafi-Bani Hamid, (2) northern
Huwaylat, and (3) Wadi-Nazw.

Table 2. Comparison of the results of Dubai seismic hazard studies [8].

Study PGA (Return Period = 475 Years) (g)

Al-Haddad et al. [10] <0.05

Abdalla and Al Homoud [11] 0.14

Peiris et al. [12] 0.06

Sigbjornsson and Elnashai [6] 0.16

Musson et al. [13] 0.05

Aldama-Bustos et al. [14] <0.05

Shama [15] 0.17

Grunthel et al. [16] 0.32

The uncertainties in estimating the seismicity level in UAE regions caused ambiguity
among designers regarding defining the analytical loads and the best practices for the
statical systems and material properties. Several studies have been conducted in this area.
In 2011, the seismic design factors were investigated in Ref. [17]—the response modification
factor (R), the deflection amplification factor (Cd), and the system overstrength factor
(Ω0)—for three reference buildings designed in Dubai with four, sixteen, and thirty-two
stories. The chosen structure system was RC special moment resisting frames, and two
different sets of ground motions were applied corresponding to 475 and 2475 return periods.
They concluded that the seismic design level significantly impacts the building R factor and
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recommended period-dependent R and Cd Tables. In 2020, an investigation was performed
by Ref. [18], referencing twelve archetypes of buildings, which included a variation in
building height (6, 9, and 12 stories), design seismicity level (low, intermediate, and high),
and type of shear wall (ordinary or special). They recommended being conservative
in designing seismic intensity and utilizing the special RC shear walls for optimizing
lateral behavior based on the probability of collapse and economic loss results. In 2022,
three associated studies [19–21] compared the lateral performance of RC tall buildings
with two layers of ductile coupled shear walls according to building heights (20, 40, and
60 stories), shear wall alignments, and concrete properties among normal concrete strengths
and different ultra-high-performance concrete (UHPC) materials. The results showed a
significant impact of UHPC on structure performance and total cost aspects.

2. Methodology and Research Significance

The GIS-based risk assessment study for Dubai in Ref. [22] could be considered the first
step in UAE regional simulations. Heavy work was included in the data collection aspect,
where Dubai was divided into several neighborhoods, and the dominating usage classified
each area. Additionally, the number of buildings in each neighborhood was estimated ap-
proximately according to the population density. However, a more profound methodology
will be implemented in this research as another advanced step toward an entirely realistic
city-scale simulation. Significant changes are determined through all performance-based
stages: hazard, structural, damage, and loss analyses. This research extensively reviews
the literature regarding UAE seismicity, the effects of seismicity, performance-based earth-
quake engineering, and computing regional earthquake frameworks. The study aims to
perform a virtual sample on a city scale using 17 reference models. The MCS model will be
utilized for low-rise and medium-rise structures. The designed tall building models will be
calibrated to an equivalent NMFS model to facilitate several simulations within regular PC
capabilities. The R2D 2 [2] software package will be utilized to perform a regional seismic
simulation. This package provides a graphical user interface (GUI) for an end-to-end re-
gional earthquake framework, which includes all stages of a PBED process. It will be used
to perform an earthquake scenario simulation for each grid in the UAE region to select the
most likely earthquake record. The primary outputs are the damage cost and probability
of collapse for each asset in the virtual database. As shown in Figure 2, the workflow can
be organized into three major phases: (1) Earthquake scenario simulation: The studied
region will be divided into grids, and an input ground motion will be assigned to each
grid. The studied earthquake sources can be filtered according to the maximum distance
and minimum and maximum magnitude. The ground motion record at each record is
formulated from the included resources based on a “ground motion prediction equation”,
such as that by Abrahamson, Silva, and Kamai (2014) [23]; (2) Assuming the buildings
database: Many reference buildings should be selected according to the required variation.
A high-fidelity FEM should be determined for non-linear analyses. These archetypes will
be distributed on the map to simulate the neighborhoods’ usage; (3) Regional simulation: A
non-linear dynamic analysis will be performed for each asset in the database by assigning
the input ground motion to the closest earthquake grid. Then, a damage and loss analysis
will be performed to relate the collapse probability, economic losses, and injuries to EDPs.
All estimated data will be visualized on a GIS map to deduce the relationships between
building parameters and loss outputs.

