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Simple Summary: Optimal human health requires the adequate provision of all nutrients in the
correct proportions, ensuring the provision of energy and essential small molecules. All primates,
including humans, are omnivorous but the most striking difference from other primates is the
remarkable diversity of the diets we consume. Animal-sourced foods are important for human
nutrition and health, but they can have a negative impact on the environment. The aim here is to
examine these impacts that can result in land use tensions associated with population growth and
the loss of native forests and wetlands during agricultural expansion, increased greenhouse gas
emissions, and high water use with poor water quality outcomes. However, several technologies
and practices can be used to mitigate against these impacts. These include grazing when feed quality
is high, the use of dietary additives, breeding of animals with higher growth rates and increased
fecundity, rumen microbial manipulations using vaccines and other additives, soil management to
reduce nitrous oxide emission, management systems to improve carbon sequestration, improved
nutrient use efficacy, use of cover crops, low-emission composting barns, covered manure storages,
and direct injection of animal slurry into soil. Other technologies and systems to provide further
solutions continue to be researched.

Abstract: Animal-sourced foods are important for human nutrition and health, but they can have
a negative impact on the environment. These impacts can result in land use tensions associated
with population growth and the loss of native forests and wetlands during agricultural expansion.
Increased greenhouse gas emissions, and high water use but poor water quality outcomes can also
be associated. Life cycle analysis from cradle-to-distribution has shown that novel plant-based
meat alternatives can have an environmental footprint lower than that of beef finished in feedlots,
but higher than for beef raised on well-managed grazed pastures. However, several technologies
and practices can be used to mitigate impacts. These include ensuring that grazing occurs when
feed quality is high, the use of dietary additives, breeding of animals with higher growth rates and
increased fecundity, rumen microbial manipulations through the use of vaccines, soil management
to reduce nitrous oxide emission, management systems to improve carbon sequestration, improved
nutrient use efficacy throughout the food chain, incorporating maize silage along with grasslands,
use of cover crops, low-emission composting barns, covered manure storages, and direct injection of
animal slurry into soil. The technologies and systems that help mitigate or actually provide solutions
to the environmental impact are under constant refinement to enable ever-more efficient production
systems to allow for the provision of animal-sourced foods to an ever-increasing population.

Keywords: animal-based food; environment; greenhouse gas emission; land use; life cycle analysis;
plant-based food; nutrition; soil carbon; water
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1. Introduction

Animal-sourced foods have been shown to be an important part of the human diet
for both nutrition and health [1]. However, negative environmental impacts are among
the most significant issues identified by the FAO resulting from producing animal-sourced
foods [2]. They include land use change with its attendant consequences for deforestation
and competition between the food (crop) and feed (forage), greenhouse gas emissions, and
sustainable land and water use including the maintenance of soil carbon (C) stocks and the
quality of freshwater. Unintended environmental impacts of pasture-based agricultural
systems need to be managed and mitigated to achieve more acceptable and sustainable
outcomes. The factors listed above are frequently interrelated, especially in developing
countries where land use change drives substantial changes in the water, carbon, and
nutrient cycles that affect soil, water, and atmospheric quality. However, even in developed
countries, with relatively stable land use patterns, the impacts of pasture/grassland-based
agriculture frequently exceed the limits imposed by society via government regulations and
must be reined in to ensure the sustainable supply of food for local and global populations.
The aim here is to undertake a systematic review of the current literature to examine these
impacts that can result in land use tensions associated with population growth and the
loss of native forests and wetlands during agricultural expansion, increased greenhouse
gas emissions, and high water use with poor water quality outcomes. Technologies and
practices that can be used to mitigate these impacts will be discussed.

These dynamic environmental factors are discussed in detail below, mostly in relation
to pasture-based livestock production systems in developed countries and in keeping with
a focus on grazing systems in countries such as New Zealand and Ireland. A key difference
between pasture-based food production and cropping is the presence of the ruminant
animal, and the unique ways in which the animal alters the water, C, and nutrient cycles
compared with cropping systems, for example, in decoupling C and nitrogen (N) in the
feed they consume. In doing so, they turn food that is not usable by humans (forages,
crop residues, and agricultural byproducts) into high-value products and services [3].
Perceptions of animal welfare, whether positive or negative, are increasingly shaping
consumer decisions regarding their dietary choices [4,5]. Pasture/grassland-based animal
production systems are uniquely different from confinement systems with regard to, for
example, the interactions between the animal and its immediate environment, and the types
of diseases that affect their productivity and longevity. These issues are highly relevant
to the challenge/opportunity for pasture-based food production to differentiate itself
from other food or feed industries with respect to nature- and animal-positive attributes.
Previously, the impacts of animal-sourced foods on human nutrition and health, herd
management, animal health, and human–livestock relationships have been discussed [1];
here, the focus will be on the impact of food production from livestock on the environment
and technologies used to mitigate consequences.

2. Land Use

Undeniably, cities are highly dependent on rural areas for the provision of food to
ensure their survival. Before the global trade in food became commonplace, it was normal
for food consumed by a city to be produced in the nearby countryside. Indeed, the first cities
of major urban civilizations were often constructed close to fertile farming regions. Today
however, with global trading, the countryside may end up feeding urbanized populations
globally [6].

During the twentieth century, the global population increased by 230% and culti-
vated land area by 56% [7] largely due to a substantial decrease in forests, particularly
tropical rainforests, resulting in a decline in biodiversity, increased soil erosion, and a
significant change in the global carbon cycle [8,9]. These trends continued into the 21st
century: Borrelli et al. [10] reported that from 2001 to 2012, the total global area in semi-
natural vegetation (predominantly grassland, shrubland, and savannah) and cropland in-
creased by 1.43 and 0.22 million km2 respectively, while the area under forest decreased by
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1.65 million km2 (the net change is in balance but there were transitions among all three
land uses classes, including crop to semi-native vegetation and vice versa).

