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Featured Application: This review deals with the use of nutribiotics in skin care, which is of great
interest as a nutritional supplement therapy in skin dysbiosis and related diseases.

Abstract: The study of the human microbiome has been a hot topic during the recent decades. More
recently, the skin microbiome has attracted great interest as well. So, the scientific community has
become interested in the role of the skin microbiome in skin health and its relationship with different
disorders, such as atopic dermatitis, psoriasis, acne, and rosacea, among others. Numerous studies
and investigations have been performed to study the role of pre- and probiotics as nutraceuticals in
the treatment of skin diseases, with growing evidence over the recent ten years. This review gathers
information on the use of “nutribiotics” in skin care health, focusing on the main dermatological
diseases and other skin conditions. Clinical studies show that nutribiotics could be a new tool to
improve skin health, and pre-, pro-, syn-, post-, and para-probiotics seem to be beneficial for several
skin disorders as well as for repairing the skin barrier and promoting wound healing. In conclusion,
the skin microbiome has become a new field with great potential to develop innovative products to
manage skin health and diseases. Future advances in this field may facilitate the treatment of skin
dysbiosis, with nutribiotics being a suitable method for skin care.
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1. Introduction

The study of the human microbiome, which began in the recent century, has sparked
growing interest due to its complexity and its importance in human health.

The main milestone has been the Human Microbiome Project of the National Institute
of Health in the United States (Human Microbiome Project, NIH), with the aim of identi-
fying and characterizing the microorganisms that settle in the different structures of the
human body and that can play a role and therefore influence both health and disease. From
that moment on, numerous scientific publications and studies have linked the imbalance of
the microbiome with different diseases.

A recent review related to the role of the human microbiome in health and disease
in the United Kingdom concluded that the human microbiome plays a fundamental role
in health and disease with multiple facets [1]. Various studies have shown that the in-
tricate and complex communities of microorganisms that live inside and on the surface
of our body have important and marked effects on several aspects of human physiology,
from metabolism or digestive processes to immune function. Furthermore, researchers
demonstrated that a balanced and diverse microbiome can contribute to global wellbeing
by protecting against pathogens, assisting in nutrient absorption, and modulating immune
responses. In contrast, dysbiosis, that is, alterations or imbalances in the microbiome, has
been linked to a wide variety of health conditions, including inflammatory bowel disease,
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obesity, allergies, and neurological disorders, among others [2]. One of the objectives of
current research is to deepen our knowledge of the intricate relationships between the mi-
crobiome and human health in order to develop ways to use the microbiome for therapeutic
purposes [1].

The term “human microbiota” has been described as the group of symbiotic microor-
ganisms that co-occur with the human organism in balance and without causing damage.
The term “microbiome” refers to the entire microbiota habitat, including microorganisms,
their genomes, and the surrounding environment. Likewise, the aim of the use of prebiotics
and probiotics in nutritional therapy is to alleviate these imbalances in the microbiota,
and, in parallel, an important industry linked to these nutritional supplements, also called
“nutraceuticals”, has emerged. At the same time, the concept of nutribiotics emerged,
understood as a general term to refer to the set of microbiotics for human use, also called
microbial biotherapy.

The role of probiotics in regulating intestinal health has been widely studied in recent
decades [3]. Besides that, the concept of prebiotics has been developed, and, later on, the
concept of synbiotics, postbiotics, and para-probiotics [4–9]—in the form of nutraceuticals
as oral supplements and for topical applications—was also developed, with the aim of
repairing or balancing the microbiota. All these concepts are summarized in Figure 1.
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Mourelle et al., 2023) [10].

Since the Russian scientist Elie Metchnikoff (1845–1916) coined the concept of probiotic
in 1907 [11], numerous studies followed; finally, a consensus definition was proposed by
the International Scientific Association of Probiotics and Prebiotics (ISAPP) in 2014, 2017,
and 2021, which includes prebiotics, probiotics, and postbiotics definitions. Probiotics were
defined as “live microorganisms that, when administered in adequate amounts, confer a
health benefit on the host” [4]. Prebiotics were defined as “a substrate that is selectively
utilized by host microorganisms conferring a health benefit” [5]. Postbiotics were defined as
follows: “preparation of inanimate microorganisms and/or their components that confers
a health benefit on the host” [8]. Later on, the concept of synbiotics emerged, being defined
as the combination of both prebiotics and probiotics [8].