The research significance of the proposed study can be summarized as follows: (1) An
“earthquake scenario simulation“ will be performed for the hazard analysis stage instead
of using reference records. This change would incorporate the effect of the location on
the input ground motions for structural analysis. The region would be divided into 2D
grids, and an input ground motion would be generated for each grid according to an
earthquake prediction equation; (2) The structural analysis stage will include a more
comprehensive range of archetypes. Seventeen archetypes will be adopted with a high
variation in building height, from low-rise to high-rise (from single story to 50 stories),
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and other building properties, such as occupancy; (3) The calibrated model concepts will
be investigated in a structural analysis to achieve simulations with personal computer
capabilities. The MCS model will simulate low-rise and mid-rise archetypes, while the
NFMS model will be utilized for high-rise buildings; (4) The PEER PBEE methodology
will be implemented and the HAZUS-MH 2.1 manual followed [24] in order to determine
the collapse probability and DL parameters (such as monetary loss and injuries) for the
included assets.
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Tables 3 and 4 demonstrate the parameters of the adopted reference buildings, where
the cost of archetypes was estimated according to Ref. [25]. The authors classified them
into five low-rise buildings, three mid-rise buildings, and nine high-rise buildings. The
detailed FE element model is required to deduct the MCS model for low-rise and medium-
rise buildings. Instead, a procedure was proposed in Ref. [1] to estimate the hysteresis
parameters of each floor and implemented using R2D [2]. Three different elastic design
response spectra were selected to simulate the ambiguity in defining the seismicity level.
These spectra were defined in Ref. [26], and their key parameters are (Ss = 0.18 g, 0.42 g,
and 1.65 g) and (S1 = 0.06 g, 0.17 g, and 0.65 g) for low, medium, and high seismicity levels.
The chosen models show a variation in structure systems, usage, and design seismic levels
according to the common types in the UAE region. On the other hand, a detailed FE is
required to calibrate the NMFS model for high-rise buildings [27]. Nine tall buildings are
assumed to be commercial construction, with RC shear walls, from 2000 to 2010.

Table 3. Parameters of low-rise and medium-rise archetypes.

Label Number
of Stories Year Built Occupancy

Class Structure Type Plan Area (Ft2) Cost (AED K) Seismic Level

LR_RES_F1 1 1981 RES1 RM1L 1615 675 Low

LR_RES_F2 2 1995 RES3 C1L 2690 2025 Low

LR_RES_F3 3 2000 RES3 C2L 4300 4850 Low

MR_RES_F5 5 2002 RES3 C1L 5382 14,500 Middle

LR_COM_F3 3 1990 COM2 C1L 5920 7012 Low

MR_COM_F6 6 2005 COM1 C1L 5382 16,120 Middle

MR_COM_F7 7 2010 COM1 C2L 5382 18,805 Middle

LR_IND_F1 1 2003 IND2 S1L 10,764 4500 Middle

RES refers to residential occupancy; RES1 stands for a single family; RES3 stands for multiple families. COM
refers to commercial occupation; COM1 and COM2 refer to retail trade and wholesale trade. IND2 indicates
light industrial factory. RM1L, C1L, C2L, and S1L represent reinforced masonry bearing walls, concrete moment
frames, concrete shear walls, and steel moment frames for the structure types.
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Table 4. Parameters of high-rise archetypes.

