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Featured Application: The potential application of the work presented in this article lies in the
preliminary airfoil and wing design and optimization. It is in this area that the strengths of this
approach (negligible computation cost, robustness, . . .) can be maximally exploited while the
weaknesses that hinder it can be minimized. The code is ready to use for engineering practice.

Abstract: In the development of interactive aerodynamic optimization tools, the need to reduce
the computational complexity of flow calculations has arisen. Computational complexity can be
reduced by estimating the flow variables using machine learning, but that approach has a number of
hindrances. Avoiding these hindrances through lowering the computational complexity by stating
the assumptions of inviscid incompressible potential flow is the focus of this article. The assumptions
used restrict the applicability of this approach to only specific cases, but in engineering practice, these
cases are quite widespread. The assumptions allowed the coupling of the adjoint method with parsec
parametrization and the panel method, yielding a highly computationally efficient and robust tool
for optimizing an airfoil’s lift coefficient (Cy). The optimization of the NREL S809 airfoil was carried
out, and the results were verified using the Xfoil 6.99 software. The Xfoil verification showed that
by making minimal changes to the airfoil’s shape, the Cy and lift-to-drag ratios were significantly
improved. The improvement magnitude was over 94% for a 0 deg angle of attack (AoA) and over
16% for 6.2 deg AoA. This indicates an improvement in performance that is similar to that of some
genetic algorithms, but with computational costs that are many orders of magnitude lower.

Keywords: aerodynamic shape optimization; airfoil design; adjoint method; parsec parametrization;
computational fluid dynamics; interactive optimization

1. Introduction

The process used in the aerodynamic optimization of an airfoil relies on two main
features. The first is a computationally efficient optimization method that can effectively
minimize (or maximize) the cost function. The second feature, which is perhaps even more
important than the first one, is the ability to represent an airfoil in terms of design variables
(to parametrize the airfoil). Currently, there are many parametrizations for airfoils and
many optimization methods, yielding dozens of possible combinations. However, the
ability to perform CFD-based optimization reliably and reasonably quickly relies heavily
on the discovery of the adjoint method in the 1970s and 1980s and its development in the
1990s and early 2000s.

Currently, the objective of aerodynamic optimization research and development is
shifting towards fast interactive design optimization [1], where the results of the optimiza-
tion have to be known almost instantly. The CFD-based adjoint optimization method,
which is now an extremely well thought-out and proven concept that is implemented
in both commercial (like Ansys Fluent) and open source (such as OpenFOAM) big CFD
codes, is not well suited to this task. This is due to the vast computational complexity of
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modern-day CFD simulations, which makes the optimization too slow to be considered
interactive, even with the use of the most efficient optimization methods [1]. It follows
that the computational complexity of both the flow solution and the optimization algo-
rithm must be substantially reduced to allow interactive design optimization [1]. This
can be conducted in at least two ways. The first is presented in [1] and its references and
involves the use of modern machine learning (ML) methods to estimate the flow variables
(and sometimes even adjoint variables when coupled with the adjoint method) and force
coefficients. The other way, which is presented in this article, is to stick to the adjoint
method for optimization while making some assumptions about the flow, which allows
the use of much simpler (and thus faster) methods for solving the flow variables, such
as the panel method. This approach (when cautiously formulated) almost completely
avoids three main hindrances of the ML approach: extrapolatory predictions, the curse of
dimensionality, and the need for vast sets of good-quality training data [1]. However, in
the adjoint-based assumption approach, great care has to be taken when placing the design
point and simplifying the flow, as some important flow phenomena may be omitted in the
simplification. This means that for some problems, especially where compressible and/or
viscous flow must be assumed, it may be more feasible to use ML methods to deal with the
challenges of interactive optimization.

The adjoint method is a computationally efficient optimization method, and thanks to
its efficiency and accuracy, it is well suited for optimization in fluid mechanics, as stated
in [2,3]. However, its complexity in both the mathematical apparatus and the programming
implementation made initial progress after its proposal rather slow-paced [4]. Since its
proposal, it has been successfully used in a variety of optimization problems in the field of
fluid mechanics (both external and internal), such as those in [2–7]. The adjoint method
comes from the theory of optimal control, as stated in [3,8], and was first proposed by
Olivier Pironneau (*1945) and Anthony Jameson (*1934) [7]. Jameson developed and
successfully used the first optimization code based on the adjoint approach [9]. The
adjoint method, unlike the finite difference method, evaluates the gradient of the cost
function indirectly using the adjoint variables [2,3,8]. Consequently, the computational
effort tied to the computation of the gradient of the cost function is not coupled to the
number of design variables and is always roughly equal to the computation of two flow
solutions [2,3,8]. Despite the computational efficiency of the adjoint method, it is good
practice to parametrize the optimized geometry with an appropriate number of design
variables and to avoid the use of redundant ones, thereby preventing (or at least minimizing)
problems related to the geometrical or physical infeasibility of the solution obtained. This
is particularly applicable when the original problem has to be simplified for optimization.

