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Abstract: We present an innovative cooperative driving strategy known as Dynamic Resequencing
and Platooning (DRP) designed to ensure the safe and efficient traversal of Connected and Automated
Vehicles (CAVs) through signal-free intersections. By employing a Resequencing and Platooning
Algorithm (RPA) grounded in state transition networks and CAV platooning, the optimal crossing
sequence for CAVs is ascertained within a finite time. Through the utilization of a decentralized
energy-optimal control framework, optimal trajectories are devised for CAVs, thereby facilitating opti-
mal coordination among them. Simulation results underscore the substantial performance benefits of
the DRP strategy compared to traffic light, First-In-First-Out (FIFO), and Local Dynamic Resequencing
(LDR) strategies, with notable reductions observed in both travel delay and fuel consumption.

Keywords: signal-free intersection; connected and automated vehicles; hybrid electric vehicles;
cooperative driving strategies

1. Introduction

Urban intersections often suffer from severe congestion, yet they play a crucial role
in allocating conflicting streams of traffic. Traditional intersection management relies on
static signal traffic lights coordinated through timers [1]. However, this strategy, which is
solely based on predefined time cycles, overlooks variations in actual vehicle density and
travel velocities on the road, potentially leading to ineffective responses to diverse traffic
demands [2]. With the rapid advancement of electric and autonomous vehicles, Connected
and Automated Vehicles (CAVs) hold promise for revolutionary changes in traffic networks,
substantially enhancing network performance [3,4]. By harnessing Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication, CAVs can access real-time travel data
from adjacent vehicles and interact with infrastructure, thus enabling the possibility of
signal-free intersections [5,6]. Effectively and securely coordinating CAVs through signal-
free intersections necessitates the formulation of diverse cooperative driving strategies.
These strategies typically optimize one or more objectives by orchestrating the crossing
sequence and travel trajectories of all CAVs, thereby addressing the Crossing Sequence
Problem (CSP) and the Trajectory Optimization Problem (TOP) for CAVs.

Certain studies have deemed the First-In-First-Out (FIFO) strategy as a feasible ap-
proach to cooperative driving. Under this paradigm, the resolution of the CSP directly
hinges upon the sequence of entry of each CAV into the intersection zone [7,8]. Relative to
the conventional traffic light strategy, the FIFO strategy exhibits noteworthy reductions
in travel delay, thereby emerging as a robust mechanism for mitigating traffic congestion.
Researchers have developed a decentralized energy-optimal control framework to pre-
cisely compute the controllable arrival times and optimal control inputs for each CAV,
thereby offering a solution to the TOP [9]. Augmenting this framework with safety dis-
tance constraints and considerations for passenger comfort can augment the robustness
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of strategies [10]. Nonetheless, contemporary research underscores a principal constraint
of the FIFO strategy, particularly its incapacity to dynamically reconfigure the sequencing
of CAVs’ crossings [11]. This limitation is acutely evident in scenarios of heightened traf-
fic demands, curtailing further enhancements in intersection capacity and impeding the
maximal utilization of CAV capabilities in addressing traffic congestion. Consequently, in
the pursuit of more sophisticated cooperative driving strategies, prioritizing investigations
into the CSP is imperative.

The resequencing strategy aims to optimize the crossing sequence of CAVs. This
approach employs a Resequencing Algorithm (RA) to address the CSP, generating multiple
feasible crossing sequences for each CAV and selecting the optimal sequence. Throughout
this process, maintaining the relative crossing sequence among CAVs is crucial while
accommodating the insertion of newly entering CAVs [12]. However, this strategy is
constrained to adjusting the crossing sequence of the most recently entered CAV, resulting in
suboptimal sorting outcomes. To enhance the effectiveness of sorting results, the Dynamic
Resequencing (DR) strategy proposes a comprehensive and independent re-evaluation of
the crossing sequences of all CAVs each time a new CAV enters the intersection zone [13].
Although this approach may enhance sorting accuracy, it also significantly prolongs the
runtime of the RA. In response to this challenge, the Local Dynamic Resequencing (LDR)
strategy has been introduced, effectively reducing the number of CAVs requiring crossing
sequence adjustments and thus shortening the runtime of the RA [14]. However, it is
important to note that these strategies are predominantly event-triggered, leading to
frequent updates of the optimal crossing sequence derived from the RA. This frequent
updating elevates the risk of the RA becoming trapped in local optima [15], thereby
complicating the search for a globally optimal solution. Our study observes that when
transitioning the DR strategy to a time-triggered approach, the involvement of CAVs in
crossing sequence adjustments is confined within a finite range. At this juncture, the
CSP bears a striking resemblance to the Car Reordering Problem (CRP) encountered in
automotive paint shops. Both seek to minimize the cost associated with a specific sequence
dependency within a finite retrieval sequence [16]. Drawing upon the methodology of
the CRP, we establish a centralized CSP model and introduce state transition networks to
centrally enhance the RA, effectively mitigating the challenge of local optima. Expanding on
this, we integrate the enhanced RA with the Platoon Forming Algorithm (PFA) to formulate
the Resequencing Platoon Algorithm (RPA). This innovative approach allows CAVs to pre-
organize batches, enabling the formation of CAV platoons capable of collectively navigating
intersections [17]. During the calculation of the optimal crossing sequence for CAVs, the
RPA extensively leverages historical computation results, thereby minimizing unnecessary
crossing sequence updates and further evading local optima traps.

Addressing the TOP, we persist in employing a decentralized energy-optimal control
framework, refining the recursive algorithm for controllable arrival times to accommo-
date the requirements of CAV platoons. This innovative strategy is designated as the
Dynamic Resequencing and Platooning (DRP) strategy, presenting fresh perspectives and
methodologies for alleviating traffic congestion.

This paper is organized as follows. Section 2 delves into the design of signal-free
intersections and outlines the framework of the DRP strategy. It establishes both a cen-
tralized CSP model and a decentralized TOP model. Section 3 introduces an enhanced
RA that capitalizes on state transition networks. This algorithm is amalgamated with the
PFA to devise the RPA, aimed at achieving the global optimal solution for the centralized
CSP within a finite time. In Section 4, an improved recursive algorithm is proposed for
determining controllable arrival times tailored to CAV platoons. This algorithm imposes
temporal constraints to address the energy-optimal control problem [18] while solving the
TOP. Section 5 presents a series of experiments comparing the performance and fairness of
CAVs at both traditional intersections and signal-free intersections under various strategies:
the traffic light strategy, FIFO strategy, LDR strategy, and DRP strategy. Subsequent to this, a
detailed analysis and discussion of each strategy’s performance ensue. Finally, in Section 6,
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the paper culminates with a comprehensive summary, offering research conclusions and
outlining avenues for future exploration and development.