Land use tensions driven by population growth, concomitant urbanization, and chang-
ing land use needs are occurring in both developed and developing countries [11]. For
example, in northwestern Cameroon, competition is occurring between local crop farmers
seeking a land use change from natural and traditional grazing areas into agricultural
land [12]; in the Kilombero valley of Tanzania, pastoralists have been evicted to make way
for an expanding sector of agricultural capital investments combined with a substantial
increase in areas under environmental conservation [13]; in Ethiopia, rapid urbanization
mainly induced by migration has been at the expense of agriculture, plantation, and mixed
forests [14]; in Pakistan, cities have expanded, reducing productive agricultural land sub-
stantially [15]; a competition for land between family-based farming and state-supported
agribusiness farming is occurring in Brazil [16]; the uncontrolled expansion of cities in
southern Europe is onto agricultural land [17]; in Australia and New Zealand, tensions
exist at the frontiers of urban and peri-urban, and also between the use of land for agri-
culture and forestry, primarily with exotic but also native species [18,19]. Residential and
commercial development onto greenfield land around Auckland, New Zealand’s largest
city, will inevitably lead to increased vegetable prices [11].

In a meta-analysis of 62 studies, predominantly from the tropics, “overlapping land
rights, ethnic fragmentation, and corruption are the most frequently reported root causes
[of conflict], followed by economic inequality, migration, and high dependence on agricul-
ture” [20]. Expansion into subtropical and tropical forests to allow for the development for
both cropping and animal-based agriculture [21–23], while causing major environmental
damage and a reduction in biodiversity [24,25], can also result in wider social impacts for
“forest-dependent” societies [26].

A meta-analysis [27] of ecological studies undertaken in Europe determining land use
on biodiversity has concluded the following.

• Traditional extensive grazing in southern Europe and mountainous ecosystems created
a mosaic of habitats resulting in biodiversity;

• Short-term abandonment following overgrazing had positive effects in central Europe
and lowlands but not in southern European mountains;

• The abandonment of long-term traditional grazing activities in mountainous ecosys-
tems resulted in the extinction of populations of species tightly linked with open
habitats; and

• In lowlands, the abandonment of some grazing patches augments habitat diversifica-
tion and creates new habitats for more species, but overgrazing caused a significant
decrease in biodiversity.

A system that balances population growth and economic development with environ-
mental imperatives has been labelled as “sustainable intensification” [28,29]. However,
achieving this outcome will be context dependent, based on farm type and location, whether
it is peri-urban agriculture, large farms situated on prime agricultural lands, or smallholder
farms often associated with subsistence farming [30].

Crop and livestock farming, and the land use change that often accompanies it, such
as clearing forests and drying out wetlands, has been estimated to account for more than a
fifth of global carbon output [31]. Further forest and wetland conversion is being halted,
at least in developed countries: the challenge of balancing environmental impacts and
meeting the nutritional needs of a growing world population with currently farmed land
is significant. Globally, the area of land not currently used for food (crop), feed (forage),
or bioenergy production that could practically and legally be converted to those uses
is extremely limited [32]. Proposed solutions to this situation include the conversion of
degraded land in Latin America and sub-Saharan Africa to cropland, improved yields on
existing land, and reducing current food waste.

Comparisons between livestock and cropping systems for the production of human
edible food tend to overlook (a) the amount of feed that animals consume that is not useable
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by humans [33], with 86% of the total feed consumed by animals coming from materials
that are currently not eaten by humans, and (b) the impact of even modest improvements
in feed use efficiency on land currently used for animal-sourced food production (land that
is generally unsuitable for cropping) without the need for more deforestation to release
land for cropping [3]. Despite these, there is also a need to work towards reducing the
use of cereal grain for ruminant (and monogastric) livestock, while noting that yields for
feed-grain tend to be higher than for human use, so a direct substitution is not possible.
Bertsch [34] notes that “In developed countries, 56% of cereals produced are for livestock
feed, and 23% in developing countries. Globally, 37% of cereal production goes to animal
protein production”. On a global scale 40% of crop calories are used as livestock feed with
a conversion ratio of about four kcal of crop product per one kcal of animal product [35].
However, there is considerable variation across regions and management systems with low
crop calories used in production systems for ruminants based on fodder and forage, while
large values are usually associated with production systems for non-ruminants (namely,
poultry, and pigs) fed on crop products such as grain in direct competition with humans.

Criticisms of livestock production have led to the call to phase out animal produc-
tion [36] and to develop plant-based meat alternatives. The latter, depending on production
practices, could have considerably lower environmental footprints in terms of the carbon
footprint per unit of product [37–39]. A life cycle analysis from cradle-to-distribution, ex-
cluding the greenhouse gas emission from retail, restaurant, or at-home use, and end-of-life
stages, has shown that novel plant-based meat alternatives can have an environmental
footprint lower than that of beef finished in feedlots, but higher than for beef raised on well-
managed grazed pastures (Table 1). The use of the metric CO2-eq/kg product or unit of
protein/energy that is often used in life cycle analyses has been criticized as over-simplistic
and not adequately representing the true impact and value of livestock products [40]. Their
view is that “CO2-eq does not adequately reflect the different nature of CH4, the main
GHG emitted from ruminant livestock systems, compared to (sic) CO2 and N2O in the
atmosphere. On the other hand, kg product does not adequately consider the value of
livestock: for example, nutritionally, they are generators of valuable co-products, whilst
also being re-cyclers of byproducts, up-cyclers of nonproductive land, potential soil and
biodiversity enhancers, and also offer social resilience platforms”. Global warming poten-
tial (GWP*), combining emissions (pulse) and changes in emissions levels (step) [41,42],
is favored by many in animal production because it appears to result in a less punitive
outcome for animals. However, as indicated by Manzano et al. [40], different metrics can
be used in different scenarios to support different arguments. What is not in doubt is that
achieving efficiency of production is of benefit to all parties.