To obtain the design variables required by the optimization method, there are, at least
in the case of an airfoil, literally dozens of parametrization methods [10,11]. From those,
parsec parametrization is only one of the many well-proven parametrizations available.
Those parametrizations involve 4- and 5-digit NACA series and their modifications [12],
class shape transformation (CST) [13], the analytic equation, as presented in [14], and so
on. From those parametrizations, the 4- and 5-digit NACA series and analytic equation
from [14] have less than or equal to six parameters. CST can have an arbitrary number of
parameters, and parsec has 11 or 12, depending on its variant [13,15]. There are even some
modified parsec methods [15]. The parsec method has been extensively used for airfoil
optimization, such as in [13,16–18]. It has strong control over the airfoil’s leading edge,
crest locations, and curvatures at the crest locations [15]. On top of that, its parameters
have a clear and straightforward geometrical meaning, giving better insight into the airfoil
shape. Parsec is a very powerful parametrization for covering general airfoil shapes with a
reasonable amount of design variables [10,19]. Its performance in geometrical accuracy is
roughly comparable to that of the Bezier, RBF, and Hicks–Henne parametrizations, with
a similar number of design variables [11]. In contrast, its performance in the accuracy of
aerodynamical properties is comparable to all the other parametrization methods covered
in [11], with a similar number of design variables. However, parsec lacks precise control of
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the trailing edge shape [10], but this can be beneficial in this case, as the trailing edge shape
has a very influential position in the panel method that may not be related to real physical
phenomena.

For this article, the panel method proposed by Hess and Smith in 1966 [20] was used
as a flow solver, allowing a very low computational cost. The simplicity of the panel
method means that great care must be taken when selecting the parametrization. The
ability to prescribe a nearly arbitrary trailing edge geometry (which is possible with many
parametrizations) may hinder the practical usability of the optimization, either through
manufacturing difficulties or through the flow phenomena the panel method does not
account for. On top of that, too many design variables or excessively strong control over the
trailing edge shape can lead to geometrically impossible (distorted) shapes arising during
optimization. The parsec parametrization was used because a proven parametrization
method was needed, and regarding the flow solver used, the assurance of the geometrical
and physical feasibility of the resulting shape was required.

The next thing to consider is the uncertainty of the input data, together with the
finite manufacturing precision. The dependence of the optimal shape on the input data
uncertainties, together with the influence that the finite manufacturing precision has on
the performance of both the original and optimized airfoils would be a very interesting
research topic. Many methods for assessing the influence of uncertain operating conditions
on the solution exist. Those methods and their possible usage can be found for example
in [21,22]. This topic, however, is so broad that a full-length article would be needed to
cover it in appropriate detail; thus, it will not be discussed here.

The main goal of this article is to study the possibility of creating an interactive airfoil
optimization procedure that runs very quickly; this procedure is based on an adjoint
method coupled with parsec parametrization. The second goal is to provide Xfoil data
for verification of the optimization’s efficiency. This article also focuses on comparing the
efficiency of the created optimization code and its results with other articles that discuss
2D airfoil optimization. The optimization algorithm created in this research can be of great
value in all fields that use airfoils. These include not only aircraft and wind turbine design
and development but also vehicle dynamics and stability, as can be seen, for example,
in [23].

2. Theory of Adjoint Optimization
2.1. General Basics of Optimization

The optimization methods vary in terms of their computational complexity, cost
function requirements, type of search (local or global), etc. In fluid mechanics, great
emphasis is placed on computational efficiency, as every solution of the flow field is very
computationally expensive [1,3,9], and the computational costs of the optimization methods
vary by many orders of magnitude. Global methods are, for this reason, rather sparsely
used in fluid mechanics, and the far better choices are usually local methods, as they are far
less computationally demanding [1]. Despite their locality, lower computational costs make
them more suitable for most CFD optimization problems, and the locality of the search is
not a problem when the cost function is carefully defined [3]. The computational complexity
of various methods can be seen in Table 1, which underlines the computational efficiency
of the adjoint method. The simplex method seems even more efficient, but Table 1 does not
provide complete information about the computational demands of the simplex method.
The data in Table 1 were obtained from [2] and as the results of a theoretical analysis of
optimization algorithms. Those data are valid when the algorithms proceed normally. In
the case of the simplex method, however, the startup of the method is computationally
more expensive, and the computation cost of the first iteration is equal to m + 1 (simplex
in m-dimensional space has m + 1 vertices). On top of that, something called “stalled
convergence” can be expected to happen in the simplex method. Stalled convergence
means that the algorithm gets stuck, possibly far from the desired extremum. Solving
stalled convergence in the case of the simplex method means rescaling the simplex; thus,
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the computational complexity of evading the stalled convergence is equal to m (one vertex
from the original simplex can be kept). This means that the computational complexity from
Table 1 is the absolute best-case scenario for the simplex method, and the real computational
complexity may be much higher. The other algorithms do not particularly suffer from this
problem. The symbols used in Table 1 are defined as follows:

m. . . number of parameters (dimensionality of design space);
k. . . number of individuals in each population (usually between 10 and 1000).

Table 1. Computation cost of 1 optimization iteration—compared to single flow solution [2].

Optimization Method RSM Genetic Algorithm Finite
Difference Method Adjoint Method Simplex Method

Computational
complexity m2 k m + 1 ≈ 2 ≈ 1

2.2. Adjoint Method: Continuous and Discrete Approach

There are two main approaches to adjoint optimization: continuous and discrete [3,4].
They differ in the sequence of mathematical operations used during their derivation. Each
of those two approaches can then be treated from either a Lagrange or a duality viewpoint
as both yield the same results [7]. In this paper, the Lagrange viewpoint is used as it
connects more naturally to the constrained optimization.