2. Framework of DRP Strategy and Problem Formulation

This section will delineate the configuration of signal-free intersections, introduce the
specific framework of the DRP strategy, and establish mathematical models for centralized
CSP and decentralized TOP. These efforts lay the foundation for the subsequent sections.

Figure 1 illustrates a symmetrical cross intersection comprising two dual lanes, each
with a width of S. This intersection operates without signal control and features a coordina-
tion unit at its center, capable of interacting with adjacent CAVs, allowing only CAVs to
pass through. In accordance with existing research perspectives [19,20], the intersection
area is divided into three subareas. The central square region, with a side length of S,
designated as the Merging Zone (MZ), serves as the primary area for CAV merging and
is thus prone to collisions. Surrounding the MZ is the Control Zone (CZ), with a distance
of L from its entrance to the MZ entrance, where the coordination unit transmits control
information to CAVs within this area. The outermost zone is the Organizing Zone (OZ),
with a distance of H from its entrance to the CZ entrance, primarily serving as a buffer
zone for organizing the crossing sequence and travel trajectories of CAVs. In this study,
we assume that all CAVs are configured as Series Hybrid Electric Vehicles (HEVs) with
identical physical properties and enter the intersection area with the same initial velocity v0.
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Figure 1. Signal-free intersection with CAVs.

2.1. Framework of DRP Strategy

Figure 2 illustrates the framework of the DRP strategy, which comprises three stages
based on the positioning of CAVs within the area.

• Stage One: Upon CAV i entering the OZ, it transmits pertinent information, including
the current time te

i , to the coordination unit. Every 2 s, the coordination unit invokes the
RPA based on state transition networks and CAV platooning to resolve the centralized
CSP, orchestrating the crossing sequence and platoon formation for all CAVs in the
OZ. Subsequently, employing the decentralized energy-optimal control framework to
tackle the TOP problem, optimal travel trajectories are charted for the CAVs in the OZ.
CAV i maintains its initial velocity v0 while traversing the OZ.

• Stage Two: Upon ingress into the CZ, CAV i receives the optimal travel trajectory and
platoon formation prescribed by the coordination unit and autonomously adheres to
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the commanded velocity. Once established, the trajectory remains unchanged unless
there exists a collision risk.

• Stage Three: Upon entering the MZ, CAV i travels at a consistent velocity vm
i to ensure

stability and safety throughout the journey.
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2.2. Centralized CAVs Crossing Sequencing Problem Formulation

We designate the segments within the OZ as organizing segments and regard them
as conveyors, with the MZ at the center of the intersection viewed as a processing point.
At this point, leveraging the methodology of the CRP problem, a centralized CSP can
be established.

Figure 3 depicts how a signal-free intersection can be transformed into a storage sys-
tem consisting of a set of organizing segments and a group of CAVs. Let M = {1, 2, 3, 4}
denote the identification of organizing segments, N = {1, . . . , n} represent the identifi-
cation of CAVs, and n ∈ N+ denote the total number of CAVs on the four organizing
segments. For organizing segment k ∈ M, nk ∈ N+ denotes the number of CAVs on it,
and the identification of the j ∈ [1, nk]-th CAV on organizing segment k is denoted as
∑ k−1

i=1 ni + j. It is important to note that there is no strict precedence between the sequences
of CAVs entering the MZ from different organizing segments. However, considering that
overtaking increases travel delay [21], each organizing segment operates internally follow-
ing the FIFO principle. Therefore, if there is more than one CAV on organizing segment
k, the p ∈ [1, nk]-th CAV on the segment should enter the MZ before the q ∈ [p, nk]-th
CAV on the same organizing segment. When two consecutive CAVs, i and j, entering the
MZ pose a potential collision risk, a collision avoidance cost Ci,j is incurred, measured
in seconds, with the specific calculation method detailed in reference [22]. On the other
hand, when CAV i and CAV j do not pose a collision risk, no collision avoidance cost is
incurred. Based on this assumption, we further propose that, for any three distinct CAVs x,
y, and z, the sum of their collision avoidance costs satisfies the inequality Cx,y + Cx,z ≥ Cy,z.
Therefore, the key to the CSP lies in adjusting the sequence of CAVs entering the MZ to
minimize the total collision avoidance cost.
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Figure 3. Configuration of CAVs storage system.

In the subsequent step, we define a directed network wherein each node Vi corresponds
to a CAV i on the organizing segments, thereby constituting the node set VOS = {V1, . . . , Vn}.
We delineate R =

{
Vj ∈ VOS

∣∣∣j = ∑k−1
i=1 ni + 1, ∀k ∈ M

}
as the assortment of nodes corre-

sponding to the nearest CAVs on each organizing segment to the MZ, and
E =

{
Vj ∈ VOS

∣∣∣j = nk + ∑k−1
i=1 ni, ∀k ∈ M

}
as the collection of nodes associated with the

farthest CAVs on each organizing segment from the MZ. Specifically, Rk and Ek symbolize
the nodes aligned with the closest and farthest CAVs from the MZ on organizing segment
k, respectively. Subsequently, we establish a collection of directed arcs, denoted as AOS.
An arc

(
Vi, Vj

)
exists within AOS if CAV j can promptly succeed CAV i into the MZ, for

instance, when CAV i and CAV j are proximate or situated on distinct organizing segments.
The cost attributed to arc

(
Vi, Vj

)
equals the collision avoidance cost Ci,j between CAV i

and CAV j. Additionally, we introduce a virtual node Vs and two arrays of virtual arcs,
namely Ar and Ae. Ar =

{(
Vs, V j

)∣∣Vj ∈ R
}

symbolizes the arcs originating from Vs to
each node within R, whereas Ae =

{(
Vj, Vs

)∣∣Vj ∈ E
}

represents the arcs from each node
within E to Vs. The expenses associated with these virtual arcs are established at 0. In reca-
pitulation, the CSP quandary can be articulated as the quest for the minimum-cost pathway
within the directed network G = (V, A), depicted in Figure 4, where V = {VS}

⋃
VOS,

A = AOS
⋃

Ar
⋃

Ae. Employing these symbols and definitions, the CSP is amenable to
representation as an integer programming paradigm:

min ∑
(Vi , Vj)∈A

Ci,jxi,j (1)

subject to ∑
(Vi , Vj)∈A

xi,j = 1, Vi ∈ V, (2)

∑
(Vi , Vj)∈A

xi,j = 1, Vj ∈ V, (3)

li − lj + |V|xi,j ≤ |V| − 1, Vi, Vj ∈ V, Vj ̸= Vs, (4)

ls = 1, (5)

