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Simple Summary: This study introduces the first proteome database for shark semen, focusing on
small-spotted catsharks. It explores seminal plasma and spermatozoa proteomic profiles, uncovering
protein differences between wild and aquarium populations. Key findings include 305 seminal
plasma and 535 spermatozoa proteins, with significant variations in spermatozoa proteins that could
influence reproductive success. This work lays the groundwork for identifying fertility biomarkers in
shark conservation efforts.

Abstract: In the ex situ conservation of chondrichthyan species, successful reproduction in aquaria is
essential. However, these species often exhibit reduced reproductive success under human care. A
key aspect is that conventional sperm analyses do not provide insights into the functional competence
of sperm. However, proteomics analysis enables a better understanding of male physiology, gaining
relevance as a powerful tool for discovering protein biomarkers related to fertility. The present work
aims to build the first proteome database for shark semen and to investigate the proteomic profiles
of seminal plasma and spermatozoa from small-spotted catsharks (Scyliorhinus canicula) related to
the underlying adaptations to both natural and aquarium environments, thereby identifying the
reproductive impact in aquarium specimens. A total of 305 seminal plasma and 535 spermatozoa
proteins were identified. Among these, 89 proteins (29.2% of the seminal plasma set) were common to
both spermatozoa and seminal plasma. In the seminal plasma, only adenosylhomocysteinase protein
showed differential abundance (DAP) between wild and aquarium animals. With respect to the
spermatozoa proteins, a total of 107 DAPs were found between groups. Gene Ontology enrichment
analysis highlighted the primary functional roles of these DAPs involved in oxidoreductase activity.
Additionally, KEGG analysis indicated that these DAPs were primarily associated with metabolic
pathways and carbon metabolism. In conclusion, we have successfully generated an initial proteome
database for S. canicula seminal plasma and spermatozoa. Furthermore, we have identified protein
variations, predominantly within spermatozoa, between aquarium and wild populations of S. canicula.
These findings provide a foundation for future biomarker discovery in shark reproduction studies.
However, additional research is required to determine whether these protein variations correlate
with reproductive declines in captive sharks.
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1. Introduction

The development of reproductive technologies is essential for the conservation of
chondrichthyan species considered threatened or endangered [1–3], particularly those
facing challenges in reproducing under aquarium conditions [4]. Comparative studies on
the reproductive physiology of wild and aquarium animals could potentially advance the
application of reproductive technologies [4,5]. This knowledge is crucial for understanding
their reproductive aspects and establishing suitable ex situ conditions in aquaria to comple-
ment in situ conservation programs in the wild [6]. However, a limited number of studies
have evaluated their reproductive differences when modifying in habitats in aquaria [4,7].
Consequently, although the use of artificial insemination is gaining increasing attention in
chondrichthyans [4,5], the production of offspring has been achieved anecdotally [5,8,9].

Conventional sperm analyses, such as concentration, motility, morphology, and vi-
ability [4,7,10–13], do not provide enough information about the functional competence
of spermatozoa [14,15] and do not clearly explain the subcellular factors associated with
limited reproductive success [16]. Proteomics has emerged as a promising tool for address-
ing fundamental questions regarding the composition and function of sperm cells, and
for identifying altered proteins and pathways in infertile males’ seminal fluid and sperm
cells [16–19]. Proteomic approaches have been applied in the sperm of aquatic animals,
teleost fish, and marine mammals [17,20–25]. However, when it comes to chondrichthyans,
limited data are available for sperm proteins [26–28]. To the best of our knowledge, no previ-
ous studies have analyzed the composition of seminal plasma proteins in chondrichthyans.
In fact, Scyliorhinus canicula, Linnaeus 1978, is an interesting model to explore differential
changes in the abundance of such proteins, due to its easy handling and accessibility in
aquaria and fish local markets, small size and adequate conservation status.

In this study, we aimed to identify and characterize seminal plasma and spermatozoa
proteins in S. canicula, thereby enhancing our understanding of omics data concerning
shark semen and chondrichthyan species in general. Additionally, we assessed the utility
of protein composition analysis as a diagnostic tool for detecting potential reproductive
modifications in S. canicula under human care.

2. Materials and Methods
2.1. Ethics

Wild individuals involved in the experiment were obtained from local fisheries as a
result of accidental captures. The experimental portion of the current study involving aquar-
ium animals was approved by the Ethical Animal Experiments Committee at Oceanogràfic
Valencia (Reference number: OCE-18-19) for the protection of animals used for scientific
purposes. The study complied with the regulations and policies of Oceanogràfic-Valencia
and adhered to the Canadian Council on Animal Care documents.