The continuous approach favored by Jameson seems more natural from the perspective
of physics and continuum mechanics. In this approach, the cost function of a continuous
problem is defined first. Then, the adjoint partial differential equations (PDEs) are derived
from the continuous flow equations, together with their boundary conditions (BCs) and
possible initial conditions (ICs). All the equations are then discretized separately and
numerically solved. After solving those equations, it is possible to compute the gradient of
the cost function with respect to the design variables. In this approach, great care has to
be taken when deriving the adjoint equations, especially their BCs [3]. This makes this ap-
proach very complex and challenging in terms of math, although it can be computationally
more efficient than the discrete version and can have lower memory requirements [4]. The
continuous version is also critical for understanding the behavior of the adjoint equations
and their physical significance and for assessing the possibility of ill-posed problems [3,4].
The continuous adjoint method workflow is shown in Figure 1.
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The discrete adjoint method differs in terms of the order of operations. The beginning
is the same as in the continuous approach, i.e., the definition of the cost function in the
continuous problem. After that, the continuous problem is discretized as a whole. This
means the discretization of the fluid flow PDEs with the corresponding BCs and ICs
implemented and the formulation of the discrete analog to the continuous cost function as
a function of many variables. Only then is the adjoint set of algebraic equations derived
from the discretized flow PDEs. The advantages and disadvantages of this approach can
be found in [4]. This approach avoids much of the complexity of the continuous approach,
but great care must be taken when discretizing the problem. The discrete adjoint method
workflow is shown in Figure 2.
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2.3. Discrete Adjoint Method from the Lagrange Point of View: Governing Equations

In this article, the nomenclature defined by Jameson in [3] is used. Thus, w is a set
of dependent variables, which are usually velocity components at the integration points,
pressure at the integration points, and the like. In the panel method, the meaning of w is
a bit more complex and is clarified later. F is the set of independent parameters (design
variables) undergoing optimization; in this case, these are the parsec parameters describing
the shape of an airfoil. Vectors w and F are implicitly tied via equations R, which allows the
computing of w from the known parameters F. The fixed parameters (like viscosity, etc.)
are not mentioned here as they do not change during optimization. With all the variables
defined, it is possible to define the discrete version of the cost function I, where w and F are
subject to constraints R. This leads to the classical constrained extremum problem solved
via the Lagrange multipliers λ.

w =

w1
...

wn

, F =

F1
...

Fm

, R =

R1
...

Rn

 = 0, I = I(w, F), λ =

λ1
...

λn

 (1)

ϕ(w, F, λ) = I(w, F) + λT ·R(w, F) (2)

grad(ϕ) =

(
∂ϕ

∂wi
;

∂ϕ

∂Fj
;

∂ϕ

∂λk

)
=

(
∂I

∂wi
+ λl ·

∂Rl
∂wi

;
∂I
∂Fj

+ λl ·
∂Rl
∂Fj

; Rk

)
(3)

From the gradient, the total differential of ϕ can be defined. However, as all variables
in the function ϕ are treated as independent in the Lagrange approach, the gradient of ϕ
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with respect to F can only be solved when the first and last terms in Equation (4) are equal
to zero. From there, two systems of Equations (5) and (6) arise, containing 2n equations in
total, which makes it possible to compute w and λ.

dϕ =

(
∂I

∂wi
+ λl ·

∂Rl
∂wi

)
dwi +

(
∂I
∂Fj

+ λl ·
∂Rl
∂Fj

)
dFj + Rkdλk (4)

R = 0 (5)(
∂R
∂w

)T
λ = −

(
∂I
∂w

)T
(6)

In the case of linear constraints R, Equation (5) can be written in matrix form, and
the Jacobi matrix on the left side of Equation (6) can be easily computed. The system of
equations then forms two systems of linear algebraic equations (LAEs): (8) and (9).

R = Aw − b = 0 → Aw = b,
∂R
∂w

≡ A (7)

Aw = b (8)

ATλ = −
(

∂I
∂w

)T
(9)

After solving for w and λ, it is easy to obtain the gradient of ϕ with respect to F. It can
be proven that this gradient is identically equal to the gradient of I, as the constraints R
must always be satisfied (5). Then, the simple algorithm of the steepest descent is applied
to obtain the new approximation of the optimal parameters (11).

Gj =
∂ϕ

∂Fj
=

∂I
∂Fj

+ λl ·
∂Rl
∂Fj

(10)

F(n+1) = F(n) + ζG (11)

3. Parsec Parametrization

Parsec parametrization was chosen for the optimization as it provides good accuracy
for general airfoil shapes in terms of geometry and fluid flow characteristics [10,11]. Its
parameters also have clear and straightforward geometrical meaning, allowing easy fixation
of certain geometric quantities and better engineering insight into the airfoil shape. In
the basic parsec parametrization, there are 11 parameters [10]. For the optimization, a
slightly modified version of parsec, presented in [13], was used, allowing better control of
the airfoil’s shape near the leading edge [13]. The parameters are very similar to the ones
used by the basic parsec; the only difference is that the leading edge radius is prescribed
for the upper and lower surfaces separately. The geometrical meaning of those parameters
is shown in Table 2 and Figure 3. The shape of the airfoil is then described by Equations
(12) and (13) as a linear combination of base functions [10]. The coefficients for this linear
combination are computed using Equations (14) and (15), as stated in [13].

y =
6

∑
i=1

ai·xi− 1
2 (12)

y =
6

∑
i=1

bi·xi− 1
2 (13)
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1 1 1
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lo x3/2
lo x5/2

lo
1/2 3/2 5/2

1 1 1
x7/2

lo x9/2
lo x11/2

lo
7/2 9/2 11/2

1
2 x

−1/2
lo

3
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lo
5
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lo
− 1