Interestingly, the production of lab-grown meat can result in high levels of green-
house gas emissions, although estimates are variable (Table 1). Non-renewable energy
use was also very high for lab-grown meat at 290 to 373 MJ/kg, which was compared
with 48 to 59 MJ/kg for dairy-based product and 27 to 37 MJ/kg for soybean meal-based
product [43]. Energy use for feedlot beef production was 77 MJ/kg compared with the
value for lab-grown meat of 108 KJ/kg [44]. However, another study by Tuomisto and Teix-
eira de Mattos [45] showed a much lower environmental impact (Table 1). More recently,
Risner et al. [46] indicated that “the environmental impact of near-term animal cell-based
meat (ACBM) production is likely to be orders of magnitude higher than median beef
production if a highly refined growth medium is utilized for ACBM production”. The
highly refined growth medium is required to reduce potential contamination. Another
recent review of the environmental impact of lab-grown meat has concluded that “no
complete nor consistent life-cycle assessment of cultured meat has been conducted, owing
to the lack of information related to the processes and materials” [47].
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Table 1. Summary of the life cycle analysis (LCA) for meat from animals fed either through a feedlot or on
grazed pasture, plant-based meat alternatives, and lab-grown meat measured as C footprint—kg CO2-eq
per kg product. Further summaries of the life cycle analysis for both plant-based and lab-grown (cultured)
meat are provided by UNEP [48] and Smetana et al. [49].

Production System

Comment ReferenceMeat from
Feedlot-Fed Animals

Meat from
Grazed-Pasture
Animals

Plant-Based Meat Lab-Grown Meat

Beef +*22
Western
Canada—lifetime
GHG emissions

[50]

Dairy +3.8 to +6.2 Mycoprotein based
+2.4 to +2.6 [51,52]

+1.8 to +2.3 [45]

Beef +9 to +42;
Dairy +1 to +2

Suckler herds +23 to +52
Extensive pastoral
+12 to +129

+1 to +2 Review of
numerous studies [53]

+31 +7.5 Feedlot beef in upper
midwest USA [44]

Dairy +4.3 to +4.9
Chicken meat
+5.2 to +5.8

Soymeal-based
+2.6 to +2.8
Mycoprotein-based
+5.5 to +6.1

+23.9 to +24.6 Cradle-to-plate
life cycle [43]

+150 +35 [54]

+33—US feedlot +3.5 per kg beef

Total cradle-to-
distribution impacts
Beyond
Burger and U.S. beef
in feedlot

[55]

Feedlot from +6.09 to
+6.12 due to
soil erosion

Rotationally grazed
systems moved from
+9.62 to −6.65 due to
soil erosion

Change due to
inclusion of soil
organic matter
accumulation
in analysis

[56]

+48.4

Full LCA for USA
beef—includes
feed production
and feedlot

[57]

+33—US feedlot beef −3.5 for grazed pastures

Rotational grazed
beef can in some
circumstances have a
negative carbon
impact due to soil C
sequestration

[58]

+21.3
Full LCA for USA
beef for feedlot and
processing, etc.

[59]

Beef +48 to +210
Dairy +35 to +45
Sheep +80 to +190

+5 to +35 +15 to +40 [60]

+11 (feedlot
finished beef) −3.5 (grazed) +3.5 (soy-based)

+3 (pea-based)

Cradle-to-
distribution LCA, but
excludes GHGE
potential of retail,
restaurant, or
at-home use, and
end-of-life stages

[61]

+42 to +235 +21 to +55
Range depends on
functional unit and
allocation method

[62]
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Table 1. Cont.

Production System

Comment ReferenceMeat from
Feedlot-Fed Animals

Meat from
Grazed-Pasture
Animals

Plant-Based Meat Lab-Grown Meat

+6.01 for sheep and
+8.97 for beef cattle

“Cradle-to-grave” for
average NZ sheep
and beef (weighted
for traditional and
dairy beef)—grazed
pasture

[63]

+4.9 to +25.2 [64]

Traditional beef +10.09
Dairy beef +6.88
Sheep +6.01

NZ—Cradle-to-farm-
gate GHG emissions
per kg live-weight
sold (kg CO2e
kg−1 LW) for
grazed pasture

[65]

+11 (dairy
+40 (beef) +2.2 to +24.8

Current benchmark;
best and worst case
for cultured meat

[66]

* The plus (+) sign indicates an overall net positiveincrease in kg CO2-eq per kg product.

A life cycle analysis of animal produce from New Zealand has shown that despite
the long shipping distances involved, New Zealand beef, sheep meat [65], and dairy
products [67,68] supplied to international markets have a full life-cycle carbon footprint
at the lower end of other published estimates. However, the methods of calculation of
these estimates do differ among authors across countries as noted by Mazzetto et al. [68].
The researchers found that “countries where milk is produced mainly as a pasture-based
system had most of their footprint (>50%) associated with the emission of methane from
enteric fermentation, whereas other countries (especially from Europe and North America)
had a significant share of emissions from manure management, feed production, and
fertilizer use”.

A study in Ireland using a life cycle assessment demonstrated that the substitution of
synthetic nitrogen fertilizer with atmospheric N fixed by white clover has the potential to
reduce the environmental impact of intensive pasture-based dairy systems in temperate
regions [69]. The reduction was achieved through both the improvement in animal perfor-
mance and the reduction in total emissions and pollutants. It is well understood that the
improved pasture quality due to the inclusion of legume, such as white clover, is likely to
result in higher milk and meat production per unit area than where legumes are absent and
fertilizer N is used on grass-only pastures [70,71]. However, for the best results measured
as maximum gross margins per ha and high levels of milk solids production per ha and per
cow, a combination of N inputs from white clover and fertilizer, such that clover contents
are 30–40% with N fertilizer rates of 100–200 kg N/ha/year, is required [72].

3. Greenhouse Gas Emissions

Despite O’Neil et al. [73] demonstrating that dairy cows grazing high-quality pasture
have lower greenhouse gas emissions than those fed total mixed rations, it has been
concluded by others that globally greenhouse gas emissions are lower for ruminants
fed total mixed rations compared with those grazed on pasture [74] (Table 2). This is
due largely to high emission intensities being associated with low productivity systems
(Figure 1—[75]). This in turn is a result of the higher feed digestibility of total mixed ration
diets compared with what is possible from grazed pastures, particularly the poor-quality
forage in some developing countries [76,77]. The apparent conclusion is that greenhouse gas
emissions are lower for animals fed high-quality feed (i.e., highly digestible, high protein,
and high energy) than those fed low-quality feed. Views can be polarized with some
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concluding that very high quantities of beef consumption are climatically unsustainable,
regardless of the CO2 equivalence metric [78], while others believe that the call to reduce
the consumption of meat and other livestock products [79,80] is not fully supported by
evidence (and should always indicate a starting point—much of the world population
would benefit from an increased consumption of high-quality protein). While studies have
frequently highlighted that beef production is responsible for intensive greenhouse gas
emissions [81], relevant data supporting this position are not as widespread or as robust as
they may first appear [82]. Emissions on pasture-fed systems are largely enteric methane
production, which is shorter lived than long-lived emissions like nitrous oxide (N2O) and
CO2, which are the main emissions associated with using total mixed rations based on the
use of fertilizer to grow them, transportation, and land use changes associated with the
production of feed crops [83,84].