2.2. Semen Origin

Eight seminal plasma and spermatozoa samples stored at −80 ◦C were thawed for
the purpose of this study. These samples were obtained from a prior experiment that
involved the comparative study of semen parameters in S. canicula [7]. Briefly, a total
of 25 S. canicula males were used, consisting of 18 wild individuals donated from local
fisheries from the Region of Valencian Community (Spain) and 7 aquarium individuals at
Oceanogràfic of Valencia (Valencia, Spain). All animals from the study were classified as
adult, displaying calcified claspers ensuring reproductive maturity [29]. Sample collection
was performed from November 2019 to March 2020. Aquarium individuals were handled
and maintained in dorsal recumbency (tonic immobility), inducing a physiological state of
slight sedation. The cloaca was maintained out of the water, and the area was rinsed with
sterile Shark’s Ringer solution (22 g/L urea and 9 g/L NaCl, [30]), and the surface was
cleaned with sterile gauzes to prevent contamination of the external part of the ampullae
pore. Semen samples were collected by applying direct pressure on the ampulla of the
vas deferens by stripping. Semen was collected from the papilla of the ampulla using a
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5 mL syringe. The first portion of the sperm sample was discarded, as were the samples
polluted with urine or feces. Semen samples were transported directly to the laboratory
within one hour of collection and maintained in a dark container at 4 ◦C until assessment.
Wild individuals were provided by local fishermen and transferred to the laboratory within
4 h post-fishing. Semen samples from these individuals were collected from the ampulla
following the same procedure and criteria as previously described. Similar laboratory
conditions were applied to both groups during processing. A total of 8 pooled samples
were established, comprising 4 from wild animals and 4 from aquarium animals, each
created by mixing 100 µL from individual samples. The 4 pooled samples from the wild
animals encompassed 5, 3, 3, and 6 animals from the ports of Valencia, Cullera (2 pooled
samples), and Jávea, respectively. Regarding the aquarium animals, due to a limited
number of specimens (n = 7), 4 pooled samples were generated. Two of these pooled
samples each included 3 animals. The remaining pooled samples comprised the remaining
animals, one from the initial sampling session and one from the second group exhibiting
excess semen production (over 200 µL). An aliquot from each pool was taken to determine
sperm quality as described in the following section. The remaining pooled samples were
centrifuged at 7400× g for 10 min at 4 ◦C (Centrifuge 5810 R, Eppendorf, Fisher Scientific,
Madrid, Spain). The supernatant was separated from the cell part, splitting the sample into
two fractions: seminal plasma and spermatozoa. The seminal plasma fraction was verified
under a microscope to ensure no spermatozoa were present and was directly flash-frozen
(cryotubes) in liquid nitrogen and stored at −80 ◦C until use for the proteomic study.
The pellet containing spermatozoa was immediately washed with shark’s Ringer solution
(7400× g for 10 min at 4 ◦C, Centrifuge 5810 R, Eppendorf) to remove any remaining
seminal plasma. Once centrifuged, the supernatant was discarded, and the pellet (cell
fraction) was directly flash-frozen (cryotubes) in liquid nitrogen and stored at −80 ◦C
until use.

2.3. Sperm Quality Assessment

Sperm concentration was determined using a Makler counting chamber after diluting
the semen with Shark’s Ringer solution (1:100). Motility was assessed using 5 µL of
diluted semen (1:20 in Shark’s Ringer solution). Total motility (%) was defined as the
percentage of motile sperm, including spermatozoa vibrating without moving forward
(200× magnification, phase contrast Nikon E 400, Izasa, Madrid, Spain) (Wyffels et al.,
2020) [4]. Sperm viability (%) was assessed by incubating diluted sperm suspensions (1:20)
in the dark for 10 min with 1 µL SYBR-14 and 1 µL propidium iodide (LIVE/DEAD Sperm
Viability Kit L-7011, Thermo Fisher Scientific, Madrid, Spain) and counting at least 100 cells
using an epifluorescence microscope (Nikon E 400). Spermatozoa with green fluorescence
over the head region were assessed as having plasma membranes intact, and sperm with
partially or totally red heads were assessed as having plasma membrane damage (Figure 1).
Sperm mitochondrial membrane potential was assessed by incubating Shark’s Ringer
solution-diluted sperm suspensions (1:20) in the dark for 30 min with 2 µL of carbocyanine
dye (JC-1 Dye, Thermo Fisher Scientific, Madrid, Spain) mixed with 100 µL diluted sperm,
and counting at least 100 cells using an epifluorescence microscope (Nikon E 400).
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Figure 1. Representative images of small-spotted catshark (Scyliorhinus canicula) sperm cell quality.
Scale bar, 20 µm. (A) Phase-contrast image of sperm cells at 400× magnification. (B) Phase-contrast
and epifluorescence merged micrographs of sperm cells stained with SYBR-14 (green) and propidium
iodide (red) at 200× magnification. Green fluorescence shows live sperm, and red fluorescence
indicates dead sperm.

2.4. Comparative Proteomic Analysis: Sampling, Protein Extraction, and Quantification

Proteomic analyses were performed at the Proteomics Unit of the University of Valen-
cia (SCSIE), Valencia, Spain (PRB2-ISCIII ProteoRed Proteomics Platform). Proteins from
spermatozoa were extracted using Ringer’s lysis solution (22 g/L urea and 9 g/L NaCl).
After mixing with lysis buffer, samples were sonicated for 5 min and centrifuged for 5 min
at 15,870× g at 4 ◦C and diluted 1 to 10 with 50 mM ABC. The protein concentration from
every sample was determined by a Protein Quantification Assay Kit (Macherey-Nagel,
Düren, Germany).

2.5. Complete Proteome: Spectral Library Building by In-Gel Digestion and LC-MS/MS—Data-
Dependent Acquisition Analysis

A data-dependent acquisition analysis was performed by building up a spectral li-
brary using in-gel digestion and LC-MS/MS and building the spectral library from a 1D
SDS PAGE gel. A SWATH analysis of individual samples was performed to determine
the quantitative differences between spermatozoa and seminal plasma protein composi-
tion among aquarium and wild S. canicula experimental groups, following procedures
previously described by Garcia-Dominguez et al. [31].

The protein concentration obtained from both, spermatozoa and seminal plasma
samples was determined by ProteinQuantification Assay Kit (Macherey-Nagel, Düren,
Germany), according to the manufacturer’s instructions.

For Spectral Library Building, a pool of 30 µg from equivalent aliquots of the samples,
of the same type, were mixed, and sample loading buffer (appropriate volume of 4×
Laemmli Sample Buffer with mercaptoethanol was added. The denaturation of the pools
was carried out at 95 ◦C for 5 min and loaded into 1D PAGE. A 12% precast gel (Bio-Rad,
Hercules, CA, USA) at 200 V for 5 min was used to perform the electrophoresis. The
gel was fixed with 40% ethanol/10% acetic acid for an hour and stained with colloidal
Coomassie (Bio-Rad, Hercules, CA, USA) for an additional hour. The gel was then washed
and distained with H2O milliQ. Each gel lane corresponding to an experimental condition
(aquarium vs. wild sharks and seminal plasma vs. spermatozoa) was divided into five
equivalent slices. The gel slices were digested using 600 ng of trypsin (Promega, Madison,
WI, USA) at 37 ◦C to build the spectral library. The trypsin digestion was stopped with
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10% trifluoroacetic acid (TFA), and the supernatant was removed. Then, the library gel
slices were dehydrated with pure acetonitrile (ACN). The resulting peptide solutions were
combined with the corresponding supernatant and dried in a rotatory evaporator. The
dried peptide mixtures were resuspended with 10–20 µL 2% ACN; 0.1% TFA.