The current definition of probiotics does not include inactivated or dead cells; there-
fore, the concept of postbiotic has emerged more recently, referring to the use of dead
or inactivated cells (non-viable microorganisms), cell extracts, or metabolites of these
microorganisms that can provide favorable effects on human health, observing that the
action of probiotics depends fundamentally on their metabolites, rather than on living
organisms [12,13]. Later on, the concept of para-probiotics emerged, consisting of inacti-
vated, dead, or non-viable microbial cells of intact or broken probiotics containing cellular
components of probiotic cells after lysis [14]. Thus, in the recent ten years, several studies
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have been conducted using inactivated or heat-killed probiotics [15]; however, the terms
‘postbiotics’, ‘para-probiotics’, and ‘inactivated probiotics’ have been used indistinctively
in multiple research studies [16–20]. Postbiotics include the metabolites generated by the
microbiota, such as exopolysaccharides, short-chain fatty acids (SCFAs), cell wall fragments,
enzymes/proteins, and other metabolites [21], but also structural ones, such as teichoic
acids, peptides, and plasmalogens, or ones based on their basic composition (proteins,
carbohydrates, lipids, vitamins, etc.) [22]. In this context, several postbiotics have been
shown to improve gut health by reinforcing the gut barrier, reducing inflammation, and
promoting antimicrobial activity against gut pathogens [23].

According to the most recurrent definition, para-probiotics, also known as non-viable
probiotics, inactivated probiotics, tyndallized probiotics, or ghost probiotics, are “non-
viable microbial cells (either intact or broken), or crude cell extracts, which, when ad-
ministered (orally or topically) in adequate amounts, confer a benefit on the human or
animal consumer” [7,24]. A recent review by Mehta et al. [25] focused on the ability of
different types of para-probiotics and postbiotics to modulate the immune system. The
most used strains to develop as para-probiotics are Lactobacillus and Bifidobacterium strains.
The postbiotic components that modulate the biological reactions include lipoteichoic
acids, bacteriocins, SCFAs, peptidoglycan, and exopolysaccharides [25]. Some studies
showed that prescribing live probiotic cells to people with weakened immune systems
increases inflammatory responses. In such cases, a combination of dead cells can be a
good alternative. Thus, the use of killed or inactive probiotics created a new field and
various scientists tried to come up with new terms to describe the mentioned cases [26].
Additionally, Lee et al. [9] described the techniques to obtain para-probiotics, which include
thermal treatments, sonication, ionizing radiation, high pressure, ultraviolet rays, and
pH modification.

In terms of efficacy, Cuevas-González et al. [6] revised the bioactivities, health-promoting
effects, and applications, among other issues, related to post and para-probiotics, referring
that in vitro and in vivo studies have shown that some postbiotics and para-probiotics
exhibit bioactivities that are immunomodulatory, anti-proliferative, anti-inflammatory,
antimicrobial, and antioxidant. The authors postulated that these bioactivities could be
involved in the observed health-improving effects, both in clinical trials and in humans;
however, more investigations are needed, as the mechanisms of action and the signaling
pathways involved have not been fully elucidated. They concluded that para-probiotics
and postbiotics are of great interest for the development of nutraceutical products due to
their potential for improving health [6].

In the recent decade, several studies evaluated the potential uses of pre-, pro-, syn-,
post-, and para-probiotics mainly focusing on inflammatory bowel diseases [27], other
inflammatory diseases, and even in brain dysfunction, oral cavity dysbiosis, and a few of
them related to skin diseases [9,14,23,28]. There are also studies in pregnancy, showing that
reduced microbiome diversity (dysbiosis) during pregnancy, cesarean delivery, prematurity,
and formula feeding can bring on dysbiosis in the newborn; so, microbiota therapy may
be a path to restore eubiosis in pregnant women and their babies [29]. Moreover, the use
of probiotics in the course of antibiotic therapy does not have enough evidence. Éliás
et al. [30] conducted a systematic review and meta-analysis of randomized controlled
trials that evidenced differences in gut microbiome diversity between patients receiving
antibiotic therapy with and without concomitant probiotic supplementation, showing that
the results of available randomized controlled trials cannot endorse supplementation with
probiotics along antibiotic therapy to avoid decreasing microbiome diversity [30]. On the
other hand, other studies showed that probiotics can be used to change the microbiome,
but an individual approach is needed. Patil and Singh [31] suggested that by studying and
harnessing individualized microbiota, personalized probiotic therapies could help improve
the microbial environment and aid in improving overall health. However, more studies
and partnerships between different fields are needed [31].
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On the other hand, there is a great field of interest regarding the use of microbiotics
and nutribiotics in foods, both for animal nutrition and for humans in terms of functional
foods [32], and also in the pharmaceutical industry [22,33].