Table 2. Emissions and emission intensity associated with the global production of milk and meat by
ruminant species and feed type. Adapted from Gerber et al. [74], using GLEAM, the Global Livestock
Environmental Assessment Model.

Species Feed System

Emissions
(Million Tonnes CO2-eq)

Emission Intensity
(Kg CO2-eq/kg Product)

Milk Meat Milk Meat

Dairy Grazing 1 227 104 2.9 21.9

Mixed 2 1104 382 2.6 17.4

Total 1331 486 2.6 18.2

Beef Grazing 1 - 875 - 102

Mixed 2 - 1463 - 56

Total - 2338 - 67

Sheep Grazing1 30 76 9.8 23.8

Mixed 2 37 115 7.5 23.2

Total 67 191 8.4 23.4

Goat Grazing 1 18 27 6.1 24.2

Mixed 2 44 84 4.9 23.1

Total 62 111 5.2 23.3

Total from grazing systems 1 275 1082 6.3 43.0

Total from mixed rations 2 1185 2044 5.0 30.0

Grand total 1460 3126 5.4 33.0
1 Grazing production systems are defined as livestock production systems in which more than 10% of the dry
matter fed to animals is farm-produced and in which annual average stocking rates are less than ten livestock
units per hectare (ha) of agricultural land [85]. 2 Mixed production systems are defined as livestock production
systems in which more than 10% of the dry matter fed to livestock comes from crop byproducts and/or stubble or
more than 10% of the value of production comes from non-livestock farming activities [85].
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included at low concentrations in the feed of cattle and sheep, inhibit methanogenesis 
by up to 98% [105,106]. The active ingredient from these macroalgae are bromoforms 
(organic compounds that are classified as a probable human carcinogen by the US 
EPA, but can be found in chlorinated drinking water [107]). Bromoform inhibits an 
enzyme in the methanogenesis pathway [108]. Studies are mixed on whether there 
are negative impacts on animal health or food quality [109]. However, because 

Figure 1. The relationship between total greenhouse gas intensity and output per cow. Each dot
represents a separate country. FPCM—fat- and protein-corrected milk. While individual countries
were not identified, milk yield per cow was below 1000 kg/cow/year for countries within sub-Saharan
Africa and south and southeast Asia, and above 3000 kg/cow/year for countries within North
America, western Europe, eastern Europe, and Oceania. Taken from Gerber et al. [75]. Copyright
clearance under license number 5741800369452 provided by Elsevier.

Mitigation opportunities to reduce greenhouse gas emissions might include the following.

• Feed type and quality: Improving the nutritive value of the grazed feed through
replacing low-quality native pasture with improved higher-quality pasture increases
the enteric methane emission (g/day) produced by ruminants but reduces the methane
yield per unit of meat or wool produced [86,87]. The increase in dietary lipids that
improves nutritive value through balancing the ratios of energy to protein in diets has
been shown to reduce greenhouse gas emissions [88]. This has led to programs seeking
to increase lipid levels in ryegrass [89,90]. It is also well known that the incorporation
of species into pasture that express condensed tannins, which protect protein in
the rumen will reduce greenhouse gas emissions [91,92]. Other forage species have
been shown to reduce methane emissions when eaten such as biserrula (Biserrula
pelecinus) [93,94], sulla (Hedysarum coronarium) [91,95], Lotus corniculatus [91,96], L.
pedunculatus [97], and sainfoin (Onobrychis viciifolia) [98]. However, these species are
agronomically inferior to the forages currently used and their management under
grazing is a challenge. A program in white clover (Trifolium repens), the most used
pasture legume in temperate areas, is set to achieve condensed tannin expression
in leaf tissue through the use of a transcription factor taken from a closely related
Trifolium species [99,100].

• Dietary additives such as oils, microalgae, macroalgae, nitrate, ionophores, protozoal
control, phytochemicals from plant extracts, and 3-nitrooxypropanol have shown
differing levels of efficacy in reducing methane production per kg dry matter con-
sumed [101–104]. Macroalgae and 3-nitrooxypropanol have shown the greatest efficacy
in reducing methane yield. The seaweeds Asparagopsis taxiformis and A. armata, when
included at low concentrations in the feed of cattle and sheep, inhibit methanogenesis
by up to 98% [105,106]. The active ingredient from these macroalgae are bromoforms
(organic compounds that are classified as a probable human carcinogen by the US
EPA, but can be found in chlorinated drinking water [107]). Bromoform inhibits an
enzyme in the methanogenesis pathway [108]. Studies are mixed on whether there
are negative impacts on animal health or food quality [109]. However, because bro-
moforms are rapidly metabolized by rumen microbes [110], to be effective they need
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to be included with feed at a rate of 0.4–1.0 mg/kg animal/day of bromoform [111].
For animals in pasture, the major difficulty is longevity of action. Further, to be cost
effective the expense associated with wild harvest and indeed aquaculture production
will need to be reduced [109]. Canola oil has been shown to reduce methane losses
from cattle, but animal performance may be compromised due to lower feed intake
and decreased fiber digestibility [112] Fumaric acid, which can utilize hydrogen (in-
stead of it combining with carbon to form methane), has been disappointing as an
additive [112–114], but when encapsulated in partially hydrogenated vegetable oil
it suppressed methane formation by 19% [115]. The main ways that many of these
additives reduce methane production is through reducing the number of rumen proto-
zoa and inhibiting methanogen activity, increasing propionic acid production, which
competes with methanogens for hydrogen, and inhibiting the activity of enzymes
involved in methanogen activity [116].