In parallel, for differential expression analysis 20 µg of individual samples from
spermatozoa and seminal plasma of each group were set to 20 µL of 50 mM ammonium
bicarbonate (ABC) and processed in solution. After cys reduction at 37 ◦C and alkylation,
proteins were digested with 800 ng of trypsin. The sample digestion was stopped with
10% trifluoroacetic acid (TFA) to a final concentration of 1%. Final tryptic peptide solutions
were at 0.31 µg/µL.

2.5.1. Spectral Library Acquisition

The analysis was performed using 5 µL of peptide fractions from in-gel digestion
and loading it into a trap column (3 µm particle size C18-CL, 350 µm diameter × 0.5 mm
long; Eksigent Technologies, Dublin, CA, USA). The samples were desalted with 0.1% TFA
at 5 µL/min for 5 min for liquid chromatography and tandem mass spectrophotometry
(LC-MS/MS). The peptides were then loaded into an analytical column (LC Column, 3 µm
C18-CL, 0.075 × 150 mm, Eksigent Technologies, Dublin, CA, USA) and equilibrated in 5%
ACN, 0.1% formic acid (FA). Peptide elution was carried out with a linear gradient of 7 to
40% B for 20 min (A: 0.1% FA; B: ACN, 0.1% FA) at a flow rate of 300 nL/min. The peptides
were analyzed in a mass spectrometer nanoESI qQTOF (6600plus TripleTOF, ABSCIEX,
Alcobendas, Madrid, Spain). Samples were ionized in a Source Type: Optiflow< 1 µL
Nanoapplying 3.0 kV to the spray emitter at 200 ◦C. The tripleTOF was operated and the
analysis was carried out in a data-dependent mode MS1, scanning from 350 to 1400 m/z for
250 ms. The quadrupole resolution was performed at ‘LOW’ for MS2, followed by 25 ms
product ion scans from 100 to 1500 m/z in “high sensitivity”. Collision energy was set for
all ions to optimum charge 2+ to 4+ ions. Up to 100 ions were selected for fragmentation
after each survey scan. Dynamic exclusion was set to 15 s. The system sensitivity was
controlled by analyzing 0.5 µg of K562 trypsin digestion (Sciex, Framingham, MA, USA).

2.5.2. SWATH-MS

For differential expression analysis 4 µL of individual digested samples were analyzed
in the same LC-MS system as for Spectral Library Analysis with SWATH (DIA) acquisition.
However, the elution gradient lasted for 45 min. The tripleTOF was operated in swath
mode, in which a 0.050 s TOF MS scan from 350 to 1250 m/z was performed, followed by
0.020 s product ion scans from 350 to 1250 m/z on the 100 variable width windows from
400 to 1250 Da (3.05 s/cycle).

2.6. Protein Identification, Validation and Quantification

For Spectral Library building, all DDA data from pooled samples were processed in
combination using ProteinPilot software v5.0 (AB SCIEX, Alcobendas, Madrid, Spain) to
identify a direct ortholog for each protein. The Paragon algorithm [32] of ProteinPilot v5.0
was used to search against the Uniprot Chordata (UniprotChordata_200721601.fasta) pro-
tein sequence database (562246 proteins searched) with the following parameters: trypsin
specificity, cys-alkylation, no taxonomy restriction, and the search effort set to rapid with
FDR (False Discovery Rate) analysis for proteins. A spectral library of 3010 proteins was
obtained. The wiff files obtained for individual samples from the SWATH experiment were
obtained by PeakView® using the spectral library generated in the study and analyzed
using MarkerView® (v1.2, AB SCIEX, Alcobendas, Madrid, Spain).

2.7. Proteome Statistical Analysis and Functional Annotation of the Differentially
Abundant Proteins

The protein areas calculated were normalized by summing the total areas of all quan-
tified proteins by MarkerView. The identification of the differentially abundant proteins
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(DAPs) among groups (wild vs. aquarium) was performed using a t-test. Proteins were
considered differentially abundant if they exhibited a ≥2-fold change and p-value < 0.05.
The whole Scyliorhinus torazame genome (scyTo version 1.0) was selected as a homolo-
gous reference organism (taxonomy ID 75743). Principal component analysis (PCA) and
Heat-Map clustering were conducted using ClustVis (https://biit.cs.ut.ee/clustvis/, ac-
cessed on 1 March 2024). DAPs were submitted to the publicly available program STRING
(http://string-db.org/, accessed on 1 March 2024) for a search of multiple proteins by
names. To ascertain the KEGG pathway-enriched genes and the potential GO (Gene On-
tology) classification, terms approximating biological process, molecular functions, and
signaling pathways concerning KEGG pathways were used. Significant enrichment of
Gene Ontology (GO) terms was identified based on the criteria of p-value < 0.05 and
FDR-adjusted p-value < 0.05. In addition, default settings were used, with a confidence
of 0.4 as the minimum required interaction score. The protein–protein interactions were
predicted using the Search Tool for the retrieval of interacting proteins, which determines
both physical and functional associations between proteins.

2.8. Statistical Analysis

Bayesian statistics were used to measure the relevance of the differences in sperm
in vitro quality between the experimental groups (wild and aquarium groups). Hence, a
model with a single effect of ‘treatment’ and flat priors was fitted. The marginal posterior
distribution of the unknowns was performed with MCMC (Gibbs sampling) using four
chains with a length of 50,000 iterations, a lag of 10, and a burn-in of 1000 iterations. The
posterior mean of the differences in genera or metabolite abundances was estimated as
the mean of the marginal posterior distribution of differences between the control and
each of the treatments. These differences estimates were reported as units of standard
deviations (SD) of each trait. The differences between experimental groups were considered
relevant when these differences were higher than 0.5 units of SD, and the probability of the
differences being higher (if the difference is positive) or lower (if negative) than 0 (P0) was
higher than 0.9 [33].