Label Number
of Stories

Cost
(AED)

Year Built
Material Properties

Plan Area (Ft2) Seismic LevelFc′

(MPa)
Fy

(MPa)

HR_COM_F10 10 58,485

2000 50 420

9685 High

HR_COM_F15 15 87,727

HR_COM_F20 20 115,970

HR_COM_F25 25 146,211

2005 60 420HR_COM_F30 30 175,454

HR_COM_F35 35 204,696

HR_COM_F40 40 233,939

2010 70 500HR_COM_F45 45 263,181

HR_COM_F50 50 292,423

COM refers to commercial occupancy; COM4 stands for professional/technical services. C2L represents structures
with concrete shear walls.

The reference buildings will be distributed in Dubai neighborhoods according to the
usage and population density, and these data are available and published in Ref. [22]. Each
grid’s earthquake records will be selected according to the scenario simulation component
in R2D [2]. A series of regional simulations will be executed for a differently designed model.
The outputs are GIS maps for the collapse probability and economic loss. According to the
total height and shear wall strength parameters, these maps will be a heuristic reference
for designers. This research will represent the first-step stage of regional simulations in
the UAE, where the distant goal is to collect and digitalize an actual building inventory
database. Figure 3 illustrates the flowchart outlining the necessary data for defining a
building [27,28].
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3. Calibrating NMFS Models for Tall Building Archetypes
3.1. Design of Tall Building Archetypes

The material properties and the number of floors of the selected high-rise buildings
are shown in Table 4, while the unified floor layout and structural system are presented in
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Figure 4. The columns of the building’s structural grid are represented by (A, B, C, D, E, and
F) along the X-axis and (1, 2, 3, 4, 5, and 6) along the Y-axis. The assumed layout is a double
symmetric plan view for an office building comprising five 20 foot bays (6.0 m) in both
north–south and east–west directions. The lateral resisting system consists of two shear
wall layers (single shear walls in the edge perimeter and double shear walls connected with
coupling beams in interior axes). For the slabs, the fc′ is assumed to be 4.0 ksi (28 MPa).
Additionally, the associated loads are defined as per ASCE7-16 [29]: 42.5 psf (2.036 kPa)
for the superimposed load (SDL), 7.5 psf (0.359 kPa) for the curtain wall (cladding) on the
perimeter of each floor, 50 psf (2.394 kPa) for the typical floors’ live load, 20 psf (0.958 kPa)
for roof live loads, and the self-weight of the concrete slabs. The soil classification for
the site will be taken as “D” as the code recommends when no specific soil exploration
information is available.
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3.2. Calibration Resulting Model (Calibrating NMFS Models for Tall Building Archetypes)

A trial heuristic algorithm was implemented to determine the best values for NMFS
model parameters, which achieve the closest pushover curve to the detailed FE models.
The main optimization criteria consisted of reducing the mean squared error between the
two curves. The final values for Ωy, Ωp, and µ are reported in Table 5. Numerically, the
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relative errors for peak strength and total curve area were 0.02, 0.08 for the worst cases, less
than 1.0 × 10−5, with 0.04 as the average. Meanwhile, the MSE estimations were below
0.006 and had an average value of 0.004. The efficiency of using NMFS is clarified, as the
time required for the simplified models represents only 4/1000 of the computational time
required for the detailed models, on average. Specifically, this is the ratio between 3/1000
and 6/1000.

Table 5. Estimated parameters for NMFS models.

Archetype
NMFS Model Parameters

Ωy Ωp µ EI (KN·m4) GA (KN·m2)