2 ≤ li ≤ |V|, Vi ∈ V, Vi ̸= Vs, (6)

li < li+1, Vi ∈ [Rk, Ek), k ∈ M, (7)
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li ≥ 0, Vi ∈ V, (8)

xi,j ∈ {0, 1}, Vi, Vj ∈ V. (9)
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The decision variable xi,j is a binary variable indicating whether the arc
(
Vi, Vj

)
is

selected. It is set to 1 if CAV j follows CAV i into the MZ; otherwise, it is set to 0 for
all other arcs

(
Vi, Vj

)
. The positional variables li represent the position of the node Vi

corresponding to CAV i in the path. Constraints (2) and (3) ensure the uniqueness of
the paths for entering and leaving any node Vi, thereby avoiding path duplication and
intersection. Constraint (4) ensures the absence of subpaths within the path. Constraint
(5) stipulates that the position of the virtual node VS must be 1. Constraint (6) ensures
that the positions of nodes corresponding to CAVs in the path range from 2 to |V|. Finally,
constraint (7) ultimately mandates the precedence relationship among nodes corresponding
to CAVs situated on the identical organizing segment.

2.3. CAVs Trajectory Optimization Problem Formulation

Upon establishing the sequence of all CAVs entering the MZ, additional computation
of the arrival times of CAVs at the MZ, symbolized as tm ∈ R+, becomes imperative to
furnish essential temporal constraints for tackling the TOP. By taking into account the
arrival time tm

j of the preceding CAV j in the sequence at the MZ, along with the collision
avoidance costs Cj,i between CAVs j and i, recursively determining the arrival time tm

i of
CAV i at the MZ emerges as a straightforward and efficient approach [8].

Following this, to derive the precise trajectories of the CAVs, it is essential to establish
the corresponding models. To accomplish this, we postulate that the movement of each
CAV is subject to second-order dynamics:

.
pi = vi(t),

.
vi = ui(t) (10)

Here, pi(t), vi(t), and ui(t) correspond to the position (the distance traveled upon en-
tering the CZ), velocity, and acceleration (control input) of CAV i. To ensure that the velocity
and control input of CAV i remain within acceptable ranges, constraint (11) is imposed:

0 ≤ vmin ≤ vi(t) ≤ vmax = v0, umin ≤ ui(t) ≤ umax, ∀t ∈
[
t0
i , tx

i

]
(11)

These constraints are effective within the interval
[
t0
i , tx

i
]
, where t0

i and tx
i denote the

instants when the CAV i enters the CZ and exits the MZ, respectively. In accordance with
the assumptions outlined in Section 2.1, all CAVs traverse the OZ at a consistent velocity v0
and maintain a uniform velocity vm

i upon entering the MZ. Given the arrival time te
i of any
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CAV i in the OZ, the time t0
i when CAV i enters the CZ can be ascertained by incorporating

the respective travel time to te
i . Similarly, the departure time tx

i when CAV i exits the MZ can
be directly computed by adding the travel time to tm

i , as illustrated in the ensuing equation:

t0
i = te

i +
v0

H
, tx

i = tm
i +

vm
i
S

(12)

A primary focus of research in TOP is the reduction in energy consumption [9]. For
HEVs, scholarly investigations have proposed leveraging Pontryagin’s minimum principle
for analysis and resolution, effectively converting electrical energy into prospective fuel
consumption equivalents [23]. As indicated by the study cited in [24], the energy consump-
tion rate of CAV i is contingent upon its control input ui(t), exhibiting a monotonic increase
with the augmentation of ui(t). By amalgamating the aforementioned studies, TOP can be
reformulated into the subsequent energy-optimal control problem for each CAV i [9]:

min
umin≤ui(t)≤umax

∫ tm
i

t0
i

Ci(ui(t))dt (13)

subject to (10), (11),

pi(t0
i ) = 0, pi(tm

i ) = L, vi(t0
i ) = v0. (14)

Here, Ci(ui(t)) represents the energy consumption rate functional, and, when
Ci(ui(t)) = 1

2 u2
i (t), the goal of problem (13) is to minimize transient engine operation [11,12].

Since internal combustion engines achieve their maximum efficiency at steady-state op-
erating points [24], pursuing this objective directly leads to advantages in terms of fuel
consumption and emissions [19]. Problem (13) is subject to multiple constraints, encom-
passing vehicle dynamics (10) and velocity and control input (11). In our investigation,
pi(t), vi(t), and ui(t) are defined to denote the position (the distance traveled upon entering
the CZ), velocity, and acceleration (control input) of CAV i, respectively. Additionally, t0

i
and tm

i signify the times at which CAV i enters CZ and exits MZ, respectively. The distance
from the entrance of CZ to the entrance of MZ is L, and CAVs traverse OZ and enter CZ
at a constant velocity v0. Therefore, problem (13) is also subject to initial and final state
constraints (14). Through the application of Hamiltonian functions [19], we can obtain the
optimal control input function ui

∗(t) for CAV i, thereby devising a trajectory that minimizes
energy consumption while adhering to the specified arrival time at the MZ as tm

i .

3. Resequencing and Platooning Algorithm for Solving CSP

In order to tackle the centralized CSP as described by the integer programming
model (1), this section introduces an enhanced RA founded on state transition networks.
Through the amalgamation of the refined RA with a PFA, an RPA is established, aiming to
achieve the global optimal solution of the centralized CSP within a finite time. Figure 5
delineates the comprehensive procedure of the RPA.
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3.1. Resequencing Algorithm based on State Transition Network

To enhance the performance of the RA, we have introduced state transition net-
works [16]. For the research object composed of four organizing segments, a state vector
st = [st1, st2, st3, st4, kst] has been defined to represent the current state ST. Each element
stk ∈ [0, nk] in st denotes the number of CAVs sorted on organizing segment k, while kst
identifies the segment where the sorted CAV is located when transitioning from the previ-
ous state ST′ to the current state ST. Taking the state vector st′ = [st′1, st′2, st′3, st′4, 4]
representing the state ST′ as an example, suppose that, in this state, a CAV on organizing
segment 3 has been sorted. Then, the correspondence between the state vector st of the
new state ST and st′ is st1 = st′1, st2 = st′2, st3 = st′3 + 1, st4 = st′4, kst = 3. This state
transition process incurs a transition cost C(ST′, ST), which equals the collision avoid-
ance cost between the CAV currently being sorted and the last sorted CAV, identified as
∑ 3

i=1ni + st′4 and ∑ 2
i=1ni + st′3 + 1.