3. Results
3.1. Sperm Quality Assessment

The descriptive statistics for sperm parameters of the two groups are presented in
Table S1. Significant differences were observed between the wild and aquarium groups for
all sperm parameters except viability (Table 1). Aquarium animals consistently exhibited
higher values for total sperm motility and mitochondrial membrane potential, whereas wild
animals had a higher sperm concentration. The number of spermatozoa used for proteomic
analysis ranged between 23.2–56.8 × 106 for wild animals and between 24–37.6 × 106 for
aquarium animals.

Table 1. Bayesian analyses of the seminal parameters of small-spotted catsharks reveal differences
between wild (W) and aquarium (A) animals, computed as W-A.

Traits DW-A HPD95 P0

Sperm concentration (106/mL) 39.13 −20.8, 104.2 0.90
Motility (%) −35.88 −78.2, 8.2 0.95
Viability (%) −12.60 −46.5, 22.1 0.79
Mitochondrial membrane high potential (%) −8.17 −20.5, 4.2 0.91

DW-A = Mean of the difference W-A (median of the marginal posterior distribution of the difference between
the W and the A groups). Relevant value (proposed as one-third of the SD of the trait), rounded to the first
significant number. P0 = Probability of the difference (DW-A) being greater than 0 when DW-A > 0 or lower than
0 when DW-A < 0. HPD95% = The highest posterior density region at 95% probability. Statistical differences were
assumed if |DW-A| surpassed the R value and its P0 > 0.80.

https://biit.cs.ut.ee/clustvis/
http://string-db.org/
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3.2. Comprehensive Proteomic Analysis of Seminal Plasma and Spermatozoa

A total of 305 and 535 proteins were detected in all seminal plasma and spermatozoa
samples, respectively. PCA was performed for both cohorts, showing differentiated sample
clusters based on the seminal plasma and spermatozoa proteins from semen collected from
aquarium and wild animals (Figure 2). Concerning the quantified seminal plasma proteins,
the first two components of the PCA explained 100% of the total variance (PC1 68.6% and
PC2 31.4%), discriminating between the four replicates of the aquarium and those of the
wild (Figure 2A). The same analysis for spermatozoa showed 54.2% of the total variance
(PC1 33.6% and PC2 20.6%) (Figure 2B). The PCA result for seminal plasma proteins did
not show such clear clustering because scarce differences were observed between groups.
Heat map analysis corroborated the PCA analysis, showing small differences clustered
together for seminal plasma (Figure 2C), while they were clearly marked for spermatozoa
proteins (Figure 2D).
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Figure 2. Principal component analysis (PCA) (left panels) showing the separation among animal
origin for the seminal plasma (A) and spermatozoa (B) of total proteins. Blue color indicates wild
animals. Red color indicates aquarium animals. Dots with similar color indicate technical replicates
for each source (n = 4). Heatmap with dendrograms (right panels) representing the differentially
abundant proteins among seminal plasma (C) and spermatozoa (D) from aquarium (A) and wild
(W) animals. The data were obtained from 4 replicates for each source. The hierarchical clustering
tree is shown at the top of the heat map. The relative expression level of the differentially abundant
proteins is shown on a color scale from orange representing the highest level to green representing
the lowest level.
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The completed detailed list of identified proteins for each experimental group is pro-
vided in Table S2. To analyze differences between individuals in their natural environment
and those in an aquarium environment, we compared the protein expression profiles of
seminal plasma and spermatozoa from S. canicula. Out of the 305 proteins detected in
the seminal plasma, 2 were identified as DAPs. Among the 535 proteins detected in the
spermatozoa, 107 were identified as DAPs. In the aquarium group, there were 75 proteins
with increased abundance and 32 proteins with decreased abundance compared with the
wild group (Figure 3).

Out of the proteins identified as DAPs, 2 in seminal plasma and 107 in spermatozoa,
1 and 42, respectively, were not present in the Scyliorhinus torazame UNIPROT database.
Furthermore, 6 DAPs in the spermatozoa were uncharacterized. Consequently, a total of
59 DAPs present in the Scyliorhinus torazame UNIPROT database underwent functional
annotation, as detailed in Table 2.
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Figure 3. Differentially abundant proteins in seminal plasma and spermatozoa protein extracts from
wild and aquarium samples of small-spotted catshark (Scyliorhinus canicula). (A) Venn diagram
showing the number of unique proteins in seminal plasma and spermatozoa samples. (B) Number of
proteins exhibiting significant differences within seminal plasma and spermatozoa between aquarium
and wild groups. Visualizations of DAPs in volcano plots using Metaboanalyst are as follows: the x-
axis represents logFC; the y-axis represents the −log10 of a p-value of <0.05. Proteins with logFC ≥ 1
are represented by red dots, and those with logFC ≤ −1 by blue dots. Significant DAPs are labeled
with gene names. Black dots indicate proteins that did not show significant changes. (C) Volcano plot
for seminal plasma proteins. (D) Volcano plot for spermatozoa proteins.
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Table 2. Differentially abundant proteins in the spermatozoa of wild (W) and aquarium (A) small-
spotted catsharks (Scyliorhinus canicula), annotated in the UNIPROT database for cloudy catsharks
(Scyliorhinus torazame).

No. Protein Name Accesion Number Gene ID FC A/W p-Value

1 26S proteasome non-ATPase regulatory subunit 2 A0A401NY41 scyTo_0010006 1.2 0.002
2 Aconitate hydratase, mitochondrial A0A401P1B5 scyTo_0012070 −1.5 0.04
3 Acylamino-acid-releasing enzyme A0A401P232 scyTo_0000684 −2.2 0.022
4 ADP/ATP translocase (ADP, ATP carrier protein) A0A401P5V9 scyTo_0015226 −2.6 0.011

5 Alcohol dehydrogenase-like N-terminal
domain-containing protein A0A401QCT0 scyTo_0023980 −3.0 0.021

6 Amidohydrolase-related domain-containing protein A0A401NWA4 scyTo_0000388 3.0 0.014
7 ATP synthase subunit beta A0A401PKK7 scyTo_0002730 2.4 0.033
8 Axonemal dynein light intermediate polypeptide 1 A0A401NUF3 scyTo_0011760 1.8 0.042
9 Band 7 domain-containing protein A0A401NLA5 scyTo_0009381 3.7 0.023
10 Band 7 domain-containing protein A0A401PXL5 scyTo_0018525 2.5 0.012
11 Band 7 domain-containing protein A0A401PUL5 scyTo_0016611 1.1 0.035