4 x−3/2
lo

3
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lo
15
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lo
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7
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lo
9
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lo
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lo
35
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lo
0 0 0
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1/2 3/2 5/2
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up x9/2
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7/2 9/2 11/2

1
2 x

−1/2
up

3
2 x1/2

up
5
2 x3/2

up

− 1
4 x−3/2

up
3
4 x−1/2

up
15
4 x1/2

up
1 0 0

7
2 x5/2

up
9
2 x7/2

up
11
2 x9/2

up
35
4 x3/2

up
63
4 x5/2

up
99
4 x7/2

up
0 0 0


·



a1
a2
a3
a4
a5
a6

 =



yte
yup

tg
(

αte − βte
2

)
0

yxxup√
2rup


(15)

Table 2. Parsec parameters and their meaning.

Basic Parsec Parametrization [10] Parsec Variant Used for Optimization [13]

Parameter Meaning Parameter Meaning

--- --- rlo [1] Lower surface leading edge radius

xlo [1] Lower surface crest
location—horizontal position xlo [1] Lower surface crest location—horizontal position

ylo [1] Lower surface crest
location—vertical position ylo [1] Lower surface crest location—vertical position

yxxlo [1] Lower surface crest curvature yxxlo [1] Lower surface crest curvature
rle [1] Leading edge radius rup [1] Upper surface leading edge radius

xup [1] Upper surface crest
location—horizontal position xup [1] Upper surface crest location—horizontal position

yup [1] Upper surface crest
location—vertical position yup [1] Upper surface crest location—vertical position

yxxup [1] Upper surface crest curvature yxxup [1] Upper surface crest curvature
αte[

◦] Trailing edge direction αte[
◦] Trailing edge direction

βte[
◦] Trailing edge wedge angle βte[

◦] Trailing edge wedge angle

yte [1] Trailing edge
location—vertical position yte [1] Trailing edge location—vertical position

∆yte [1] Trailing edge thickness ∆yte [1] Trailing edge thickness
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⎣⎢⎢
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It has been assumed that the trailing edge thickness (∆yte) is always equal to zero
(sharp trailing edge) and is therefore not a design variable. This may limit the applicability
in some cases, but the benefits in terms of the robustness of the algorithm were deemed
to outweigh this drawback. The sharp trailing edge makes it easier to properly enforce
the Kutta condition and prevents the optimization from making illegal changes to the
trailing edge geometry. The area around the trailing edge is where the viscous effects
are usually the most profound since the wake tends to start forming there. Because the
optimization cannot account for those viscous effects (and especially the wake formation),
it was decided to restrain it in this area as much as possible. On top of that, the trailing
edge can be tweaked in many ways, most of them far exceeding the capabilities of the
parsec parametrization, as the lack of trailing edge control is deemed to be one of its main
weaknesses [10]. For the trailing edge fine-tuning, methods capable of properly capturing
viscous phenomena must be used. Vector F of the 11 design variables based on parsec
parametrization is given as follows.

F =
[
rlo, xlo, ylo, yxxlo, rup, xup, yup, yxxup, αte, βte, yte

]T (16)

4. Airfoil Optimization: Governing Equations and Implementation
4.1. Potential Flow and Panel Method

For modeling the flow around an airfoil, the inviscid incompressible potential flow
assumption was used. This assumption may be rather restrictive but allows the use
of potential flow theory and the panel method described in [24]. The incompressibility
condition may be weakened in this case by the fact that the optimization presented in
Section 4 holds, as long as the Prandtl–Glauert compressibility correction rule is valid.
According to [25], this can be stated for flows with Ma∞ ≤ 0.5, although great caution
should be taken when dealing with flows with Ma∞ > 0.4 in this manner. To obtain the
potential flow solution, the Hess–Smith panel method [20] was used. An explanation of
the governing equations of potential flow theory, together with the theory and governing
equations of the panel method, can be found in [20,24]. After employing the equations
from [20,24], the lift coefficient (Cy) can be defined and rewritten in dimensionless variables
(17); the definition of the dimensionless variables can be found in (18).

Cy = −
∮

l

1
L

(
γ − û2 − v̂2

)
·dx (17)

û =
u

c∞
, v̂ =

v
c∞

, p̂∞ =
2·p∞
ρ·c2

∞
, γ = 1 + p̂∞ (18)

For the easier derivation of the equations in the following sections, the chord length L
can be factored out from the integral in (17) and transferred to the left side of the equation,
yielding the relationship for the continuous cost function (19).

I = L·Cy = −
∮

l

(
γ − û2 − v̂2

)
·dx (19)

Now, it is possible to discretize the whole problem, including the governing harmonic
equation for velocity potential, as presented in [24] and the cost function (19). The discrete
version of the cost function is obtained simply by discretizing the integral in (19). To obtain
the discretized flow equations, a Hess–Smith panel method [20] is used. The shape of the
whole airfoil is discretized into many line segments (panels), leading to the panel method
equations, as derived by [20]. The dependent variables w in the optimization are the source
on each panel and the circulation around the airfoil. The governing equations of the panel



Appl. Sci. 2024, 14, 3495 9 of 18

method are presented below, together with the discrete version of the cost function. The
subscript i is the index of the panel. The panel numbering is shown in Figure 4.