M1_10F_50RC 2.65 1.20 5.28 1.7 × 108 1.2 × 106

M2_15F_50RC 1.25 1.25 6.11 1.4 × 108 5.9 × 105

M3_20F_50RC 1.62 1.24 2.36 2.9 × 108 4.7 × 105

M4_25F_60RC 1.22 1.23 2.41 3.8 × 108 3.8 × 105

M5_30F_60RC 1.06 1.24 2.28 1.1 × 109 3.1 × 105

M6_35F_60RC 1.25 1.26 1.83 4.5 × 109 3.4 × 105

M7_40F_70RC 1.30 1.26 2.01 7.3 × 109 3.5 × 105

M8_45F_70RC 1.24 1.27 1.40 4.3 × 109 2.7 × 105

M9_50F_70RC 1.13 1.27 1.40 6.2 × 109 2.4 × 105

Average 1.41 1.25 2.80 2.7 × 109 4.6 × 105

4. GIS Databases for Buildings, Ground Motions, and Risk Assessment Results
4.1. Input Ground Motions

As shown in Table 1, the UAE is surrounded by regional and local seismic geological
resources. The “earthquake scenario simulation” component in R2D [2] was utilized to
generate input ground motions. Multiple-point-earthquake sources, which were collected
from different resources to represent the surrounding seismic resources [30–32], were
defined, as listed in Table 6. An input ground motion was estimated at each neighborhood’s
representative location (longitude and latitude) corresponding to every seismic source
using Chiou and Youngs’ prediction equation [30].

Table 6. Properties of earthquakes included in an earthquake simulation scenario.

Location Date Longitude Latitude Mw
Focal

Depth (km)

Chaldoran 24 November 1976 39.07 44.38 7.0 15

Tabas 16 September 1978 33.60 56.93 7.4 11

KuliBonyabad 27 November 1979 30.67 51.60 7.0 25

Sirch 28 July 1981 30.20 57.54 7.2 15.5

ArdekulGhaen 10 May 1997 34.61 49.85 7.2 10

Manjil 6 November 1990 28.25 55.46 7.4 11

Hormozgan, northwest of Dehbarez 2000 27.56 56.84 4.2 41

Hormozgan, northwest of Dehbarez 2002 27.64 56.74 5.3 12

Hormozgan, northeast of Bandar-e Abbas 2002 27.49 56.62 4.4 33

Masafi-Bani Hamid 13 September 2007 25.46 56.2 4.0 20
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4.2. Buildings Database

This study included 17 archetypes representing different occupancy classes, number
of stories, and design seismicity levels. Dubai was segmented into 221 neighborhoods [22],
and for each one, the number of buildings was estimated approximately according to
the population density. In addition, every area was classified according to its primary
occupancy into residential, commercial, industrial, and unidentified. In order to estimate
the number of archetype buildings in a specific area, the archetypes were grouped according
to the occupancy class and a close number of stories. Then, hypothetical distribution ratios
were defined to represent each group out of the total buildings in each neighborhood, as
shown in Table 7.

Table 7. Hypothetical distribution ratios for archetypes in different neighborhood classes.

Archetype Group
Neighborhood Class

Description Stories Residential Commercial Industrial Unidentified

RES (1_5) Low- and medium-rise
residential buildings 1–5 0.50 0.00 0.30 0.40

IND Light industrial buildings 1 0.00 0.00 0.70 0.10

COM (3_7) Low- and medium-rise
commercial buildings 3–7 0.25 0.25 0.15 0.15

COM (10_20) High-rise commercial buildings 10–20 0.15 0.25 0.00 0.15

COM (25_35) High-rise commercial buildings 25–35 0.05 0.25 0.00 0.10

COM (40_50) High-rise commercial buildings 40–50 0.05 0.25 0.00 0.10

5. Risk Assessment Results

The simulation process included three forms of inputs, which were assigned two spa-
tial attributes: ground motions, the buildings database, and FE scripts for MCS and NMFS
models. Meanwhile, Figures 5–10 display the results, including the expected collapse
probability and losses for each building. The results are encapsulated in different scales:
(1) overall studied city; (2) neighborhoods; (3) neighborhood classes; (4) archetype groups;
and (5) archetypes. R2D [2] utilizes the PELICUN [31] package for the FEMA-P58 method-
ology to determine the decision variables. FEMA developed a method for determining
collapse probability by developing fragility curves. The fragility functions are calibrated
using various analytical, experimental, and simulation methods. The analytical methods
use mathematical equations to calculate the collapse probability of a building based on the
engineering demand parameters (EDPs), material properties, and asset classifications.