12 Calponin-homology (CH)
domain-containing protein A0A401NWG0 scyTo_0014862 −1.9 0.000

13 Carboxylic ester hydrolase A0A401NZH9 scyTo_0004938 −3.8 0.009
14 Clusterin A0A401PF86 scyTo_0008927 1.1 0.003
15 CN hydrolase domain-containing protein A0A401Q4C5 scyTo_0018904 2.0 0.023
16 CUB domain-containing protein A0A401PXA0 scyTo_0019320 0.8 0.033
17 EF-hand domain-containing protein A0A401PGM8 scyTo_0001911 −2.4 0.036
18 Endoplasmic reticulum resident protein 29 A0A401P7T0 scyTo_0013931 2.7 0.004
19 Enoyl reductase (ER) domain-containing protein A0A401P5Y1 scyTo_0008243 −2.1 0.018
20 Enoyl-CoA hydratase A0A401NRL5 scyTo_0014639 1.2 0.039
21 Fatty acid synthase A0A401P5R6 scyTo_0008230 3.0 0.033
22 Fumarate hydratase, mitochondrial A0A401PXE9 scyTo_0016750 −1.5 0.006
23 Glutathione transferase A0A401PDJ7 scyTo_0008784 1.8 0.002
24 Glutathione transferase A0A401P1T3 scyTo_0005075 −3.6 0.028
25 Glycerol kinase A0A401PKW0 scyTo_0002802 −1.8 0.043
26 Glycerol-3-phosphate dehydrogenase [NAD(+)] A0A401NP72 scyTo_0004280 1.8 0.048
27 Guanylin A0A401P9P1 scyTo_0010653 −1.2 0.002
28 Heat shock protein 90 A0A401QGJ4 scyTo_0025076 −2.3 0.001

29 Hydroxyacyl-coenzyme A dehydrogenase,
mitochondrial A0A401NV38 scyTo_0007579 −2.3 0.002

30 IgGFc-binding protein N-terminal
domain-containing protein A0A401PYX0 scyTo_0020091 2.1 0.011

31 Importin N-terminal domain-containing protein A0A401NW55 scyTo_0009924 −2.6 0.019
32 Inositol 1,4,5-trisphosphate receptor A0A401PCL8 scyTo_0005792 1.7 0.029

33 Isopropylmalate dehydrogenase-like
domain-containing protein A0A401P3W7 scyTo_0010306 1.0 0.035

34 Malate dehydrogenase A0A401NWX3 scyTo_0013452 −2.0 0.002
35 MARVEL domain-containing protein A0A401P8H4 scyTo_0010555 −3.6 0.047

36 Medium-chain specific acyl-CoA dehydrogenase,
mitochondrial A0A401NPH1 scyTo_0013116 −1.3 0.048

37 Mesothelin-like protein A0A401PMK1 scyTo_0003439 −2.0 0.035
38 Methyltransferase small domain-containing protein A0A401PVU9 scyTo_0017576 4.6 0.036
39 Mucin-like protein A0A401P6M2 scyTo_0010452 −1.3 0.014

40 NADH dehydrogenase [ubiquinone] flavoprotein 2,
mitochondrial A0A401PKP4 scyTo_0002777 3.7 0.039

41 Outer dynein arm-docking complex subunit 4
(Tetratricopeptide repeat protein 25) A0A401PDC6 scyTo_0005847 −2.9 0.039

42 Phosphoglycerate kinase A0A401PLW3 scyTo_0003196 −3.3 0.008
43 protein disulfide-isomeras A0A401PA50 scyTo_0001161 1.9 0.025
44 Protein odr-4 homolog A0A401P2P7 scyTo_0008039 −1.5 0.017
45 Renin receptor A0A401NH33 scyTo_0011071 −1.3 0.024
46 Rieske domain-containing protein A0A401PHR0 scyTo_0002123 −1.9 0.021

47 S-adenosyl-L-homocysteine hydrolase NAD binding
domain-containing protein A0A401PRC8 scyTo_0020386 −1.7 0.032
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Table 2. Cont.

No. Protein Name Accesion Number Gene ID FC A/W p-Value

48 S-formylglutathione hydrolase A0A401P7J0 scyTo_0008328 −1.6 0.001

49 Short chain dehydrogenase/reductase family 16C
member 5 A0A401NWJ4 scyTo_0004737 3.6 0.011

50 SMP-LTD domain-containing protein A0A401PFX2 scyTo_0009006 2.1 0.000
51 Sulfhydryl oxidase A0A401P2B9 scyTo_0015102 −2.3 0.000
52 Superoxide dismutase A0A401PG28 scyTo_0006156 −4.3 0.005
53 Synaptogyrin A0A401NHV2 scyTo_0012741 −1.8 0.014
54 Thiolase N-terminal domain-containing protein A0A401PAQ5 scyTo_0010720 −2.1 0.024
55 Thiolase N-terminal domain-containing protein A0A401NLX1 scyTo_0009415 −2.0 0.003
56 Thioredoxin domain-containing protein A0A401PCP3 scyTo_0001399 −3.8 0.035
57 Triokinase/FMN cyclase A0A401NQV8 scyTo_0004389 −3.3 0.000
58 VWFA domain-containing protein A0A401NYA7 scyTo_0013511 −2.3 0.026
59 ZP domain-containing protein A0A401Q018 scyTo_0020138 −1.6 0.026

3.3. Seminal Plasma Differentially Abundant Proteins and Functional Annotation Analysis

A single protein was identified with a protein ID probability exceeding 99%, along
with two different peptides that had a minimum peptide ID probability of 95%, thus
meeting the criteria for identification. Adenosylhomocysteinase (A0A401PRC8) was the
only differentially abundant protein in aquarium animals, exhibiting an FC of 2.01 present
in the Scyliorhinus torazame UNIPROT database (Table S2). Since only a small number of
differential proteins were found, no functional annotation analysis was performed.