To enhance the intuitive understanding of the state transition network, we categorize
the states ST into different stages h = ∑ k∈Mstk based on the total number of sorted CAVs.
Since the value of ∑ k∈Mstk increases by 1 with each transition, it ensures that the transition
can only occur from stage h to stage h + 1, thereby guaranteeing a finite path length in the
state transition network. Finally, we define the initial state STstart as ststart = [0, 0, 0, 0, 0],
which is connected to the states in stage 1 through corresponding transitions. Similarly, we
introduce the final state STend as stend = [n1, n2, n3, n4, 0], connecting the states in stage
n. Figure 6 illustrates an example of a state transition network in the intersection area with
two organizing segments, each containing two CAVs.
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The path from the initial state STstart to the final state STend in the state transition
network represents a feasible sorting arrangement for CAVs. This arrangement involves a
systematic sorting process of CAVs on 4 organizing segments, facilitated through a series of
state transitions. Throughout the state transition process, each transition is associated with
a specific transition cost. Consequently, the global optimal solution of the CSP corresponds
to the path from STstart to STend that results in the minimum total transition cost.

In Algorithm 1, cost(end) represents the minimum transition cost in the state transition
network, and route(end) denotes the shortest path containing n states, where n represents
the total number of CAVs on four organizing segments. The sorting vector sqi comprises
two elements: sqi records the identification of the CAV entering MZ in the i-th sorted
order, and osi is used to denote the identification of the segment in which the CAV is
located. The obtained set SQ = {sqi, . . . , sqn} represents a crossing sequence of CAVs,
achieving the minimization of the total collision avoidance cost, thereby constituting the
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global optimal solution of the CSP. Additionally, SQ also contains information about the
organizing segments where each CAV is situated, which is crucial for subsequent platoon
forming algorithms.

Algorithm 1 Resequencing Algorithm based on State Transition Network

1. Input: The count of CAVs on each organizing segment k, denoted as nk, the collision avoidance
cost Ci,j between any two CAVs i and j, and the organizing segment counter m initialized to zero.
2. For k in range (1, 4) do

If nk ̸= 0 then
m ++.

End if
End for

3. Constructing a state transition network using m and nk, each state ST possesses a state vector
st = [st1, st2, st3, st4, kst]. The transition cost C(ST′, ST) from state ST′ to state ST is equivalent

to the collision avoidance cost between the CAV identified as ∑
k′st−1
i=1 ni + st′k′st

and the CAV

identified as
kst−1

∑
i=1

ni + stkst .

4. Group each state ST according to ∑
k∈M

stk into the stage h.

5. Foreach stage h in {1, 2, . . . , n} do
Foreach state ST in stage h do

cost(ST) = minST′ : ∃ST′→ST(cost(ST′) + C(ST′, ST)).
route(ST) = minST′ : ∃ST′→ST route(ST) add ST′.

End
End
6. cost(end) = minST: ∃ST in stage n(cost(ST)).

route(end) = minST: ∃ST in stage n(route(ST) ).
7. Foreach state ST in route(end) do

generate the sqi = [sqi, osi], i depends on the position of ST in route(end).
sqi = ∑ kst−1

i=1 ni + stkst , osi = kst, add sqi to SQ.
End

8. Output: SQ = {sqi, . . . , sqn}.

3.2. Platoon Forming Algorithm

In the framework of the DRP strategy, the crossing sequence of CAVs within the OZ
undergoes reassessment every 2 s to ensure the timely sorting of newly entering CAVs.
However, this mechanism may introduce challenges in certain scenarios. Figure 7 depicts
a scenario where CAV 1, potentially colliding with CAV 2, exits the OZ. Subsequently,
the updated crossing sequence may allow CAV 2 to enter the MZ before CAV 3, which
shares the same organizing segment as CAV 1. These unnecessary updates could result in
additional collision avoidance costs, leading to increased travel delays and impacting the
overall efficiency of traffic flow.

To mitigate this challenge, we have developed a PFA. This algorithm’s essence lies in
facilitating CAVs entering the MZ one after another within a single organizing segment
to organize and sustain an orderly platoon. With this approach, even after the leading
vehicle exits the OZ, the succeeding vehicles within the platoon can proceed into the MZ
in a predetermined sequence, effectively minimizing the need for unnecessary updates to
the crossing sequence. This strategic measure averts superfluous collision avoidance costs,
resulting in a significant reduction in travel delays experienced by CAVs.

Specifically, if the organizing segment identifier osi in sqi is the same as the organizing
segment identifier osi−1 in sqi−1, then CAV sqi will join the platoon Pj where CAV sqi−1
is located, forming the platoon vector pj =

[
sqi, sqi−1, osi

]
. A platoon can accommodate

multiple CAVs. If the organizing segment identifier osi+1 in sqi+1 is different from the
organizing segment identifier osi in sqi, then CAV sqi+1 will be unable to join platoon Pj
and will instead form a new platoon Pj+1.



Appl. Sci. 2024, 14, 3498 10 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 21 
 

𝑠𝑞𝑖 = ∑ 𝑛𝑖 + 𝑠𝑡𝑘𝑠𝑡

𝑘𝑠𝑡−1
𝑖=1 , 𝑜𝑠𝑖 = 𝑘𝑠𝑡, add 𝐬𝐪𝐢 to 𝑆𝑄. 

End 

8. Output: 𝑆𝑄 = {𝐬𝐪𝐢, . . . , 𝐬𝐪𝐧}. 

3.2. Platoon Forming Algorithm 

In the framework of the DRP strategy, the crossing sequence of CAVs within the OZ 

undergoes reassessment every 2 s to ensure the timely sorting of newly entering CAVs. 

However, this mechanism may introduce challenges in certain scenarios. Figure 7 depicts 

a scenario where CAV 1, potentially colliding with CAV 2, exits the OZ. Subsequently, the 

updated crossing sequence may allow CAV 2 to enter the MZ before CAV 3, which shares 

the same organizing segment as CAV 1. These unnecessary updates could result in addi-

tional collision avoidance costs, leading to increased travel delays and impacting the over-

all efficiency of traffic flow. 

 

Figure 7. Scenario where unnecessary updates may occur. 

To mitigate this challenge, we have developed a PFA. This algorithm’s essence lies in 

facilitating CAVs entering the MZ one after another within a single organizing segment to 

organize and sustain an orderly platoon. With this approach, even after the leading vehi-

cle exits the OZ, the succeeding vehicles within the platoon can proceed into the MZ in a 

predetermined sequence, effectively minimizing the need for unnecessary updates to the 

crossing sequence. This strategic measure averts superfluous collision avoidance costs, 

resulting in a significant reduction in travel delays experienced by CAVs. 