• The breeding of animals with higher growth rates and increased fecundity [86,87,117].
Breeding ruminants with lower methane production has been shown to be a feasible
option [118–120] with heritability of g methane/day of 0.29 ± 0.05, and for g methane/kg
DMI of 0.13 ± 0.03 [121]. Breeding for animals with low methane production per unit of
dry matter intake is unlikely to negatively affect fecal egg counts, adult ewe fertility, and
litter survival traits, with no evidence for significant genetic correlations, but may reduce
wool, live weight, and fat deposition traits [122].

• Rumen microbial manipulations through the use of vaccines [87,123–125]. A recent
review has concluded that it is complicated to evaluate the real effectiveness of this
strategy with few published studies that have directly assessed the complete approach
from vaccination to enteric animal methane emission measurement [126]. Similarly,
the antibiotic monensin as a rumen additive has shown some success in vitro but
results from in vivo trials have been disappointing [113].

• Pasture management, which ensures grazing occurs when fiber content is low (e.g.,
prior to grasses maturing and flowering) has been proposed as a method of reducing
methane emissions [91].

• Animal management that reduces age at first breeding [117] and age to slaughter [127]
has been proposed as a means of reducing methane emissions. This is essentially
a measure of efficiency that has underpinned the sheep and beef industry in New
Zealand over the last 30 years [128].

• Soil management to reduce N2O emissions: Reduced tillage and use of a nitrification
inhibitor when using N fertilizer on intensive pastures has been proposed as a means
of reducing N2O emissions [129,130].

4. Water Use and Quality

Water is obviously crucial for growing the feed required for livestock production,
whether that feed is grown on specialist cropping farms and transported to feed animals
indoors or offered as pasture for animals to graze in situ. The US beef industry is pre-
dominantly based on the former, which [59] argues results in poor water use efficiency
and landscape degradation. In an assessment of a wider range of beef production sys-
tems, Ridoutt et al. [131] concluded that “many low input, predominantly non-irrigated,
pasture-based livestock production systems have little impact on freshwater resources
from consumptive water use, and the livestock have a water footprint similar to many
broad-acre cereals”. Improvements in livestock water productivity (protein produced per
m3 of water) should be possible based on the wide range shown between livestock types,
regions, and production systems [132]. However, Heinke et al. [132] also concluded that
while opportunities to increase feed use efficiency (protein produced per kg of feed) exist
for ruminants, the overall potential to increase their feed water productivity (feed produced
per m3 of water) is low.

The in situ grazing systems used in countries like New Zealand and Ireland rely
predominantly on natural rainfall to support pasture growth. Farms generally import
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only small amounts of water and nutrients in supplementary feeds. The over-use of water
resources is not generally a concern, though ~25% of New Zealand’s milk production
comes from irrigated pastures (mainly in the drier South Island of the country), and over-
irrigation can markedly increase nutrient losses (especially N) to freshwater, as discussed
further below. Irrigated pasture area in the South Island of New Zealand has doubled
since the early 2000′s, but still comprises <5% of New Zealand’s total grassland area [133].
Although New Zealand overall (in total, not just agriculture) uses less than 5% of the avail-
able water [134], security of the future water supply under climate change and increased
competition for water from other users, including the local and central governments as the
guardians of sustainable environmental water flows for maintenance of freshwater quality
and ecology [135,136], is a concern. An example of a major change in pastoral agriculture
driven by water availability is the situation in southeast Australia, where irrigated dairy has
virtually disappeared from northern Victoria/southern NSW Murray–Darling-fed regions
because of reduced inflows and greater government environmental buybacks of water
allocations [137].

The most significant water-related issue for the more intensive grazing industries of
New Zealand and Ireland is nutrient losses to receiving freshwater bodies, especially rising
loads of N and/or phosphorus (P) leading to increased incidences of algal blooms and
higher rates of loss of key macroinvertebrate species [138,139]. An increased presence of
pathogens from animal origins, such as Escherichia coli, and sediment run-off from steeper
land, are also key concerns. All four contaminants have been highlighted recently [140].
Across NZ’s agricultural regions, there is a strong positive relationship between the extent
of pastoral land use and the total N, P, and E. coli loads in local freshwater bodies (Table 3);
the relationship is weaker for land used for cropping, and negative for areas under native
forest. Simultaneously, public concern regarding the negative environmental impacts of
“intensive” dairy farming has risen sharply, as reflected in calls in social media for (total)
dairy cow numbers to be reduced [141]. In response, central and regional government
environmental legislation since 2010 has progressively imposed limits on the nutrient
discharges allowed from all primary production land uses but focuses especially on dairy
and limits on N fertilizer use.

Table 3. Correlation (r values) between water quality variables and land use in New Zealand. From
Davies-Colley [142].

Variable

Land Use

Pastoral Cropping and
Horticulture Native Forest

Total N +0.85 +0.45 −0.39

Total P +0.70 +0.24 −0.32

Visual clarity −0.45 −0.24 +0.30

Escherichia coli presence +0.80 (0.17) −0.34

NZ land area (km3) 107,672 4174 65,675

Total NZ land area (%) 39.6 1.5 24.1

Improving nutrient use efficiency through the food chain is a laudable goal. In the
European Union, it has been estimated that only 18% of N used ends up in the eaten
product with the remaining lost to the environment [143]. With 75 to 90% of consumed
N in ruminant feed excreted in either urine or feces [144], the fate of this N in soil and
subsequently in waterways is a reasonable concern. Nitrogen in ruminant excreta is not
only a potential source of nitrate in waterways but is also a significant source of N2O [145].
The amount of N in urine is estimated to be about 40 to 50% of the total excreted [146,147].
Nitrogen excreted into dung or urine can have very different mineralization timeframes
with N in dung slower to mineralize due to higher dry matter content [148]. Dietary factors
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such as condensed tannins and possibly phytochemicals that have the capacity to direct
more N into dung away from urine could be beneficial [149,150].