3.4. Spermatozoa Differentially Abundant Proteins and Functional Annotation Analysis

Among the 59 total DAPs identified in spermatozoa, 36 proteins exhibited increased
abundance in the aquarium individuals, while 23 proteins exhibited increased abundance in
the wild individuals (Table 2). By analyzing BP, we found that the DAPs from the complex
PPI network were enriched in cellular processes (GO:0009987), small molecule metabolic
processes (GO:0044281), carboxylic acid metabolic processes (GO:0019752), generation
of precursor metabolites and energy (GO:0006091), energy derivation by oxidation of
organic compounds (GO:0015980), aerobic respiration (GO:0009060), tricarboxylic acid cycle
(GO:0006099), cellular aldehyde metabolic processes (GO:0006081), and glycerol catabolic
processes (GO:0019563). The Gene Ontology MF analysis revealed the involvement of
DAPs in catalytic activity (GO:0003824), oxidoreductase activity (GO:0016491), identical
protein binding (GO:0042802), oxidoreductase activity, acting on the CH-OH group of
donors, NAD or NADP as acceptor (GO:0051287), hydro-lyase activity (GO:0016836),
and 3-hydroxyacyl-CoA dehydrogenase activity (GO:0003857). In addition, the KEGG
pathway enrichment analysis revealed the association of the DAPs with metabolic pathways
(map01100), carbon metabolism (map01200), fatty acid metabolism (map01212), and lysine
degradation (map00310). The annotated results for the following terms were tabulated
(Tables 3 and S3).
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Table 3. Gene ontology (GO) terms such as biological process, molecular functions, and KEGG
pathways of differentially abundant proteins in small-spotted catshark (Scyliorhinus canicula) sper-
matozoa collected from wild and aquarium animals annotated in the UNIPROT in cloudy catshark
(Scyliorhinus torazame).

Category Term Name Count FDR

Biological process

GO:0009987 Cellular process 53 0.0374
GO:0044281 Small molecule metabolic process 17 0.00020
GO:0019752 Carboxylic acid metabolic process 9 0.0474
GO:0006091 Generation of precursor metabolites and energy 8 0.00078
GO:0015980 Energy derivation by oxidation of organic compounds 7 0.00078
GO:0009060 Aerobic respiration 6 0.00078
GO:0006099 Tricarboxylic acid cycle 4 0.0026
GO:0006081 Cellular aldehyde metabolic process 3 0.0481
GO:0019563 Glycerol catabolic process 2 0.0475

Molecular Function

GO:0003824 Catalytic activity 33 0.00038
GO:0016491 Oxidoreductase activity 16 8.74 × 10−8

GO:0042802 Identical protein binding 11 0.0486

GO:0016616 Oxidoreductase activity, acting on the CH-OH group of donors,
NAD or NADP as acceptor 7 2.44 × 10−5

GO:0051287 NAD binding 5 0.00038
GO:0016836 Hydro-lyase activity 4 0.0065
GO:0003857 3-hydroxyacyl-CoA dehydrogenase activity 2 0.0150

Kegg Pathway

map01100 Metabolic pathways 30 5.00 × 10−10

map01200 Carbon metabolism 10 3.80 × 10−9

map01212 Fatty acid metabolism 6 4.31 × 10−6

map00071 Fatty acid degradation 5 1.85 × 10−5

map00280 Valine, leucine and isoleucine degradation 5 3.62 × 10−5

map00310 Lysine degradation 6 3.62 × 10−5

map00650 Butanoate metabolism 4 3.62 × 10−5

map00020 Citrate cycle (TCA cycle) 4 0.00028
map00380 Tryptophan metabolism 4 0.00040
map00630 Glyoxylate and dicarboxylate metabolism 4 0.00040
map00620 Pyruvate metabolism 4 0.0012
map00640 Propanoate metabolism 3 0.0052
map00072 Synthesis and degradation of ketone bodies 2 0.0080
map01210 2-Oxocarboxylic acid metabolism 2 0.0198
map00980 Metabolism of xenobiotics by cytochrome P450 2 0.0393
map00982 Drug metabolism—cytochrome P450 2 0.0430
map01230 Biosynthesis of amino acids 3 0.0430
map00062 Fatty acid elongation 2 0.0457
map00900 Terpenoid backbone biosynthesis 2 0.0457

3.5. Establishment of PPI Networks and Module Analysis

We conducted a network analysis to investigate the interactions among the DAPs in
spermatozoa using STRING (Figure 4). Our analysis revealed that out of the 59 proteins, 43
of them exhibited interactions with each other, forming a network with a total of 128 edges.
Notably, the proteins with the highest degree of connectivity had a clustering coefficient of
0.452, and the p-value for the enrichment of protein-protein interactions was <1.0 × 10−16.
These proteins were found to be associated with oxidoreductase activity, carbon metabolism,
and metabolic pathways.



Animals 2024, 14, 1281 12 of 19
Animals 2024, 14, x FOR PEER REVIEW  12  of  19 
 

 

Figure 4. Protein-protein interaction networks of spermatozoa proteins differentially abundant be-

tween wild and aquarium semen annotated in the UNIPROT in cloudy catshark (Scyliorhinus tora‐

zame). One cluster of  interacting proteins was  identified using  the STRING software  (version 12. 

https://string-db.org, accessed on 1 March 2024) with a high confidence score. The line size indicates 

a high interaction score (tight lines indicate a high score > 0.7; thin lines indicate a medium score > 

0.4). Each node represents a protein, whereas edges indicate the strength of the relationship between 

proteins (i.e., more edges indicate higher confidence). The proteins identified in small-spotted cat-

shark spermatozoa of aquarium and wild males are shown in Table 2. 