Specifically, if the organizing segment identifier 𝑜𝑠𝑖 in 𝐬𝐪𝐢 is the same as the organ-

izing segment identifier 𝑜𝑠𝑖−1  in 𝐬𝐪𝐢−𝟏 , then CAV 𝑠𝑞𝑖  will join the platoon 𝑃𝑗  where 

CAV 𝑠𝑞𝑖−1 is located, forming the platoon vector 𝐩𝐣 = [𝑠𝑞𝑖 , 𝑠𝑞𝑖−1, 𝑜𝑠𝑖]. A platoon can ac-

commodate multiple CAVs. If the organizing segment identifier 𝑜𝑠𝑖+1 in 𝐬𝐪𝐢+𝟏 is differ-

ent from the organizing segment identifier 𝑜𝑠𝑖 in 𝐬𝐪𝐢, then CAV 𝑠𝑞𝑖+1 will be unable to 

join platoon 𝑃𝑗 and will instead form a new platoon 𝑃𝑗+1. 

  

Figure 7. Scenario where unnecessary updates may occur.

In Algorithm 2, m is the number of platoon vectors, and m ≤ n. The obtained set
PQ = {p1, . . . , pm} constitutes a crossing sequence of CAV platoons, achieving minimiza-
tion of travel delays for CAVs. When the lead vehicle in platoon Pj exits the OZ, all CAVs
in platoon Pj are removed from SQ and no longer participate in the PFA.

Algorithm 2 Platoon Forming Algorithm

1. Input: SQ = {sqi, . . . , sqn}.
2. Generate the initial platoon P1, where the initial platoon vector p1 = [sq1], and the initial
platoon label j = 1.
3. For i in range (2, n) do

If the identifier osi in sqi is the same as the identifier osi−1 in sqi−1 then
add sqi to platoon vector pj.

Else
add osi−1 to platoon vector pj.
add platoon vector pj to PQ.
j ++, generate platoon Pj, add sqi to platoon vector pj.

End if
End for

4. m = j.
5. Output: PQ = {p1, . . . , pm}, m ≤ n.

4. Decentralized Energy-Optimal Control Framework for Solving TOP

In this section, we persist in employing the decentralized energy-optimal control
framework [9] and enhance the current recursive algorithm for the MZ arrival time to ac-
commodate the requirement for CAV platoons. This endeavor is geared toward establishing
the requisite temporal constraints for the energy-optimal control problem (13) transformed
from the TOP. Following this, through the application of Hamiltonian functions [19] to
address (13), we derive the optimal control input u∗

i (t) within the interval
[
t0
i , tx

i
]
, thus

effectively tackling the TOP.
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4.1. Arrival Time Recursion Algorithm for CAV Platoons

Since CAV sqi−1 and CAV sqi inevitably enter the MZ consecutively, tm
sqi

is always
determined recursively through tm

sqi−1
and Csqi ,sqi−1

[8]. Therefore, obtaining tm
sq1

is crucial
for deducing the arrival time of subsequent CAVs at the MZ. For the CAV sq1 that enters
the MZ first, it is evident that the optimal solution to problem (13) is u∗

sq1(t) = 0 because
CAV sq1 does not need to evade any other CAVs. To address the new demand for CAV
platoons, we have made corresponding improvements to the algorithm. Since the CAVs in
platoon P1 travel on the same lane, once the arrival time tm

sq1
of the lead vehicle CAV sq1 in

P1 is determined, the entry times tm
sqi

of the other CAVs sqi in P1 can be easily obtained by
shifting them on the time scale t0

sqi
− t0

sq1
. Similarly, for adjacent platoon Pj and Pj+1, only

the collision avoidance cost between the lead vehicle of Pj+1 and the trailing vehicle of Pj
needs to be considered. Ultimately, through the Algorithm 3, we can obtain the controllable
arrival times at the MZ for all CAVs.

Algorithm 3 Arrival Time Recursion Algorithm for CAV Platoons

1. Input: PQ = {p1, . . . , pm}, the number of CAVs within each platoon vector pj, denoted
as npj, along with the collision avoidance cost Csqi ,sqi−1

between any two CAV
sqi and sqi−1.

2. For i in range (1, np1) do
If i = 1 then

tm
sq1

= t0
sq1

+ v0
L .

arrival time of the lead vehicle in p1 at the MZ tm
p1
= tm

sq1
.

arrival time of the lead vehicle in p1 at the CZ t0
p1
= t0

sq1
.

Else
tm
sqi

= tm
p1
+ t0

sqi
− t0

p1
.

End if
End for

3. arrival time of the trailing vehicle in p1 at the MZ tm
p1b = tm

sqi
.

4. For j in range (2, m) do
For i in range(∑

j−1
a=1npa + 1, ∑

j
a=1npa) do

If i = ∑
j−1
i=a npa + 1 then

tm
sqi

= tm
pj−1b+ Csqi , sqi−1

.
arrival time of the lead vehicle in pj at the MZ tm

pj
= tm

sqi
.

arrival time of the lead vehicle in pj at the CZ t0
pj
= t0

sqi
.

Else
tm
sqi

= tm
pj
+ t0

sqi
− t0

pj
.

End if
End for
arrival time of the trailing vehicle in pj at the MZ tm

pjb
= tm

sqi
.

End for
5. Output: The arrival time of all CAVs at the MZ.

4.2. Solution for Energy-Optimal Control Problem

The integration of the energy-optimal control problem (13) with the vehicle dynamic
constraint (10) and the velocity and control input constraint (11) facilitates the derivation of
Hamiltonian functions for each CAV [19]:

Hi(t, pi(t), vi(t), ui(t)) = 1
2 ui

2(t) + λ
p
i (t) · vi(t) + λv

i (t) · ui(t) + µa
i · (ui(t)− umax)

+ µb
i · (umin − ui(t)) + µc

i · (vi(t)− vmax) + µd
i · (vmin − vi(t))

(15)

where λ
p
i (t) and λv

i (t) denote the costates, and µa
i , µb

i , µc
i , and µd

i are the Lagrange multipli-
ers. The Hamiltonian functions are divided into seven cases depending on whether different
control inputs ui(t) and velocities vi(t) satisfy the boundary conditions (i.e., whether they
attain umax, umin, vmax, vmin). More specifically, the seven cases are as follows [9]:
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1. Control and State Constraints not Active, ui(t) ̸= umax, ui(t) ̸= umin, vi(t) ̸= vmax,
vi(t) ̸= vmin.