I = L·Cy = −
N

∑
i=1

(
γ − ĉ2

ti

)
·∆xi (20)

∆xi = xi+1 − xi, xN+1 ≡ x1, ĉ2
ti = û2

i + v̂2
i (21)

Aw = b, w = [q1, . . . , qN , Γ]T (22)
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The exact definition of the elements of matrix A and vector b can be found in [20].
From that definition, it can be seen that the value c∞ can be factored out of each term in the
vector b, and the whole system of LAEs (22) can be divided by it, yielding Equation (23).

Aŵ = b̂, ŵ =
w
c∞

, b̂ =
b

c∞
(23)

The tangent velocity on each panel can be extracted directly using the panel method [20].
That relationship can then be divided by c∞, yielding Equation (24), which can be sub-
stituted into the cost function (20). This last modification completes the arrangement of
equations needed to derive the adjoint optimization.

ĉti =
cti
c∞

= cos(θi − α) +
N
∑

j=1

ŵj
2π

(
sin
(
θi − θj

)
βij − cos

(
θi − θj

)
ln

rij+1
rij

)
+ ŵN+1

2π

N
∑

j=1

(
sin
(
θi − θj

)
ln

rij+1
rij

+ cos
(
θi − θj

)
βij

) (24)

4.2. Adjoint-Based Optimization with Panel Method and Parsec Parametrization

To obtain the equations for the adjoint optimization, it is necessary to start with
Equations (9) and (23). Matrix A and vector b are known from [20]. The only part that
must be specified in Equation (9) is its right-hand side, which contains, in this context, the
gradient of I with respect to ŵ.

(
∂I
∂ŵ

)
= 2(∆xĉt)

TC, (∆xĉt) =

 ∆x1 ĉt1
...

∆xN ĉtN

 (25)

In (25), C is defined as follows:

Cik =
∂ĉti
∂ŵk

=
1

2π

(
sin(θi − θk)βik − cos(θi − θk)ln

rik+1
rik

)
f or k = 1 ÷ N (26)

Ci,N+1 =
∂ĉti

∂ŵN+1
=

1
2π

N

∑
j=1

(
sin
(
θi − θj

)
ln

rij+1

rij
+ cos

(
θi − θj

)
βij

)
(27)
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The definition of the gradient comes directly from (10), and its constituent derivatives
are specified in (28) and (29).

∂I
∂Fk

= 2
N

∑
i=1

∆xi ĉti
∂ĉti
∂Fk

(28)

∂Rl
∂Fk

=
∂

∂Fk

(
Almŵm − b̂l

)
=

∂Alm
∂Fk

ŵm − ∂b̂l
∂Fk

(29)

Now, it is possible to continue processing the individual terms in Equations (28)
and (29). The derivatives of the vectors ĉt and b̂, and matrix A can be obtained semi-
analytically, greatly reducing the number of numerical derivatives computed, which saves
a lot of computational costs. It can be shown that only the following derivatives must be
computed numerically:

∂θi
∂Fk

,
∂βij

∂Fk
,

∂rij

∂Fk
(30)

To evaluate these derivatives, the first forward difference is used. This approximation
is first-order accurate but computationally very cheap. Because the code runs in MATLAB
R2023b, which uses double precision as standard, a rather small step when evaluating the
finite difference can be used without losing precision to rounding errors. It has been found
that the value δ = 10−8 gives accurate results and a stable optimization algorithm. The
value δ = 10−9 has been tried out without any noticeable improvement in precision or
stability. All the numerical derivatives are computed as presented in (31).

∂rij

∂Fk
∼=

rij(F1, . . . , Fk−1, Fk + δ, Fk+1, . . . , Fm)− rij(F1, . . . , Fm)

δ
(31)

Now, it is possible to define the following auxiliary variables. These variables arise
when obtaining the analytical derivatives of individual terms in (28) and (29). They are not
essential for the math, but they make programming implementation easier and far cleaner.

dIdFk1i = − sin(θi − α)
∂θi
∂Fk

(32)

dIdFk2ij = cos
(
θi − θj

)( ∂θi
∂Fk

−
∂θj

∂Fk

)
βij + sin

(
θi − θj

)∂βij

∂Fk
(33)

dIdFk3ij = − sin
(
θi − θj

)( ∂θi
∂Fk

−
∂θj

∂Fk

)
ln

rij+1

rij
+ cos

(
θi − θj

)( ∂rij+1
∂Fk

rij − rij+1
∂rij
∂Fk

)
rijrij+1

(34)

dIdFk4ij = cos
(
θi − θj

)( ∂θi
∂Fk

−
∂θj

∂Fk

)
ln

rij+1

rij
+ sin

(
θi − θj

)( ∂rij+1
∂Fk

rij − rij+1
∂rij
∂Fk

)
rijrij+1

(35)

dIdFk5ij = − sin
(
θi − θj

)( ∂θi
∂Fk

−
∂θj

∂Fk

)
βij + cos

(
θi − θj

)∂βij

∂Fk
(36)

With the use of the variables defined in (32)–(36), it is now possible to rewrite all the
terms in Equations (28) and (29) in the following manner:

∂ĉti
∂Fk

= dIdFk1i +
N

∑
j=1

[ ŵj

2π

(
dIdFk2ij − dIdFk3ij

)
+

ŵN+1

2π

(
dIdFk4ij + dIdFk5ij

)]
(37)

∂Alm
∂Fk

=
1

2π
(dIdFk4lm + dIdFk5lm) f or l, m = 1 ÷ N (38)