Finally, it is worth mentioning that multiomics (defined as a biological analysis ap-
proach in which the data sets are multiple “omes”, such as the genome, proteome, tran-
scriptome, epigenome, metabolome, and microbiome) is a useful tool to select probiotics
and understand their functions in the host microbiome, ensuring that probiotics and the
microbiome can be better understood [34].

This review describes the growing aspects of the use of nutribiotics within the field of
nutraceuticals in skin care health, focusing on the main dermatological diseases and other
skin conditions.

2. The Skin Microbiome: A Unique Environment

The skin is a protective organ that performs important barrier functions against
external agents in addition to preventing the loss of body fluids. The cells of the epidermis,
but also the microorganisms present on its surface, intervene with barrier function.

The microbiome and the skin are part of a whole that coexists and interrelates with
each other. This invisible ecosystem of microorganisms performs important functions in
the health of the skin, protecting it against external aggressions and acting as a second
genome, interacting with other parts of the body to ensure healthy functioning. Its main
role is the defense of the skin and interrelation with the environment that surrounds it.
Furthermore, the skin microbiome has been found to play an important role in pathogen
protection, inflammatory regulation, and overall health [35].

The skin microbiome also helps maintain skin homeostasis and the epidermal barrier,
aiding in the process of epidermal renewal by the production of protease enzymes. The
secretion of lipases by the microorganisms present on the skin surface also plays a regulatory
role, since they break down the lipids secreted by the sebaceous gland. In addition, the skin
microbiome produces bacteriocins [36]. Also, quorum sensing seems to exert a critical role
on skin barrier function, with a recent study showing that interspecies quorum sensing
among bacteria in human skin is considered a necessary defense mechanism to suppress
the ability of Staphylococcus aureus to damage the epidermis [37].

Over the recent few years, several studies have focused on the composition of the
skin microbiome and how it changes with development or how external factors may
affect its diversity. On the other hand, it is well known that the composition of the skin
microbiome varies according to the areas of the body that constitute various ecological and
physicochemical niches, mainly related to moisture and sebum content on the surface of
the skin [38]. These differences influence resident bacteria and fungi; oily surfaces such as
the forehead harbor lipid-loving bacteria that differ from dry areas, such as the forearm, in
which there is lower microbial density [39]. In this regard, Cutibacterium spp., Staphylococcus
spp., and Streptococcus spp. are the most abundant bacteria on dry sites; Staphylococcus
and Corynebacterium spp. prefer moist areas; on sebaceous sites, lipophilic Cutibacterium
species (spp.) are the most abundant [40,41]. Malassezia spp. is the most abundant fungus
throughout the body, except in the areas of the foot that present greater diversity [42–44].
On the other hand, it has been observed that two phyla, Bacteroidetes and Firmicutes, tend to
predominate in the microbiome of adults, while Actinobacteria and Proteobacteria constitute
a smaller portion. Even so, variations can be found in the proportions of these phyla and
the species from person to person [45].

Mites are also found in the skin microbiome. Demodex spp. are characteristic of
sebaceous glands and hair follicles, with the most numerous representatives being D.
folliculorum (hair follicles) and D. brevis (sebaceous and meibomian glands) [45]. The
skin virome has also been explored; it is very heterogeneous and complex with various
polyomaviruses (Polyomaviridae), circoviruses (Circoviridae), and papillomaviruses (Pa-
pillomaviridae) [46,47]. Figure 2 summarizes the relative abundance of bacterial, fungal,
and viral components of the microbial community in different skin microenvironments.



Appl. Sci. 2024, 14, 3505 5 of 38Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 39 
 

 
Figure 2. Relative abundance of bacterial, fungal, and viral components of the microbial community 
in the different skin microenvironments: sebaceous (yellow), moist (blue), and dry (green). Toenail 
(black) does not match these major microenvironments (Adapted from Belkaid and Segre, 2014) [39]. 

Studies of the skin microbiome (microbial and genomic components) in different age 
groups have shown that skin microbial communities exhibit dynamics that vary through-
out life, developing in the early stages of life after exposure to the maternal microbiome, 
and are followed by changes in terms of diversity and community structure until old age 
[48]. 