Any form of intensive, extractive land use will have effects on the environment, includ-
ing nutrient pollution [151]. This applies to all food production, not just grazing animals.
An example of the general relationship between food production and environmental quality
is shown in Figure 2. A key point is that the relationship is not linear: to the far right
of the agricultural output axis in Figure 2, measures of environmental quality decline
disproportionally to gains in production. This implies that a limited reduction in food
output from near maximum levels (e.g., point C on the curve) towards some optimum
(e.g., point D), would be beneficial. Nitrogen is especially difficult to contain within farm
systems since its chemistry leads to multiple pathways of loss (in air as well as water) and
soils have a limited capacity to store it. The more N that enters a farm system, the more N
that is lost to the environment (in gaseous forms such as N2O, di-N, and ammonia, nitrate
in drainage water, or in overland flow) [152].
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Figure 2. General relationship describing conflicts between product output (x-axis) and environmen-
tal outcomes (y-axis) in agriculture. Point A equates to no agricultural activity; between points A and
B, environmental and agricultural outcomes both improve; C equates to a point where all incentives
favour agricultural output and activity intensifies without counter-balancing environmental incen-
tives; point D is reached when societal demands for environmental protection outweigh relatively
small gains in further agricultural intensification. Taken from McInerny [153]. Reproduced with
permission published by Cambridge University Press (License number 5778780809075).

The relationship shown in Figure 2 is useful in the sense that it directly compares
two outputs—agricultural output (synonymous with food production) and environmental
quality (synonymous with the output of, for example, nutrient or greenhouse gas emis-
sions). Resolving the conflicts between meeting global food security while minimizing
the environmental impacts of food production is best served by comparing outputs with
outputs—rather than the common approach of relating inputs (usually of a single factor,
e.g., fertilizer nutrient) to outputs. Although Figure 2 shows a simple, single relationship,
in reality, there will be several relationships (lines) because the dynamics of different en-
vironmentally important factors are fundamentally different. For example, for N there is
an asymptotic (saturating) relationship between the rate of N use and food production
(as other factors come to limit crop or pasture/animal production) but an exponential
relationship between the rate of N use and environmental quality (because once plant
production is maximized, further N inputs will be lost to the environment). By contrast,
relationships between the rate of energy supply for animals and food output can be linear if
additional feed energy (dominantly carbohydrate/carbon) is imported to keep producing
more meat or milk. Thus, different ways of producing food (such as dairy or meat), and
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different ways of increasing food production (such as using higher rates of N input or feed
supplements), have very different effects on the relationship between food output and
environmental impacts [154,155]. Re-casting analyses to compare outputs that account for
these dynamics is fundamentally important for ensuring that advocacy for policies that are
deemed to reduce impacts does not lead to solutions that have little impact, or even make
the problems worse.

One useful, and easily calculated, measure of the risk of N emissions to the environ-
ment is the farm-gate N surplus. This is the difference between the total amount of N
imported to the system (mainly in fertilizer and feed, though biological N fixation must also
be considered) and the amount of N exported from the system (in milk or meat, or in some
cases in conserved feed that is sold off-farm) [156–158]. In the absence of an increasing
accumulation of N in soil organic matter (which is rare in developed agricultural soils),
the N surplus will inevitably find its way into the environment. Almost all dairy or meat
farms will have an annual N surplus, therefore all farms will have a N footprint in the
environment. The critical issue for managing that footprint is to maximize the efficiency
with which imported N is converted to N in the product (i.e., food). In this context, the
N use efficiency (NUE) is simply defined as the ratio of outputs to inputs expressed as a
percentage. Of the two measures, the N surplus is more meaningful because it is in units of
mass, and it is the mass of N that matters for the environment. N use efficiency is, however,
a useful indicator to help manage the surplus, and can be improved by manipulating both
outputs and inputs.

An analysis of physical data from 380 New Zealand dairy farms showed farm N
surpluses ranging from 50 to 400 kg N/ha per year and NUE ranging mostly between
25% and 33% but with some markedly lower than 25% (solid lines in Figure 3). Similar
numbers and intensification trends have been reported for pasture-based dairy farms in
Australia [159]. Comparable experimental data from New Zealand farm systems studies
reported by Macdonald et al. [160] showed generally higher amounts of N in product than
the NZ farm data (higher milk production) and N surpluses in the range of 200 to 450 kg
N/ha/year (open symbols in Figure 3).
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nal lines join points of equal N use efficiency (NUE; 50%, 33%, and 25% are shown for comparison).
Solid symbols and numbers on these lines indicate total N input (kg N/ha per year). Solid lines are fit-
ted curves for commercial farms operating according to the definitions of systems 1, 2, 3, 4, or 5 in the
New Zealand dairy industry, in increasing order of intensity of production (after Hedley et al. [161]).
Open symbols are means for each of three years for treatments in a farm system experiment:
circles = no N fertilizer or imported supplement; diamonds = 200 kg N fertilizer/ha/y, no sup-
plements (2 stocking rates); squares = 400 kg N fertilizer/ha/y, no supplements (2 stocking rates);
triangles = 200 kg N fertilizer/ha/y with supplements (three different types) [160]. Taken from
Chapman et al. [162]. Copyright owned by D.F. Chapman (co-author).
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Figure 3 shows that a high NUE does not necessarily lead to a low N surplus and
therefore, a low risk of N loss. Rather, NUE is an indicator of the potential for increasing
the efficiency of N use through management, and this needs to occur in tandem with
a reduction in N inputs to achieve financial and environmental sustainability. Simply
reducing inputs without improving the efficiency of use of those inputs leads directly to
lower milk production, as shown by tracing toward the origin on the NUE lines in Figure 3.
A combination of lower inputs leading to a lower N surplus, and increased efficiency
of use of imported N, is needed. Changing, for example, a supplementary feed with a
moderate–high N content to one with low N content will result in only small reductions in
environmental N losses if the system continues to operate with a high N surplus. Thus,
both strategic changes to the farm system, e.g., adjusting the demand (mainly driven by
the number of animals per hectare) to match the reduced feed supply, and tactical changes,
e.g., adjusting the timing of fertilizer and feed inputs during the annual production cycle,
are necessary. System-scale studies in NZ [163,164] and Ireland [165] have demonstrated
approximately 30–50% reductions in nitrate leaching and/or nitrate concentrations in
groundwater by applying integrated responses such as those listed above, with only small
effects on the farm business profit. The farm dataset used in Figure 3 was characterized
by a large variation among farms as noted also by de Klein et al. [157]. Hence, there is
considerable potential for most farms to reduce their N surplus. Farm systems where N
inputs total no more than 300 kg/ha per year from all sources (not just fertilizer, which
should not exceed 150 kg N/ha per year; biological N fixation can contribute substantial
amounts of N [166], and converting N and feed inputs to milk must be performed efficiently
(NUE = 33% or higher)) are well-positioned to maintain high milk production with a
relatively low N surplus and, therefore, relatively low N leaching risk. Such systems should
also be highly profitable [160].