∂AlN+1
∂Fk

=
1

2π

N

∑
j=1

(
dIdFk3l j − dIdFk2l j

)
f or l = 1 ÷ N (39)
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∂AN+1,m

∂Fk
=

1
2π ∑

i=1,N
(dIdFk2im − dIdFk3im) f or m = 1 ÷ N (40)

∂AN+1,N+1

∂Fk
=

1
2π ∑

i=1,N

N

∑
j=1

(
dIdFk4ij + dIdFk5ij

)
(41)

∂b̂l
∂Fk

= cos(θl − α)
∂θl
∂Fk

(42)

∂b̂N+1

∂Fk
= −(dIdFk11 + dIdFk1N) (43)

Then, the gradient of the cost function with respect to F can be constructed, and the
new approximation of the optimal design variables F can be computed. In the gradient
G, ŵ is the solution of (23), and λ is the solution of (9), where the gradient term on the
right-hand side is given in (25).

Gk = 2
N

∑
i=1

∆xi ĉti
∂ĉti
∂Fk

+ λl ·
(

∂Alm
∂Fk

ŵm − ∂b̂l
∂Fk

)
(44)

F(n+1) = F(n) + ζG (45)

ζ =
ζ0

||G|| (46)

The value ζ is the iteration step. For stability reasons, it proved beneficial to define
it in the manner shown in (46). This definition is equal to using a unit gradient, which
eliminates the stability problems tied to the strong nonlinearity of the cost function in some
regions of the design space. The value ζ0 is the nominal iteration step and is user-defined.

4.3. Resulting Shape Feasibility and Convergence of the Optimization

The programming implementation of the procedure presented in Section 4.1. and
Section 4.2. is rather simple but requires the addressing of a few tasks. The first task
is to prevent the occurrence of distorted shapes during optimization. In the solution of
this problem, the clear geometrical meaning of parsec parameters is very handy. With
that meaning, it is possible to simply prescribe the conditions that assure the geometrical
feasibility of those shapes. This is carried out by monitoring the values of the parameters
(like rup, rlo, xup, xlo, and βte); if they get outside the allowed range, the optimization is
immediately stopped. The allowed range can be completely controlled by the user, enabling
custom restrictions to be made. On top of that, the airfoil paneling is constructed in such a
way that the panel nodes in the top and bottom halves of the airfoil share x coordinates.
Because of that, it is easy to compare the y coordinates of the corresponding nodes and to
make sure that the y coordinate of the upper-surface node is always greater than that of
the lower-surface one. If any self-intersection of the airfoil’s surface is detected in this way,
the optimization is immediately stopped, providing another layer of protection besides the
allowed parameter values.

The next task is convergence monitoring. In the case of this optimization, monotone
convergence is required. In the case of the worsening of the value of the cost function
between subsequent iterations, a warning is displayed, but the optimization process is not
terminated. This allows the procedure the possibility to regain monotone convergence
once again.

The final task is to define the convergence criteria. As the inviscid incompressible
potential flow is assumed, the Cy may become unbounded, as there is no flow separation
allowed other than that at the trailing edge. This means that reaching the true maximum
of Cy in the incompressible inviscid scenario may be, and probably is, impossible. This
renders the classical convergence criteria for reaching the extremum unusable and also
means that geometrically feasible but nonsensical and obviously wrong shapes are possible
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if the optimization is allowed to continue for too many iterations (more than a few tens). To
stop this from happening, other convergence criteria were implemented. The optimization
has three stopping criteria in total. The first states that convergence is reached when a
defined improvement, whether absolute or relative, has been made. The second one stops
the iteration when a defined change in shape, measured as the root mean square difference
from the original shape, has been made. The final one limits the maximum number of
iterations allowed.

The proposed criteria, however, cause the optimal result to be influenced by the
threshold values chosen. The shape change criterion is the most objective of the three, as
it can be interpreted as defining the region of design space for the algorithm to search
in. It can also be tackled from the engineering viewpoint, as the baseline shape is usually
chosen for a reason, and one may not want to change it much during the optimization. For
more objective criteria to be defined, it would be possible to add a simple boundary layer
solver based on the von Karman momentum integral equation and Pohlhausen’s method
to determine whether the flow separation was occurring on the airfoil. The stopping
criterion could then be the occurrence of the separation, for example (or, as a variation of
this criterion, the reaching of a certain distance from the trailing edge). This modification,
however, would bring with it some computation costs, which in this context would be
rather large.

The script conducting the optimization proposed in this paper was written in MATLAB
R2023b. The script operates according to the flowchart shown in Figure 5.
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5. Results and Verification
5.1. Adjoint Optimization Results: Incompressible and Inviscid Flow

The most important results of the optimization, using the example of the NREL S809
airfoil, are presented below in Table 3 and Figure 6. Different airfoils were tried, yielding
very similar results. These results show that massive improvement in Cy can be obtained
by minimal change in the design variables, which implies minimal changes in the geometry.
These minimal changes to the shape allow the assumption that the drag coefficient will not
be affected. This was later proven true by the Xfoil 6.99 computation results. The changes
in the design variables and Cy from the optimization solver for the nominal angle of attack
(AoA) of 0 and 10 deg are presented in Table 3. Optimization settings with 50 iterations and
a nominal iteration step ζ0 = 0.0002 (a very conservative step choice) were used throughout
this study. The results have been rounded to four significant digits in the case of the design
variables and four decimal places in the case of Cy.