Thus, it has been observed that the microbiomes in neonates looks like maternal vag-
inal communities when delivered vaginally (Lactobacillus and Prevotella spp.), or maternal 
skin communities if delivered by cesarean section (Staphylococcus, Streptococcus, Coryne-
bacterium, and Propionibacterium spp.). Staphylococcus, Corynebacterium, and Prevotella 
abound in premature infants, while Brevundimonas, Flavobacterium, and Sphingobacterium 
predominate in full-term infants [41]. 

At birth, the pH of the skin is neutral, but, in the first hours of life, the development 
of the cutaneous acid mantle begins, favoring colonization by commensal organisms and 
inhibiting the growth of pathogens. Breast milk contains microbes, antimicrobial metabo-
lites, IgA antibodies, and cytokines that facilitate the development of the microbiome and 
the neonatal immune response. The microbiome is influenced by close contacts, and it 
evolves throughout childhood; thus, Firmicutes (Staphylococcus and Streptococcus) predom-
inate in the skin of babies, followed by Actinobacteria, Proteobacteria, and Bacteroidetes 
[49,50]. Microbiota diversity increases at least during the first eight years of life, which 
appears to be related to a reduced dominance of Lactobacillales (especially of the genus 
Streptococcus) in the skin. In 14 year olds, there is greater interindividual variation in 

Figure 2. Relative abundance of bacterial, fungal, and viral components of the microbial community
in the different skin microenvironments: sebaceous (yellow), moist (blue), and dry (green). Toenail
(black) does not match these major microenvironments (Adapted from Belkaid and Segre, 2014) [39].

Studies of the skin microbiome (microbial and genomic components) in different age
groups have shown that skin microbial communities exhibit dynamics that vary throughout
life, developing in the early stages of life after exposure to the maternal microbiome, and
are followed by changes in terms of diversity and community structure until old age [48].

Thus, it has been observed that the microbiomes in neonates looks like maternal
vaginal communities when delivered vaginally (Lactobacillus and Prevotella spp.), or ma-
ternal skin communities if delivered by cesarean section (Staphylococcus, Streptococcus,
Corynebacterium, and Propionibacterium spp.). Staphylococcus, Corynebacterium, and Prevotella
abound in premature infants, while Brevundimonas, Flavobacterium, and Sphingobacterium
predominate in full-term infants [41].

At birth, the pH of the skin is neutral, but, in the first hours of life, the development of
the cutaneous acid mantle begins, favoring colonization by commensal organisms and in-
hibiting the growth of pathogens. Breast milk contains microbes, antimicrobial metabolites,
IgA antibodies, and cytokines that facilitate the development of the microbiome and the
neonatal immune response. The microbiome is influenced by close contacts, and it evolves
throughout childhood; thus, Firmicutes (Staphylococcus and Streptococcus) predominate in
the skin of babies, followed by Actinobacteria, Proteobacteria, and Bacteroidetes [49,50]. Mi-
crobiota diversity increases at least during the first eight years of life, which appears to be
related to a reduced dominance of Lactobacillales (especially of the genus Streptococcus)
in the skin. In 14 year olds, there is greater interindividual variation in diversity than in
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younger age groups; the number of Staphylococcus or Streptococcus species decreases, and
the amount of Actinobacteria and Proteobacteria species increases [51].

Puberty is another stage of changes in the skin microbiota; thus, Firmicutes (Strepto-
coccus spp.), Bacteroidetes, and Proteobacteria are abundant, while the fungal community
becomes more diverse [41]. The hormonal stimulus that occurs in the post-pubertal stage
entails the stimulation of the sebaceous glands, with an increase in sebum production,
favoring the overgrowth and spread of lipophilic microorganisms, such as Propionibacterium
spp., Corynebacterium spp., and Malassezia spp. [41]. At the adult stage, Corynebacterium,
Propionibacterium, Streptococcus, and Staphylococcus predominate [49]; finally, in the el-
derly population, the number of Firmicutes, including S. aureus and Cutibacterium species,
decreases [52,53], with the production of antimicrobial peptides also decreasing, thus
increasing susceptibility to bacterial infections [49].

Jo et al. [54] investigated the skin mycobiome, showing that Malassezia predominated
on the scalp, trunk, and arm skin of adults (age 20–30), and children (age < 14) had
more diverse fungal communities, for example, Eurotiomycetes, which includes common
dermatophytes, with M. globose being the most predominant in children.