Similarly, analyses based on farm systems in NW Europe that incorporate some
degree of direct grazing by dairy or beef animals illustrate that system changes such
as incorporating maize silage along with grasslands, use of cover crops, low-emission
composting barns, covered manure storages, and direct injection of animal slurry into soil
“greatly reduce N losses” [167].

Solutions to the problems of declining freshwater quality, such as legislating for limited
numbers of animals per hectare or banning artificial N fertilizer, need not be radical and
reactive. There are proven, scalable, and adoptable solutions available to reduce the impacts
and align farm emissions with the needs of a sustainable natural environment. In addition,
there are technologies that can/could further reduce N losses (and may in some cases
concomitantly reduce methane emissions), including the following.

• N fertilizer used in conjunction with urease inhibitors such as N-(n-butyl)-thiophosphoric
triamide and N-(n-propyl)-thiophosphoric triamide with an ability to reduce N2O and
ammonia emissions while preserving yield [168]. However, caution has been called for
from a meta-analysis that concluded that urease inhibitors applied with 20–30 kg N/ha
per application in the spring and autumn are unlikely to increase plant dry matter yields
and lead to improved NUE [169].

• Supplementary feed formulations including essential oils [170].
• The use of nitrification inhibitors such as dicyandiamide (DCD) or 4-methylpyrazole

(4MP) have been shown to reduce environmental N emissions from urine patches in
pasture systems [171,172], but DCD has been withdrawn from use because of small
amounts of DCD residue found in NZ milk products [173].

• Plant breeding [174] to exploit genetic variation among and within species in traits
that have the potential to improve NUE (such as condensed tannin content as dis-
cussed above [100]), internal and external critical N concentrations [175], protein
degradability [176,177], and biological nitrification inhibition [178].

• Animal breeding to select for animals with lower methane per unit of dry matter
intake has been successfully achieved but for sheep impacts on wool, live weight, and
fat deposition, traits may be affected and need to be monitored [120,122].



Animals 2024, 14, 1353 14 of 25

• Combining traits in complementary forage species mixtures [179] rather than mono-
culture grass or simple two-species mixtures could substantially reduce N leakage to
the environment. For example, in New Zealand, a combination of a N-fixing legume
(e.g., white clover) with a N-demanding grass (e.g., perennial ryegrass, which has a
relatively high critical internal N content) and a herb that inhibits nitrification in the
soil and/or dilutes the N concentration of urine (e.g., plantain, [178,180,181]), has been
shown to reduce N leaching by up to 80% in lysimeter studies [182] and 40% in field
studies [183]. Proof of practice for this approach is currently underway in whole-farm
systems experiments over multiple years [184].

5. Carbon Sequestration

Some of the differences between life cycle analysis comparisons and beef raised
on grazed pastures could be due to the soil-sequestered carbon that might be possible
from rotationally grazed pasture systems (summarized by van Vliet et al. [61] but taken
from [55–59,185]) (Table 1). The significance of soil carbon sequestration aligns with other
analyses for North American grazing systems when compared with feedlot systems [186].
Indeed, it has been estimated that since tillage-based farming began, those soils have lost
30% to 75% of their soil organic carbon [187]. Ruminant livestock are acknowledged as
important for achieving sustainable agriculture where appropriate grazing management
“can increase carbon sequestered in the soil to more than offset their GHG emissions and
can support and improve other essential ecosystem services for local populations” [186].
Teague [186] proposed an Adaptive Multi Paddock (AMP) grazing system of “adjusting
animal numbers to match available forage, using short grazing periods, leaving suffi-
cient post-herbivory plant residue for regrowth, and providing long recovery periods to
adaptively accommodate intra- and inter-seasonal variation in herbaceous plant growth”.
However, in a review comparing grazing systems, it was concluded that “the vast majority
of experimental evidence does not support claims of enhanced ecological benefits in inten-
sive rotational grazing compared to (sic) other grazing strategies, including the capacity to
increase storage of soil organic carbon” [188].

A further consideration is to determine the potential for further soil carbon seques-
tration in grazing systems where soil carbon is already high and close to saturation. This
situation can occur in New Zealand where soils under grazed pasture, which were origi-
nally forested, have over time accumulated moderately high concentrations of soil carbon
of 3.5% (to 300 mm depth) [189], noting that soil carbon accumulation occurs up to an
upper limit or “C saturation level”, which is determined by a number of chemicals and
biological mechanisms [190]. New Zealand soils contain on average 100 tonnes of organic
carbon per hectare to a depth of 300 mm [191], which has been interpreted as being close to
their effective stabilization capacity; further increases in soil carbon could be difficult to
achieve [192].

It has been proposed that increasing soil carbon by 0.4% per year globally could
compensate for the global emissions of greenhouse gases by anthropogenic sources [193],
although it is a contentious issue [194,195]. Minasny et al. [193] concluded that “as a
strategy for climate change mitigation, soil carbon sequestration buys time over the next
ten to twenty years while other effective sequestration and low carbon technologies become
viable”. However, the opportunity to increase soil carbon depends on land use and
management [196]—that management being past, present, and future.

Management decisions that might maintain or increase soil carbon are complex and
often the best answer is “it depends”. The following factors have been shown in some
instances to impact soil carbon.

• Fertilizer application: N inputs (10 to 20 kg N/ha/year) to low-fertility grasslands
can increase soil carbon [197]. However, whether or not N inputs are associated with
increased soil carbon depends on grazing intensity [198,199]. A process-based model
of the dynamics of carbon and N cycling between plants, soils, and animals in grazed
temperate pastures indicated that the optimal N input for balancing food production,
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carbon sequestration, N loss to the environment, and greenhouse gas emissions in
New Zealand is approximately 150 kg/ha N fertilizer [154]. Alternatively, P fertil-
izer application appears to have little effect on soil carbon accumulation following
conversion from native vegetation to grasslands for grazing [196,200].