5.1. Collapse Probability

The results can be summarized as follows: The collapse probability for the modeled
buildings can differ from 0.00% to 60%, with a mean value of almost 4%. The “LR_RES_F1”
archetype represents the highest collapse probability ratio, which is slightly less than 8%,
while the lowest ratio is 0.00%, expected for the “LR_IND_F1” archetype, as shown in
Figure 5c. The expected collapse ratios for concrete structures range from 3% to 8%, 1.2% to
3.5%, and 0.2% to 2.3% for low-rise, medium-rise, and high-rise archetypes, respectively.
In other words, “RES (1_5)” is the highest archetype group, with an expected collapse
probability of 5.5%. The collapse probability for commercial concrete structures decreases
with respect to height from 3% for “COM (3_7)” to 0.2% for “COM (40_50)”, as shown
in Figure 5b. As expected, residential neighborhoods have the highest mean collapse
probability of almost 4%, and commercial neighborhoods have the lowest ratio of 0.8%,
while the ratios for industrial and unidentified neighborhoods are 1.8% and 3.1%, as
represented in Figure 5a, respectively. Projecting these results on a GIS scale leads to
the choropleth map shown in Figure 10a, determining the mean collapse probability for
Dubai’s neighborhoods.



Buildings 2024, 14, 1277 10 of 20Buildings 2024, 14, x FOR PEER REVIEW 10 of 21 
 

 

 

 

Figure 5. Mean values of the estimated collapse probability: (a) Neighborhood classes, (b) Archetype 
groups, and (c) Archetypes. 

5.2. Repair Cost–Replacement Cost Ratio 
The monetary losses due to replacement or repair are a factual parameter in assessing 

earthquake disasters, which depends on the collapse probability, construction material 
(steel, concrete, etc.), and the structure system. These factors are reflected in the estima-
tions as follows. The highest archetype for the repair cost–replacement cost ratio is the 

Figure 5. Mean values of the estimated collapse probability: (a) Neighborhood classes, (b) Archetype
groups, and (c) Archetypes.

5.2. Repair Cost–Replacement Cost Ratio

The monetary losses due to replacement or repair are a factual parameter in assessing
earthquake disasters, which depends on the collapse probability, construction material
(steel, concrete, etc.), and the structure system. These factors are reflected in the estimations
as follows. The highest archetype for the repair cost–replacement cost ratio is the single-
story masonry building “LR_RES_F1”, with 28%, followed by the light-steel industrial
structure “LR_IND_F1”, with 26%, as shown in Figure 6c. The average ratio for residential
archetypes is 21%, and for commercial archetype groups, it ranges from 12% for the “COM
(3_7)” group to 2% for the “COM (40_50)” group, as represented in Figure 6b. For the GIS
scale, the average losses for neighborhood classes can be ordered in a descending order
of industrial (23%), residential (15%), unidentified (11.5%), and commercial (4.5%) (see
Figure 6a). Additionally, the expected losses per individual neighborhood are represented
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in Figure 10b, which vary from 0% to 35%. Finally, the average cost for the cumulative city
is expected to be 14%, accompanied by a 0.25 standard deviation.
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5.3. Repair Time

Like the repair cost, the required repair time is related to construction materials and
the structural system. Figure 7d clarifies that the “LR_IND_F1” archetype requires the
greatest number of days for repairs (223 days for the mean value), with a significant
difference to other archetypes. “LR_RES_F1” is the second highest archetype in terms of
repair time, with 29 days associated with a standard deviation of 49. The average number
of days required for concrete archetype repair is 25 for low-rise, 16 for medium-rise, and
4–25 for high-rise buildings. As presented in Figure 7c, the average repair days required
for residential archetypes is 25 days, and for the commercial archetype groups, the range is
from 18 days for the “COM (3_7)” group to 6 days for the “COM (40_50)” group. Figure 7b
shows the repair time probabilities for different neighborhood classes. The mean values can
be ordered in a descending order of industrial (148 days), unidentified (48 days), residential
(20 days), and commercial (11 days). The overall estimated probability is 22 days, associated
with a standard deviation of 52, as shown in Figure 7a. Finally, Figure 10c includes the
choropleth map for the expected repair time for the studied neighborhoods in the form of a
colored scale from 0 to 220 days.
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5.4. Injuries