Table 3. Parsec parameters of NREL S809 airfoil before and after the optimization.

Parameter Original Optimized

α [◦] 0 10 0 10
rlo [1] 0.0100 0.0100 0.01115 0.01168
xlo [1] 0.3633 0.3633 0.3630 0.3629
ylo [1] −0.1081 −0.1081 −0.1038 −0.1038

yxxlo [1] 1.526 1.526 1.526 1.526
rup [1] 0.02160 0.02160 0.02123 0.02167
xup [1] 0.3826 0.3826 0.3829 0.3829
yup [1] 0.1018 0.1018 0.1057 0.1057

yxxup [1] −1.201 −1.201 −1.201 −1.201
αte[

◦] −8.500 −8.500 −8.558 −8.558
βte[

◦] 8.500 8.500 8.499 8.495
yte [1] 0 0 −0.007687 −0.007616
Cy [1] 0.2178 1.4256 0.3507 1.5529

∆CABS
y [1] --- --- 0.1329 0.1273

∆CREL
y [%] --- --- 61.02 8.93Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 20 
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5.2. Xfoil Verification Computations: Compressible and Viscous Flow

The results presented in this section were obtained using the well-established Xfoil
6.99 software. The Reynolds and Mach numbers were set to Re = 750,000 and Ma = 0.02,
allowing a direct comparison between the obtained results and those published in [13].
The nominal AoA for the adjoint optimization was zero; the resulting values of the design
variables can be found in Table 3, Col. 4, and the original and optimized shapes can be
seen in Figure 6. The dependency of the optimal shape on AoA is, at least in this case, very
weak, as can be seen in Table 3. This means that the value of AoA is not of great importance
in this case and that it has negligible effects on the optimization result. The result’s lack
of dependence on AoA, however, cannot be generalized and has to be assessed on each
optimized airfoil separately.

The adjoint optimization results presented in Table 4 were compared to those acquired
by Akram and Kim [13], as shown in Table 5. For details regarding the acquisition of
the data in Table 5 please see the original paper by Akram and Kim [13]. The CFD
computation model, grid, BCs, and other necessary information used for generating the
CFD data in Table 5 are described in great detail in [13]. A comparison of the different
computation methods used during the research presented in this paper can be seen in
Table 6 which directly compares those simulation methods to the available experimental
data. For the viscous Xfoil 6.99 simulation, Re = 750,000 and Ma = 0.02 were used to
match the experimental data. From this comparison, it can be concluded that the inviscid
computation methods consistently overestimate the lift coefficient, which is an expected
aspect of their behavior. Also, the accuracy of the inviscid methods can be considered
sufficient only when there is no large flow separation occurring since they are unable to
predict and account for this phenomenon. If a large separation occurs, their results can
qualitatively differ from reality. Those methods cannot be used for computing the drag
coefficient; thus, they cannot compute the L/D ratio either. However, as their results are
consistent, the MATLAB (R2023b) version can be used as the highly efficient core for adjoint
optimization, as long as no large flow separation is expected to occur. It can generally
be said that a significant separation starts occurring when the lift coefficient curve starts
deviating from the linear progression seen near zero AoA (roughly 6–8 deg AoA for NREL
S809 airfoil at the presented values of Re and Ma). As for the compressible and viscous
simulation, it can be concluded that this Xfoil 6.99 computation is accurate enough to serve
as a verification computation for the optimization in this case. Thus, the benefit of the
optimization can be assessed by the compressible and viscous simulation in Xfoil 6.99.
When assessed in this way, the benefits should be maintained in the real world.

Table 4. Xfoil results for NREL S809 airfoil—adjoint optimization.

Type of Xfoil
Simulation

Incompressible and Inviscid Compressible and Viscous

Original
Airfoil

Optimized
Airfoil

Absolute
Difference

Relative
Difference

Original
Airfoil

Optimized
Airfoil

Absolute
Difference

Relative
Difference

α [◦] 0 0 --- --- 0 0 --- ---
Cy[1] 0.2137 0.3502 0.1365 +63.9% 0.1480 0.2881 0.1401 +94.7%
Cx [1] --- --- --- --- 0.00883 0.00885 0.00002 +0.2%

Cy/Cx [1] --- --- --- --- 16.76 32.55 15.79 +94.2%
CM [1] −0.0578 −0.0778 −0.0200 −34.6% −0.0425 −0.0638 −0.0213 −50.1%

α [◦] 6.2 6.2 --- --- 6.2 6.2 --- ---
Cy[1] 0.9869 1.1215 0.1346 +13.6 % 0.8108 0.9415 0.1307 +16.1%
Cx [1] --- --- --- --- 0.01347 0.01337 −0.00010 −0.7%

Cy/Cx [1] --- --- --- --- 60.20 70.40 10.20 +16.9%
CM [1] −0.0778 −0.0974 −0.0196 −25.2% −0.0449 −0.0641 −0.0192 −42.8%
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Table 5. Results for NREL S809—GA optimization by Akram and Kim [13].

Exp. Data Xfoil Computation Data CFD Computation Data

Original
Airfoil (OSU)

Optimized
Airfoil (CST)

Optimized
Airfoil

(PARSEC)

CST vs.
Experiment

PARSEC vs.
Experiment

Optimized
Airfoil (CST)

CST vs.
Experiment

α [◦] 6.2 6.2 6.2 --- --- 6.2 ---
Cy[1] 0.79 0.883 0.87 +11.8% +10.1% 0.985 +24.6%
Cx [1] 0.0131 0.0134 0.0148 +2.2% +12.1% 0.0147 +12.2%

Cy/Cx [1] 60.3 65.9 58.8 +9.6% −2.0% 67 +12.4%

Table 6. Comparison of different computation methods with experiments using the original airfoil.