4. Discussion 

In this study, we conducted a comprehensive analysis of the global proteome in sem-

inal plasma and spermatozoa derived from both wild and aquarium S. canicula. Our re-

search aims to deepen our insights into how aquarium conditions may influence the qual-

ity and fertilization potential of sperm, which holds significant importance for optimizing 

reproductive techniques. In aquarium facilities, the reduced quantity of external natural 

stimuli could potentially impact the cyclical reproduction patterns [4,34]. In our previous 

study, aquarium individuals showed higher total sperm motility, with no observed dif-

ferences in sperm viability, mitochondrial membrane potential, and membrane integrity 

[7]. The potential reasons  for variations  in fish sperm quality between habitats may be 

attributed to factors such as water temperature, salinity, stocking density, sex ratio, or diet 

[35–39]. However, these conventional analyses do not provide insights into the functional 

competence of  spermatozoa  [40]. Assessing  sperm quality and potential  fertility poses 

challenges due to inherent factors related to the animals and extrinsic elements, such as 

environmental influences [41]. In this context, the identification of proteins responsible for 

cellular functions in cells and tissues has emerged as a crucial area of research for identi-

fying  fertility-associated  biomarkers  [16,19,42].  Comparative  analyses  of  sperm 

Figure 4. Protein-protein interaction networks of spermatozoa proteins differentially abundant
between wild and aquarium semen annotated in the UNIPROT in cloudy catshark (Scyliorhinus
torazame). One cluster of interacting proteins was identified using the STRING software (version
12. https://string-db.org, accessed on 1 March 2024) with a high confidence score. The line size
indicates a high interaction score (tight lines indicate a high score > 0.7; thin lines indicate a medium
score > 0.4). Each node represents a protein, whereas edges indicate the strength of the relationship
between proteins (i.e., more edges indicate higher confidence). The proteins identified in small-
spotted catshark spermatozoa of aquarium and wild males are shown in Table 2.

4. Discussion

In this study, we conducted a comprehensive analysis of the global proteome in
seminal plasma and spermatozoa derived from both wild and aquarium S. canicula. Our
research aims to deepen our insights into how aquarium conditions may influence the
quality and fertilization potential of sperm, which holds significant importance for opti-
mizing reproductive techniques. In aquarium facilities, the reduced quantity of external
natural stimuli could potentially impact the cyclical reproduction patterns [4,34]. In our
previous study, aquarium individuals showed higher total sperm motility, with no ob-
served differences in sperm viability, mitochondrial membrane potential, and membrane
integrity [7]. The potential reasons for variations in fish sperm quality between habitats
may be attributed to factors such as water temperature, salinity, stocking density, sex ratio,
or diet [35–39]. However, these conventional analyses do not provide insights into the
functional competence of spermatozoa [40]. Assessing sperm quality and potential fertility
poses challenges due to inherent factors related to the animals and extrinsic elements, such
as environmental influences [41]. In this context, the identification of proteins responsible
for cellular functions in cells and tissues has emerged as a crucial area of research for identi-
fying fertility-associated biomarkers [16,19,42]. Comparative analyses of sperm proteomes

https://string-db.org
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have significantly contributed to our understanding of how spermatozoa acquire their
fertilization capacity and why they exhibit varying levels of fertility [40,42,43].

The analysis of the shark proteome conducted in the present study allowed the identi-
fication of 305 and 535 proteins in seminal plasma and spermatozoa, respectively. To our
knowledge, little importance relies on the 89 proteins that are simultaneously present in
seminal plasma and spermatozoa. Similar phenomena have been observed in previous
studies involving mammalian species [44–46]. This result currently represents the most
extensive dataset of proteins in seminal plasma and spermatozoa from sharks, providing
the first comprehensive characterization of the seminal plasma and spermatozoa proteomes
in S. canicula, encompassing individuals inhabiting their natural habitat and those under
aquarium conditions. However, this study also highlights the lack of information on these
species. Among the 2 DAPs identified in seminal plasma, only 1 has an ortholog (in
either one-to-one or one-to-many relationships) in Scyliorhinus torazame. Conversely, of
the 107 DAPs found in the spermatozoa, only 59 have orthologs in Scyliorhinus torazame.
Specifically, for the spermatozoa, 42 DAPs did not have any orthologs in other species.

In our current research, we identified only one protein as a DAP in the seminal plasma,
the adenosylhomocysteinase (AHCY), which exhibited increased abundance in individuals
from the aquarium. AHCY is a methyltransferase with catalytic activity, participating in
amino acid biosynthesis [47,48]. It plays a pivotal role in the one-carbon metabolic cycle, a
fundamental metabolic process that facilitates the transfer of one-carbon units essential for
various biosynthetic processes (e.g., purines and thymidine), maintenance of amino acid
levels (including cysteine, serine, and methionine), regulation of cellular redox balance,
and epigenetic control [49]. Notably, AHCY is one of the most highly conserved enzymes
found in a wide range of living organisms, spanning from bacteria, nematodes, and yeast
to plants, insects, and vertebrates [50]. its crucial role in intermediary metabolism has
been well-established [51], and it has also been identified in various fish species [23,52,53].
As AHCY plays a crucial role in intermediate metabolism [51] and is associated with
spermatozoa motility, this result could be related to the increased spermatozoa motility
in aquaria [23,51–53]. In line with this, our proteomics results indicate that aquarium
conditions induce minimal modifications in seminal plasma composition compared to
wild conditions.