2. Control Constraints Active, ui(t) = umax.
3. Control and State Constraints Active, ui(t) = umax, vi(t) = vmax.
4. Control Constraints Active, ui(t) = umin
5. Control and State Constraints Active, ui(t) = umin, vi(t) = vmin.
6. State Constraints Active, vi(t) = vmax.
7. State Constraints Active, vi(t) = vmin.

Based on the statistical data presented in reference [9], the case in which neither
control constraints nor state constraints are active exerts a significant influence on the
driving process of the CAVs, rendering them pivotal for investigating the control input
functions. In such a case, µa

i = µb
i = µc

i = µd
i = 0, and the Hamiltonian functions are

transformed into the following [9]:

Hi(t, pi(t), vi(t), ui(t)) =
1
2

ui
2(t) + λ

p
i (t) · vi(t) + λv

i (t) · ui(t) (16)

The costates transform into the following [9]:

.
λ

p
i = −∂Hi

∂pi
= 0,

.
λ

v
i = −∂Hi

∂vi
= −λ

p
i (t) (17)

The extremum condition is as follows [9]:

∂Hi
∂ui

= ui(t) + λv
i (t) = 0 (18)

By Equation (17), it can be readily inferred that λ
p
i (t) = ai and λv

i (t)= −(a it + bi),
where ai and bi are integral constants. Thus, the optimal control input u∗

i (t) is as follows [9]:

ui
∗(t) =ait + bi (19)

According to the second-order vehicle dynamics (10) relationship, we can derive the
following [9]:

vi
∗(t) =

1
2

ait2 + bit + ci (20)

pi
∗(t) =

1
6

ait3 +
1
2

bit2 + cit + di (21)

In our strategy, CAV i will maintain a constant speed vm
i while traversing MZ after

entering. Therefore, the boundary conditions of the costates are: λv
i
(
tm
i
)
= −u∗

i
(
tm
i
)
= 0.

Then, the three equations derived from substituting the provided initial and final state

constraints (14) into (20) and (21) are: p∗i
(
t0
i
)
= 1

6 ai (t
0
i

)3
+ 1

2 bi (t
0
i

)2
+ cit0

i + di = 0,

p∗i
(
tm
i
)
= 1

6 ai (t
m
i
)3

+ 1
2 bi (t

m
i
)2

+ citm
i + di = L, v∗i

(
t0
i
)
= 1

2 ai (t
0
i

)2
+ bit0

i + ci = v0, where
L is the distance from the entrance of the CZ to the entrance of the MZ. The simultaneous
representation of these four equations in matrix form is as follows [9]:

1
6
(
to
i
)3 1

2
(
to
i
)2 to

i 1
1
6
(
tm
i
)3 1

2
(
tm
i
)2 tm

i 1
1
2
(
to
i
)2 to

i 1 0
−tm

i −1 0 0

 ·


ai
bi
ci
di

 =


0
L
v0
0

 (22)

Solving (22) will provide the values of ai, bi, ci, and di.
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5. Results and Discussion

The research utilized the Python language and the Traci toolkit to conduct simulation
experiments on intersection traffic scenarios, interfacing with the traffic simulator SUMO,
creating models for both a conventional signalized intersection and signal-free intersection.
In the conventional signalized intersection model, the duration of the green light was set to
62 s, while the yellow light lasted for 3 s. For the simulation of the signal-free intersection,
the FIFO strategy, LDR strategy, and our newly devised DRP strategy were employed.
Moreover, the study employed the 2010 Toyota Prius CAV model, which encompasses
an Internal Combustion Engine (ICE), two electric Motors/Generators (MG1 and MG2),
a Planetary Gear Train (PGT), and a battery [25]. To emulate real traffic conditions, ve-
hicle arrivals were assumed to follow a Poisson process, with four different arrival rates
established to simulate various traffic demands. By comparing the driving performance
and fairness of CAVs under different strategies, the merits and drawbacks of each strategy
were scrutinized. To mitigate the influence of stochastic factors, each scenario underwent
simulation for a duration of 15 min.

Performance metric 1, denoted as the travel delay dli of CAV i, reflects the performance
of the strategy in terms of traffic efficiency. It is defined as follows:

dli = tm
i − tmin

i (23)

The term tmin
i denotes the minimum time required for CAV i to reach the MZ while

traveling at umax and vmax within the CZ.
Performance metric 2, referred to as fuel consumption FCi of CAV i, elucidates the

strategy’s efficacy concerning energy efficiency. It is derived by computing the definite
integral of the fuel consumption rate function f ci(t) over the interval

[
t0
i , tm

i
]
. It is pertinent

to acknowledge that the fuel consumption of HEVs encompasses not solely the fuel con-
sumption of the internal combustion engine but also the commensurate fuel consumption
of the electric motors:

FCi =
∫ tm

i

t0
i

f ci(t)dt (24)

The fuel consumption rate is contingent upon the velocity and power of the vehicle,
and is defined as follows [25]:

f ci(t) =


f cev for

{
Pi(t) ≤ 0

Pi(t) < Pev and vi(t) < vev

e1 + e2 ∗ vi(t) + e3 ∗ Pi(t) + e4 ∗ Pi
2(t) for

{
Pi(t) > 0 and vi(t) ≥ vev

Pi(t) ≥ Pev and vi(t) < vev

(25)

The equivalent fuel consumption rate of the 2010 Toyota Prius in EV mode, denoted
as f cev, represents a key parameter. Here, Pi(t) signifies the instantaneous power of
CAV i, while Pev denotes the maximum power achievable in EV mode, and vev stands
for the maximum velocity attainable in EV mode. When Pi(t) is negative or vi(t) falls
below vev with power lower than Pev, the HEV transitions to EV mode. We adopted the
parameters summarized from the experiments conducted by researchers, as documented
in reference [25], where the specific values for vev and Pev of the 2010 Toyota Prius are
32 km/h and 10 kW, respectively, with f cev set at 0.006. Additionally, the coefficients e1, e2,
e3, and e4 were determined to be 0.006, 0.003998, 0.077092, and −9.155 × 10−5. Researchers
have elucidated the relationship between Pi(t), vi(t), and ui(t) in reference [26]:

Pi(t) =
(

mui(t) + mg · cos(θ) · Cr

1000
(Ccvi(t) + Ct) +

1
2

ρAir A f CDvi
2(t) + mg · sin(θ)

)
· vi(t) (26)

We designated the mass of the Toyota Prius as m = 1521 kg, the gravitational accel-
eration g as 9.8066 m/s2, and the road slope θ as 0. The parameters for rolling resistance,
denoted as Cr, Cc, and Ct, are assigned values of 1.75, 0.0328, and 4.575, respectively, and



Appl. Sci. 2024, 14, 3498 14 of 20

are subject to variation based on factors such as road surface type, road conditions, and
vehicle tire type. The air mass density, represented as ρAir, is 1.2256 kg/m3, while the
frontal projection area of the Prius, identified as A f , measures 2.3316 m2. Additionally, the
aerodynamic drag coefficient CD is determined to be 0.28 [26].