Original Airfoil

MATLAB
Inviscid

Xfoil
Inviscid

Xfoil
Viscous

Experiment
[13,26]

MATLAB
Inviscid vs.
Experiment

Xfoil
Inviscid vs.
Experiment

Xfoil
Viscous vs.
Experiment

α [◦] 6.2 6.2 6.2 6.2 --- --- ---
Cy[1] 0.9777 0.9869 0.8108 0.79 +23.8% +24.9% +2.6%
Cx[1] --- --- 0.01347 0.0131 --- --- +2.8%

Cy/Cx[1] --- --- 60.20 60.30 --- --- −0.2%

From the comparison of the adjoint optimization results with Akram and Kim’s
results [13], it is possible to conclude that the adjoint optimization in this paper yielded
very similar or even better results; however, it obtained them with a computational cost
that was more than three orders of magnitude lower. The computation time of the adjoint
optimization is 11 seconds, compared to the 272 minutes needed by the GA optimization
published in [13]. The computation time could be further reduced to less than 5 seconds by
increasing the iteration step and lowering the number of iterations accordingly. This can be
easily carried out with no risk of losing stability, as the initially chosen iteration step is very
small. The number of iterations in the adjoint optimization should be somewhere between
10 and 50, as stated in [3]; therefore, after doubling the current iteration step and halving
the current number of iterations, the optimization would still obey those recommendations.
Another way of lowering the computational complexity of the optimization is by coarsening
the airfoil paneling. As matrix A is a full matrix with no special properties, the cost of
solving the equations is proportional to (N + 1)3. Thus, by lowering the number of panels
from 300 (a very fine resolution used throughout this paper) to 200 (which is still an
acceptable resolution), it is possible to lower the optimization cost by more than a factor
of 3, achieving a computation time that is 4 orders of magnitude shorter when compared
to [13]. After applying the suggestions above, by setting the iteration step to ζ0 = 0.0005, the
number of iterations to 20, and the number of panels to 200, the computation time dropped
to two seconds, while very similar optimization results were achieved (∆CREL

y = 58 % for
0 deg AoA). All the computations were carried out using the Intel Core i7-12700H processor
(Intel, Santa Clara, CA, USA). The panel method simulations in the optimization were
performed in serial (due to the nature of the adjoint method making consecutive changes
to the design), but the MATLAB R2023b solver used for solving systems of LAEs, which
are by far the most computationally expensive part of the adjoint method, incorporated
parallel computation. The abovementioned data and computation times prove that the
adjoint method can be highly computationally effective and, despite the simplifications
applied during the development of the optimization code, can vastly improve the efficiency
of the initial design.

The following figures (Figures 7 and 8) further document the optimization results.
The optimization settings were the same as those used for the results presented in Table 3
and Figure 6. The nominal AoA was set to zero. In the following charts, the benefit of the
optimization across all the AoAs is visible. The Reynolds and Mach numbers were set to
Re = 1,000,000 and Ma = 0 to make them consistent with the available experimental data,
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such as those in [26,27]. The experimental data presented in Figures 7 and 8 were taken
from [26]. The computations were carried out using the compressible and viscous Xfoil
6.99 simulation.
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Figure 8. Characteristics of the original and optimized NREL S809 airfoil. Xfoil 6.99 computation
for Re = 1,000,000, Ma = 0. Exp. data from [26]. Results beyond (−15; 15) deg AoA omitted.
(a) Dependence of Lift-to-drag ratio on AoA, (b) dependence of drag coefficient on AoA.
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6. Conclusions

This article focused on the fast interactive airfoil shape optimization achieved by
assuming an incompressible inviscid potential flow. The objective of the optimization
was to improve the lift coefficient of the airfoil. The optimization was carried out on the
well-known NREL S809 airfoil, which is used on wind turbines. From the results obtained,
it can be concluded that coupling the adjoint method with parsec parametrization and the
panel method can yield feasible results and can run at a speed that is more than fast enough
for it to be considered interactive. The panel method and the adjoint optimization code
were written in MATLAB R2023b, and the verification computations were carried out in
Xfoil 6.99. From the results obtained, the following statements can be derived:

1. The optimization showed a significant improvement to the objective function Cy. For
0 deg AoA, the improvement was 94.7%, and for 6.2 deg AoA, it was 16.1%.

2. A big improvement was also observed in the L/D ratio, which matched or even
exceeded the improvement to Cy, as the optimization did not noticeably affect the Cd.

3. For different AoAs (0 and 10 deg), the resulting shape was almost the same, meaning
that the shape optimized for one operating point should work well in a wide range of
AoAs, adding to the practical usability of the optimized airfoil.

4. The runtime of the adjoint optimization was, for the same airfoil with the same cost
function, orders of magnitude shorter than the runtime of the GA coupled with Xfoil
while yielding similar results.

Overall, this coupling seems very promising, but it is not without its difficulties. For
example, further work would be needed to incorporate additional constraints into the
optimization, most likely via the penalty formulation. However, the approach presented in
this paper appears to suit those engineering problems where the inviscid incompressible
flow can be assumed to be better than the ML approach because it avoids most of the main
hindrances of ML while yielding convincing results.
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