• Irrigation can result in variable and contradictory impacts on soil carbon. In desert
and semi-arid areas, irrigation can increase soil carbon substantially, while in humid
environments, no consistent effects have been observed [201]. Whitehead et al. [192]
concluded that “no change or decreases in soil carbon stocks in response to irrigation
in humid climates but increases could be expected at more arid sites where plant
productivity is very low prior to irrigation”. In New Zealand, irrigation has been
shown to decrease soil C [196,202] due possibly to effects on soil N levels in different
soil types and management systems [203], whereas in arid and semi-arid environments,
irrigation might be expected to increase soil C stocks due to increased plant growth
and inputs to soils [201]. However, under irrigation it is likely that N2O emissions will
increase by up to 140% [201].

• Refraining from draining peaty soils, which contain high quantities of soil C (and
which can lose soil organic matter through the oxidation of organic matter after
drainage) [204].

• Use of supplementary feed, such as hay or silage, which may result in small increases
in soil carbon on paddocks where it is used but may also result in a small decrease
in soil carbon at locations where it is produced due to the “length of time between
harvest and re-establishment of the new crop, maximizing returns of organic residues,
and adopting minimum tillage and direct-drill methods to reduce disturbance” [192].

• Application of manure and dairy effluent can increase soil carbon [205], although “the
percentage of carbon retained in the soil is low, at approximately 4% of the total carbon
applied” [192].

• Resowing of pasture can lead to a net loss of soil carbon and can be minimized by
ensuring minimal soil disturbance and reducing time when the soil surface is left
bare [192,206].

• Increased forage production also tends to increase soil carbon [207]. The Conant et al.
review [207] indicated that the main drivers were use of more permanent pasture,
improved grazing management, use of legumes, and increasing earthworm numbers.
Grazing intensity can also impact soil carbon loss or accumulation. Overgrazing
is generally considered to result in reduced soil carbon [197,198,208,209]. However,
some studies have shown decreased soil carbon at both high and low grazing fre-
quencies but most often the maximum accumulation occurred at a moderate grazing
intensity [210,211]. This depends on balance—Parsons et al. [198]. A comparison of
C4 and C3 gases in a meta-analysis has shown that higher grazing intensity results in
increases in soil carbon in C4 grasslands but decreases in C3 grasslands [212]. This
difference could be due to the high lignin levels in C4 grasses, which slow their de-
composition and subsequent carbon release [213]. However, it is generally accepted
that soil organic matter is greater in grazed pastures than non-grazed grasslands or
land used for row crops or hay production [214].

• Species and diversity of species used: Whitehead et al. [192] concluded that forage
species with deeper rooting and higher fine-root density at greater depths could
increase soil carbon stocks. However, evidence that increased species diversity would
increase soil carbon is inconclusive. The Jena Experiment setup in 2002 in Germany to
investigate the effects of plant diversity on element cycling and trophic interactions
do support increased soil carbon with increased pasture diversity, but the research
involved mowing 2–4 times per year, i.e., there was no food production aspect [215].

• Use of biochar as a soil amendment may lead to an increase in soil carbon levels but
its use as a widespread amendment to pasture soils is in many cases impractical [192].

• Full inversion tillage, which seeks to bury topsoil with high carbon levels to depths be-
low 40 cm while bringing to the surface soil with a high carbon saturation deficit [192].
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This would be achievable only on flat to moderately contoured sites and would be
useful only where the soil carbon value for the topsoil is at least twofold greater than
that of the subsoil [216].

Introduction of deep burrowing earthworms and dung beetles: Earthworms have
been shown to transfer carbon in dung from the surface to depths of up to 30 cm [217] and
stimulate carbon stabilization. However, other studies have shown no effect of earthworms
on soil carbon content but rather a net increase in soil greenhouse gas emissions [218].
Tunnelling dung beetles are known to bury dung at depth in the soil [219] but efficacy of
increasing soil carbon can be variable in New Zealand pastures [220].

A list of criteria that are appropriate to assess the success of changes in farm man-
agement practices to maintain or increase soil carbon stocks is provided by Whitehead
et al. [192]. The authors remind us that “increase in on-site carbon sequestration must be
greater than the emissions of all greenhouse gases associated with life cycle analysis of
establishing and maintaining changes to all farming operations”.

6. Concluding Comments and Looking to the Future

It is acknowledged that societal demands for improved environmental integrity and
sustainability mean that issues associated with animal-sourced foods that might negatively
affect the environment need to be actively researched and managed. Impacts needing
attention primarily include air, water and land quality, and animal health and welfare.
Options for mitigating greenhouse gas and N2O emissions from systems using grazed
pasture include the following.

• Increased use of white clover and plantain in pasture seed mixtures;
• Ensuring that pasture is composed of forage species that are highly digestible with

high protein and high energy, and low fiber content;
• Using ruminant animals with higher growth rates and increased fecundity;
• Reduced tillage when resowing and use of a nitrification inhibitor when using N

fertilizer on intensive pastures;
• Including forages with levels of condensed tannins and possibly other phytochemicals

that reduce methane emissions and do not affect palatability;
• Matching the use of fertilizer N with the demand driven by the number of animals per

hectare to ensure the efficient conversion of N and feed inputs to milk and meat;
• Direct injection of animal slurry into soil where this is feasible;
• Maximizing carbon sequestration in soil where and when this is possible through

reducing soil disturbance and fallowing; and
• Avoiding overgrazing, which can negatively affect persistence and result in soil distur-

bance through resowing.

In systems where supplementation can be introduced during feeding sessions, then
use of dietary additives such as oils, microalgae, macroalgae, nitrate, ionophores, protozoal
control, phytochemicals from plant extracts, and 3-nitrooxypropanol may reduce methane
production. The use of vaccines is also a proposed option.

Animal-sourced foods are an important part of the human diet and while some
unintended consequences associated with the environment have occurred, technologies
and systems to provide solutions to these are available and under refinement.
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