As a result of the resequencing strategy modifying the sequence of CAVs entering the
MZ, the trip duration of CAVs is prolonged. Recognizing the potential for this alteration to
raise fairness concerns among drivers, we will also assess the fairness of each strategy. The
fairness metric, symbolized as ρ, is delineated as follows:

ρ =

√√√√ 1
N

N

∑
i=1

(tm
i − tm) (27)

tm =
1
N

N

∑
i=1

tm
i (28)

N symbolizes the aggregate count of CAVs during 15 min, while tm signifies the mean
trip duration of all CAVs. A heightened ρ value suggests diminished fairness.

5.1. Comparison of Driving Performance

In this experimental setup, we standardized the length of the OZ at 80 m and the CZ at
170 m, maintaining uniform arrival rates across all four lane entrances. To evaluate the efficacy
of the four strategies across varying traffic demands, we systematically escalated the arrival
rate from 160 veh/h/lane to 800 veh/h/lane, leveraging the arrival rate values outlined in
reference [11]. In our scenario of high traffic demand, where the arrival rate exceeds that
of reference [11], it provides a better indication of the performance of cooperative driving
strategies, particularly under extreme circumstances. When contrasting with the traffic light
strategy, we categorize the FIFO, LDR, and DRP strategies collectively as cooperative driving
strategies. Following a 15 min simulation period, we meticulously collected and organized
data on the average travel delay and fuel consumption for all CAVs across the four strategies.
These findings are detailed in Table 1 and visually depicted in Figure 8.

Table 1. Data on the average travel delay and average fuel consumption of different driving strategies
under different arrival rates.

Arrival Rates (veh/h/lane) Driving Strategies Average Travel Delay (s) Average Fuel
Consumption (mL)

Emergency Braking
(Times/Minute)

160

Traffic light 17.7638 7.3590 3
FIFO 5.5709 5.9439 0
LDR 4.1391 6.3117 0.3
DRP 3.3987 5.6261 0

320

Traffic light 19.4790 7.5354 6.6
FIFO 5.8475 6.2172 0
LDR 4.365 6.6804 0.6
DRP 3.5226 6.0689 0

480

Traffic light 20.9306 7.7357 9.6
FIFO 6.3904 6.9200 0.6
LDR 4.732 7.313 1.8
DRP 3.7720 6.4463 0.3

640

Traffic light 23.3576 7.9991 13.8
FIFO 17.1052 7.8918 6.3
LDR 14.5286 7.4562 9.5
DRP 13.5747 6.7870 3.3

800

Traffic light 26.6526 8.3024 18.6
FIFO 31.8643 8.6395 11.4
LDR 24.9121 8.2642 12.3
DRP 22.7679 7.4544 7.8
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Figure 8. Average travel delay (a) and average fuel consumption (b) of different driving strategies
under different arrival rates.

Analysis of the data presented in Table 1 reveals that cooperative driving strate-
gies, when compared to traditional traffic light strategy, can notably diminish average
travel delay by up to 82.1% under lower traffic demands, ranging from 160 veh/h/lane to
480 veh/h/lane, thus significantly augmenting traffic efficiency. The conventional traffic
light strategy, rooted in fixed time cycles aimed at coordinating conflicting traffic flows,
frequently impose unnecessary waiting times on CAVs, even under low-density traffic
scenarios, thereby culminating in intersection delays. Furthermore, the average travel delay
metrics for the DRP strategy are inferior to those of the LDR and FIFO strategies, thereby
substantiating the superior efficacy of the DRP strategy in enhancing traffic efficiency. More-
over, cooperative driving strategies evince a superior energy economy performance relative
to the conventional traffic light strategy, resulting in potential savings of approximately
19.84% in average fuel consumption. Nonetheless, it is imperative to note that this efficiency
gain is marginally lower compared to the fuel consumption reductions observed when co-
operative driving strategies are applied to fuel vehicles, amounting to approximately 46.6%.
This discrepancy primarily arises from the continuous operation of fuel vehicle engines
during traffic signal stops, leading to additional fuel consumption. In contrast, HEV vehi-
cles incorporate an EV mode where the engine shuts off during traffic signal stops. Thus,
despite reducing CAVs’ waiting times, fuel consumption reductions are not significant.
Figure 9 delineates the acceleration and fuel consumption rate curve of a CAV encountering
a red light [27–30]. Detailed scrutiny reveals that CAVs facing red lights necessitate braking
to a complete stop and subsequent acceleration to the desired velocity upon the green
light’s appearance, thereby engendering frequent acceleration and deceleration cycles that
elevate fuel consumption. Consequently, the emphasis of cooperative driving strategies
on coordinating CAVs to curtail unnecessary acceleration and deceleration elucidates the
superior energy economy performance of the DRP strategy compared to the LDR and
FIFO strategies. The latter two evince weaker capabilities in coordinating conflicting CAVs,
necessitating more frequent modulation of CAVs’ velocity changes, thereby amplifying fuel
consumption. Finally, we assess the efficiency of the crossing sequence by examining the
frequency of emergency braking per minute. Under conditions of lower traffic demands,
this metric tends toward zero across all cooperative driving strategies except for the LDR
strategy. Analysis indicates that the frequent revision of the crossing sequence by the LDR
strategy is the primary driver of this trend. Conversely, the DRP strategy addresses this
issue by centralizing enhancements to the CSP and integrating platooning algorithms.
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In conditions of moderate traffic demands (640 veh/h/lane), cooperative driving
strategies demonstrate a 41.89% decrease in average travel delay compared to the traffic
light strategy, indicating a slightly reduced improvement compared to lower traffic de-
mands. This reduction primarily arises from the escalating expense of collision avoidance
as the number of CAVs within the intersection area increases. To circumvent collision inci-
dents, CAVs progressively delay their arrival time at the MZ, thereby incurring additional
average travel delay. In this context, the average travel delay data for the DRP strategy are
lower than those of the LDR and FIFO strategies, signifying the superior performance of
the DRP strategy in mitigating collision avoidance costs. Moreover, cooperative driving
strategies show a diminished potential for savings in average fuel consumption compared
to the traffic light strategy, declining to 15.16%. This phenomenon is ascribed to the neces-
sity for more frequent modulation of CAV velocity changes to avoid collisions, resulting in
increased fuel consumption. Moreover, the incidence of emergency braking incidents rises
for cooperative driving strategies. Analysis indicates that as the quantity of CAVs within
the intersection area increases, the complexity of computing the optimal crossing sequence
also escalates. Nonetheless, the DRP strategy consistently registers the lowest number of
incidents, underscoring that the crossing sequence derived from this strategy outperforms
those of the other two strategies.