The expected injuries of the total occupancy population are classified in an ascending
order of severity, from one to four. The estimated injuries are summarized as follows.
The mean total injuries for the studied region are approximately 1.5% of the population;
62% represents the lowest severity, while 10% represents the highest severity (see Figure 8a).
As a result of the collapse probabilities and expected damage variables, the expected
average injuries range from 1.7% to 6.5% for low-rise archetypes, from 0.2% to 5.3% for
medium-rise archetypes, and from 0.04% to 0% for high-rise archetypes, as shown in
Figure 9. The “LR_RES_F1” archetype has the highest total injuries, with 6.5%, distributed
as 83%, 16.5% for the first and second severity, and 0.02% for the third and fourth severity.
This is followed by the “LR_IND_F1” archetype, with 5%. The ratios of the injuries’
severity are 60%, 24%, 5%, and 10%, from lowest to highest. Meanwhile, for concrete
models, the total injuries are 2% for the worst severity, 61% for the lowest severity, and
10% for the highest severity. The mean values for neighborhood classes can be ordered
in a descending order of industrial (4.1%), residential (1.6%), unidentified (1.1%), and
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commercial (0.1%) (see Figure 8b). Finally, a representative map of the injuries distributed
per studied neighborhood can be found in Figure 10d.
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6. Conclusions

The conclusion based on the configured outputs for the studied archetypes is as
follows. The “LR_RES_F1” and “LR_IND_F1” archetypes exhibit different results and
patterns from those of other archetypes. “LR_RES_F1” is a bearing masonry wall residential
house built more than 40 years ago for a single family. “LR_IND_F1” is a steel moment-
framing structure for a light industrial purpose constructed almost 20 years ago, while other
archetypes represent concrete structures for residential or commercial assets. “LR_RES_F1”
produces the highest collapse probability of 8%, a repair cost of 28%, and total injuries of
6.5%. Despite the “LR_IND_F1” being the lowest archetype in terms of collapse probability
(equaling zero), it produces the second highest repair cost and total injury losses (26% and
5%, respectively). Moreover, it represents the longest repair time at 223 days, with a
significant difference to other models (second longest repair time equaling 29 days). The
seismic design spectrum is the key factor in scaling all loss parameters. The archetypes
designed under the assumption of low seismic intensity had a collapse probability range
from 4.6% to 8%, repair cost from 20% to 28.5%, and total injuries from 1.7% to 6.6%. For
medium-rise archetypes, these results decrease from 1.3% to 3.4% for collapse probability,
from 9.5% to 12.6% for repair cost, and from 0.2% to 5.3% for injuries. Archetypes designed
for a high seismic intensity achieved the lowest loss values: from 0.2% to 2.3%, from 1.4%
to 7%, and from 0.04% to 0% for collapse probability, repair cost, and injuries, respectively.