To explore the involvement of the 59 identified DAPs in BP, MF, and molecular path-
ways of wild and aquarium S. canicula, we used GO and KEGG enrichment to determine
the functional annotation of these proteins. We found that these DAPs were primar-
ily enriched in cellular processes, small molecule metabolic processes, carboxylic acid
metabolic processes, generation of precursor metabolites and energy, energy derivation
by oxidation of organic compounds, aerobic respiration, tricarboxylic acid cycle, cellu-
lar aldehyde metabolic processes and glycerol catabolic processes. The analysis of MF
from GO showed that the DAPs were significantly enriched in catalytic activity, oxidore-
ductase activity, identical protein binding, oxidoreductase activity, acting on the CH-OH
group of donors, NAD or NADP as acceptor, NAD binding, hydro-lyase activity, and
3-hydroxyacyl-CoA dehydrogenase activity. Similarly, the analysis of KEGG pathway
enrichment showed that the DAPs are involved in metabolic pathways, carbon metabolism,
fatty acid metabolism and degradation, valine, leucine, and isoleucine degradation, lysine
degradation, butanoate metabolism, citrate cycle (TCA cycle), tryptophan metabolism,
glyoxylate and dicarboxylate metabolism, pyruvate metabolism, propanoate metabolism,
synthesis and degradation of ketone bodies, 2-oxocarboxylic acid metabolism, metabolism
of xenobiotics by cytochrome P450, drug metabolism—cytochrome P450, biosynthesis of
amino acids, fatty acid elongation, and terpenoid backbone biosynthesis. Interestingly, two
matching proteins (A0A401NWX3 and A0A401P3W7) were included in three out of six
significant functional categories, among which an enrichment of both genes was found in
MFs (GO:0016491 and GO:0016616) and KEGG (map01100 and map01200) pathways. In
addition, A0A401P5Y1 and A0A401QCT0 proteins overlapped between the MF and KEGG.
On the one hand, it is noteworthy that MFs were predominantly related to oxidoreductase
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activity. On the other hand, classification analysis revealed that these pathways were mainly
concentrated in metabolic pathways and carbon metabolism (KEGG). The DAPs among
sperm proteins included key enzymes of the citric acid cycle (e.g., malate dehydrogenase,
A0A401NWX3) and lipid synthase activity (fatty acid synthase complex, A0A401P5R6).
These proteins have previously been detected in spermatozoa of teleost fish [54] and sea
bream semen (Sparus aurata) [55]. Notably, malate dehydrogenase (MDH, A0A401NWX3),
Superoxide dismutase (SOD, A0A401PG28), and thioredoxin domain-containing protein-2
(TXNDC2, A0A401PCP3) exhibited increased abundance in individuals from the aquarium.
The MDH protein plays a crucial role in producing the energy required to support sperm
motility. To do this, MDH facilitates the conversion between oxaloacetate and malate, a
reaction pivotal to cellular metabolism. This process involves easily detectable cofactor
oxidation/reduction, as highlighted by Musrati et al. [56]. In rainbow trout, a negative cor-
relation was found between MDH activity and fertilization rate, suggesting that low-quality
semen might have heightened energy needs [57]. Conversely, elevated MDH activity may
negatively react to anoxic conditions, particularly during storage, or result from insufficient
energy availability. Additionally, high-quality sturgeon sperm overexpress proteins like
MDH, which is crucial for energy support via the citrate cycle [58]. This suggests that lower
MDH expression in spermatozoa could impair sperm motility and, consequently, fertility.
For instance, diminished MDH abundance in cryopreserved sea bream sperm was linked to
decreased motility post freeze-thaw procedure [59]. Moreover, the presence of certain DAPs
related to oxidative stress may further indicate potential membrane compromise. SOD1 and
TXNDC2 potentially play an important role in regulating the redox status [60,61]. SOD1 is
tightly associated with sperm quality, including sperm motility [62–64]. For example, in Sea
Bream, the level of sperm SOD protein significantly increased during the cryopreservation
process as a consequence of oxidative stress [59]. Thus, the observed increase in SOD1 and
TXNDC2 levels in the sperm of aquarium individuals could indicate higher oxidative stress
in these animals compared to wild individuals.

The results of this study show that the predominant DAPs identified were metabolic
enzymes, such as glycerol-3-phosphate dehydrogenase (GPD2, A0A401NP72), isocitrate
dehydrogenase 3 (IDH3), fatty acid synthase (FASN, A0A401P5R6), and clusterin (CLU,
A0A401PF86). GPD2, an enzyme responsible for catalyzing the conversion of glyceralde-
hyde 3-phosphate to 1,3-bisphosphoglycerate, has been observed to be overexpressed in
high-quality sturgeon spermatozoa [58]. Additionally, this protein is recognized for facili-
tating tyrosine phosphorylation during the sperm capacitation process [65]. Furthermore,
the critical role of glycolysis in sperm and its dependence on this sperm-specific enzyme
suggest that GPD2 is a potential target for contraception. Hence, mutations or environmen-
tal agents that disrupt its activity could lead to male infertility [66]. Additionally, IDH3, a
key enzyme in the mitochondrial tricarboxylic acid (TCA, map00020) cycle that catalyzes
the decarboxylation of isocitrate to α-ketoglutarate while converting NAD+ to NADH, was
down-regulated in the aquarium individuals. In humans, a reduction in this protein has
been observed in patients with infertility and poor sperm motility [67–70].

The enriched classification was also employed to assess the potential functional roles
of the DAPs. FASN and CLU were identified as participants in oxidoreductase activity and
metabolic pathways, being more abundant in individuals from the wild. Both FASN and
CLU have been recognized as potential sperm markers for recurrent pregnancy loss [70–72].
Lipids constitute a major component of teleost fish spermatozoa [73]. The fatty acid compo-
sition of spermatozoa is influenced by their diet [74,75]. The diet significantly alters the
fertilizing capability of fresh sperm. The transfer of essential fatty acids from the diet to
the semen is effective, and this transfer may exert biological effects on semen’s fertilizing
capacity [76]. CLU is a small glycoprotein present in the seminal plasma and on the sperm
surface of various species, including dogs [77], bulls [78], boars [79], rams [80], pecca-
ries [81], camels [82], and coatis [46]. It is involved in sperm maturation, lipid transport,
membrane remodeling, DNA repair, apoptosis inhibition, and cell cycle control [83–86].
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CLU is secreted in response to cellular damage and heat shock and protects cells from these
environmental stresses [46].

5. Conclusions

Differentially expressed proteins that play critical roles in spermatozoa could be key
factors in explaining the limited reproductive success for species under managed care.
This study provides new insights into characterizing the seminal plasma and spermatozoa
proteomes in sharks. We observed a higher number of proteins in spermatozoa compared
to seminal plasma, with minimal overlap between the two sample types. Moreover, we
have shown that environmental conditions can lead to differences in protein composition
in spermatozoa with minimal impact on seminal plasma proteins in S. canicula. While
our understanding of the complete functions of the differentially abundant proteins is not
yet complete, this study serves as a valuable foundation for further research. Specifically,
these results will enable a deeper elucidation of the molecular mechanisms involved in
this particular condition and may shed further light on the key sperm proteins implicated
in fertilization, as well as for the development of effective reproductive technologies in
conservation efforts for chondrichthyan species.
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Gene ontology (GO) terms such as biological process, molecular functions, and KEGG pathways of
differentially abundant proteins.
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