In scenarios characterized by higher traffic demands (800 veh/h/lane), the perfor-
mance of the FIFO strategy significantly deteriorates, with a 19.55% increase in average
travel delay and a 4.06% increase in average fuel consumption. This outcome underscores
the capacity constraint of the FIFO strategy, representing a bottleneck to further enhancing
traffic efficiency and optimizing energy economy. Conversely, the DRP and LDR strategies
persist in reducing average travel delay and lowering average fuel consumption. Par-
ticularly notable is the more pronounced effect of the DRP strategy in reducing travel
delay and fuel consumption, thereby validating its superiority over the LDR strategy in
improving traffic efficiency and optimizing energy economy. Additionally, the order of
emergency braking incidents for cooperative driving strategies is similar to that observed
under moderate traffic demand, leading to the same conclusion: the crossing sequence
obtained from the DRP strategy outperforms those of the other two strategies.

5.2. Comparison of Fairness

During the experimentation outlined in Section 5.1, aside from collating data pertain-
ing to the average travel delay and average fuel consumption of CAVs, we also amassed
fairness metrics for the four strategies. These metrics have been delineated in Table 2 and
graphically depicted in Figure 10.
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Table 2. Data on the fairness indicator of different driving strategies under different arrival rates.

Arrival Rates (veh/h/lane) Driving Strategies Fairness Indicator ρ (s)

160

Traffic light 18.50
FIFO 2.38
LDR 3.12
DRP 3.16

320

Traffic light 20.28
FIFO 2.61
LDR 3.01
DRP 3.16

480

Traffic light 20.48
FIFO 1.71
LDR 2.72
DRP 2.74

640

Traffic light 21.00
FIFO 5.03
LDR 6.76
DRP 8.26

800

Traffic light 21.48
FIFO 18.15
LDR 10.88
DRP 12.33
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In line with the findings from the analysis of driving performance, under scenarios of
moderate to low traffic demands, cooperative driving strategies also demonstrate significant
enhancements in fairness compared to the traffic light strategy. However, unlike in the
evaluation of driving performance, both the DRP and LDR strategies marginally trail
behind the FIFO strategy in terms of fairness. This discrepancy primarily stems from
the inclination of resequencing strategies to prioritize non-conflicting CAVs with lower
collision avoidance costs for intersection passage. While conflicts among CAVs on the
same or opposing lanes remain minor, congestion tends to dissipate more readily but
may exacerbate in other lanes. Furthermore, the DRP strategy, through the incorporation
of platooning algorithms, exhibits a greater propensity to prioritize CAV passage on the
same or opposing lanes. In the assessment of cooperative driving strategies, its fairness
performance ranks third. However, it is important to note that across five different traffic
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demands, the fairness indicator of the DRP strategy trails the top-ranked strategy by only
0.72 s, 0.49 s, 1.03 s, 3.23 s, and 1.35 s, respectively. In Table 1, under the same five traffic
demands, the DRP strategy surpasses these strategies by reducing the time by 2.17 s,
2.32 s, 2.61 s, 3.53 s, and 2.14 s, respectively. This suggests that, when considering both
overall driving performance and fairness, the DRP strategy maintains an advantage over
other strategies.

It is noteworthy that, under higher traffic demands, the fairness performance of the
LDR and DRP strategies surpasses that of the FIFO strategy. To delve deeper into this
phenomenon, we conducted a detailed analysis and visualized the comparison of trip
durations for 90 CAVs under the FIFO, LDR, and DRP strategies when the arrival rate is
800 veh/h/lane in Figure 11. From the graph, it is evident that, under the FIFO strategy,
the trip duration for CAVs after ID 61 exceeds 70 s, with some even reaching up to 100 s.
This accumulation occurs due to the substantial buildup of CAVs within the intersection,
highlighting the inefficacy of the FIFO strategy in coordinating CAVs’ departure from the
intersection, resulting in severe traffic congestion. In contrast, the trip durations of CAVs
under the LDR and DRP strategies remain within 60 s. This indicates that enhancing the
traffic coordination capability of strategies to mitigate traffic congestion may not necessarily
conflict with improving fairness, particularly under high traffic demands.
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6. Conclusions

This research established a centralized model for the CSP and TOP concerning CAVs.
An advanced RA approach grounded on state transition networks was proposed and fused
with a PFA to formulate the RPA. The objective was to achieve the global optimal solution of
the centralized CSP within a finite time. Additionally, an enhanced controllable arrival time
recursive algorithm tailored for CAV platoons was developed to impose time constraints
on the energy-optimal control problem, effectively tackling the TOP. Subsequently, these
novel algorithms were integrated to introduce an innovative strategy—the DRP strategy.
To validate the efficacy of this strategy, we conducted integrated simulations of symmet-
rical intersections across diverse traffic demands using Python 3.10.7, Traci 1.19.0, and
SUMO 1.19.0. The performance and fairness of CAVs under diverse driving strategies were
evaluated. Findings indicated that the DRP strategy outperformed others significantly
in terms of driving performance, exhibiting reduced travel delay and fuel consumption.
However, concerning fairness, the DRP strategy showed a marginally inferior performance.
This was ascribed to the influence of frequent adjustments in CAV passing sequences on
fairness. Nonetheless, experiments also suggest that, in situations of heightened traffic
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demand, strategies endowed with augmented traffic coordination capabilities can alleviate
traffic congestion while concurrently upholding fairness from an alternative standpoint.
Furthermore, it was noted that cooperative driving strategies were more proficient in en-
hancing energy efficiency compared to the traffic light strategy. This was chiefly attributed
to the mitigation of intense acceleration and deceleration during start–stop scenarios. This
observation offers valuable insights for further enhancing the energy efficiency of CAVs.

The primary limitation of this study lies in its focus on the analysis of single-lane,
one-way symmetric intersection scenarios. However, the conclusions drawn have the
potential to be extended to multi-lane intersections and scenarios involving turning maneu-
vers by CAVs. Additionally, earlier discussions have revealed that there is still room for
improvement in terms of fairness with regard to the DRP strategy. Subsequent research
endeavors could explore strategies for striking a balance between driving performance and
fairness within the DRP strategy and devise mathematical frameworks to quantitatively
assess the equilibrium between these factors. Such endeavors would serve to augment
drivers’ contentment with traffic control systems and intersection layouts, thus fostering
progress in the realm of intelligent transportation systems.
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