The neighborhood occupancy results were obtained according to the estimated number
of assets and the assumed archetype distribution weights. The residential neighborhoods
possess the highest collapse probability estimation. They have an expected collapse proba-
bility of 4%, a repair cost–replacement cost ratio of 15%, an average of 20 days expected for
repairs, and total injuries of 1.6% (1%, 0.4%, 0.08%, and 0.2% for different severity levels, in
an ascending order). The average expected collapse probability for commercial buildings is
0.8%. Their estimated repair costs and time are 4.6% and 11 days. The expected total injuries
are only 0.1%, 65% for the lowest severity and 9% for the worst cases. The industrial areas
possess the highest values for loss variables, except for the collapse probability, which is
2%. Their estimated repair costs and time are 23% and 148 days. The expected total injuries
are 4%, 79% for the lowest severity and only 2% for the worst cases. For neighborhoods
with undefined classifications, the estimated loss variables are a collapse probability of 3%,
a repair cost–replacement cost ratio of 11.6%, an average of 48 days expected for repairs,
and total injuries of 1.1% (0.9%, 0.2%, 0.00%, and 0.01% for different severity levels, in an
ascending order). Finally, the overall expected losses, as average values, are a collapse
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probability of 3.6%, a repair cost of 14% of the total replacement cost, a repair time of
22 days for each asset, and total injuries of almost 1.5% of the total population. The injuries
differ from lowest to highest severity at 1%, 0.4%, 0.07%, and 0.15%, respectively.

This research continues a study published in 2022 [22] toward the long-term goal of
developing seismic regional simulation databases for UAE cities, which represent reality
with high confidence. The authors emphasize that this kind of project is critically needed
because of the unique characteristics of massive construction growth in recent years, with
high uncertainty regarding seismic activities throughout the same period. According
to the available data, the current phase only represents prototypal results based on the
assumed archetypes. However, considerable effort should be made in data collection and
computational development to reach the full reality simulation. This maturity in data
understanding can be reflected in urban planning, disaster management, and stakeholders
when determining the maintenance cost for a single facility or neighborhood corresponding
to the selected location, construction materials, and the number of floors. Additionally,
these digital datasets can be used to train and verify artificial intelligence algorithms for
urban planning, transportation, and infrastructural simulations, e.g., Refs. [32–34].

Future Research Trends and Priorities for Regional Seismic Risk Assessment (SRA):

- The future of SRA research lies in improving the treatment and propagation of uncer-
tainties in scenario-based and probabilistic risk assessments [35].

- There is a need for advancements in the methodological development of regional SRA,
including hazard analysis, exposure modeling, fragility assessment, and consequence
evaluation, as well as the associated uncertainty quantification and propagation [36].

- Developing resilience metrics, restoration modeling, and planning in regional seismic
resilience assessment is also a priority for future research in SRA [37].

- Current Challenges in Regional SRA Research:
- The lack of review studies summarizing the research advancements in SRA from a

regional-level perspective presents a challenge in understanding the methodological
developments and limitations in regional SRA [36].

- The complexity introduced by regional-level assessment—which includes additional
dimensions and complexity compared to traditional site-specific assessment—poses
challenges in SRA research [36].

- Role of Machine Learning and AI in Regional SRA Research:
- Machine learning and AI can be leveraged for regional SRA by integrating these

technologies in assessing seismic hazard impacts, vulnerability modeling, and conse-
quence evaluation, thereby improving the quantitative and probabilistic assessment
of regional seismic hazard impacts [36].

- The use of machine-learning algorithms in seismic vulnerability assessment can ef-
fectively protect against earthquakes, as demonstrated in a case study in a densely
populated urban area near an active fault [37].

- Key Factors Influencing Research Priorities in Regional SRA:
- The potential implications of seismic risk for disaster management and urban plan-

ning, especially in densely populated urban areas, influence the research priorities in
regional SRA [38].

- Considering the complexity and uncertainty involved, the need for a systematic
approach to reliably and realistically address the risk of seismic events also influences
the research priorities in regional SRA [39].

Potential Implications of Regional SRA Research for Disaster Management and
Urban Planning:

- Regional SRA research has implications for the production of seismic risk maps,
which are valuable tools for planning mitigation measures to improve the level of
preparedness in case of an earthquake, especially in urban areas [38].

- The deployment of seismic risk management, informed by regional SRA, can sup-
port resiliency planning and prioritization of seismic retrofit projects for spatially
distributed critical infrastructure, such as water and wastewater systems [40].
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