3. Skin Microbiome: Influence of Intrinsic and Extrinsic Factors

The skin microbiome depends on internal (or intrinsic) and external (or extrinsic)
factors. Among the intrinsic factors, genetics, age, gender, hormones, immunity, sleep and
stress factors, and metabolism must be mentioned. The exposure of the skin to external
factors (UV, pollution, humidity, environmental bacteria, cosmetics, etc.) also has a great
influence on the skin microbiome. Skowron et al. [55] reviewed the impact of extrinsic
factors (external exposome) on the skin microbiome, and, in short, the most important are
climate, sunlight (UV radiation), hygiene and cosmetics routine, and environment (air and
water pollution, exposure to chemicals), with physical activity and diet also being factors
that can be added.

Several studies focused on internal factors, finding that among the genetic factors that
determine the skin microbiome, ethnicity seems to be secondary, although not insignificant,
since some differences have been found; for example, the number of Cutibacterium on the
armpits and scalp of males in Africa and Latin America is lower than in other ethnicities
(Caucasian, African American, East Asian, and South Asian), and differences have also
been found in the microbiomes of the arms of different ethnicities [56].

Differences linked to gender were also found; the female skin microbiome is character-
ized by a higher species diversity than that of males, probably due to several factors, such
as sweat production and the influence of hormones [57].

The relationship between the skin and gut (the so-called gut–skin axis) could explain
the influence of the stress factors and metabolism in the skin microbiome [58] as well as
nutrition [59]. Furthermore, diet and obesity were found to influence the skin microbiome,
with high-fat diets favoring the growth of Corynebacterium, probably because they promote
skin inflammation through the expression of mycolic acid. Furthermore, the balance
between Firmicutes and Bacteroidetes in obese people is altered, and, during weight loss,
changes occur in the composition of the microbiota, decreasing Firmicutes and increasing
Bacteroidetes [60].

The environment of a given individual also has great influence on the skin microbiome,
with the profession or the type of daily activity also having an effect. Some studies
suggested that the time children spend outdoors could be relevant along with other factors
(e.g., cultural differences), and the constant and close contact with animals could influence
the composition and diversity of the skin microbial communities in healthy people [61,62].
Some authors postulate that differences in the skin microbiome of urban and rural residents
may be related to the exposure to microorganisms from the soil, water, and other factors,
such as the biomass used in agriculture or livestock [63].

The external environmental conditions also have an important influence on the skin
microbiome, including temperature, humidity, and sunlight. When skin is exposed to
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UV radiation, several impacts may occur. The exposure of the skin to UV rays inhibits
the growth of S. aureus and C. acnes; the latter is associated with a decreased production
of porphyrins [64]. Furthermore, UV exposure results in a reduction in Lactobacillaceae
and Pseudomonadaceae and an overall increase in Cyanobacteria [65]. Additionally, it
has been shown that repetitive and intense exposure to UV radiation may increase the
skin’s vulnerability to infections and worsen associated symptoms, e.g., herpes simplex
virus (HSV) [66]; on the contrary, Staphylococcus aureus was reduced by UVB radiation.
However, there are benefits derived from exposure to light; thus, the antimicrobial effects
of photodynamic therapy (APDT) were demonstrated [67]; some studies suggest that
blue light treatment and conventional UV phototherapy may act beneficially in acne
vulgaris by reducing Corynebacterium acnes density [68–70]. On the other hand, several
studies concluded that the skin microbiome has a useful role in the protection against
UV irradiation, which is linked with immune responses since TNF and IL-6 activity was
observed [71].

Furthermore, using 16S ribosomal DNA and internal transcribed spacer ribosomal
DNA sequencing to profile the microbiomes, Li et al. [72] studied the microbial commu-
nities of different ages and several pathways related to aging (e.g., base excision repair,
biosynthesis of amino acids, pantothenate and CoA biosynthesis, and D-arginine and
D-ornithine metabolism and oxidative phosphorylation, among others), concluding that
the skin microbiomes may play key roles in skin aging by regulating immune responses,
UV light resistance, and the biosynthesis of different substances involved in aging.

Other authors postulated that climate change, pollution, and the loss of biodiversity,
together with other external factors, such as the role of environmental substances (pollen,
detergents, tobacco, as well as microplastics and nanoparticles) or the increase in the
consumption of fatty acids in the diet, derange the epithelial barrier, causing a leaky
epithelium and resulting in microbial dysbiosis—including commensals and opportunistic
pathogens—and translocation of this content into the interepithelial and sub-epithelial
compartments, inducing microinflammation [73].

Finally, the impact of antibiotics on the skin microbiota should be cited. The use
of antibiotics in the treatment of skin diseases is effective but may have a great impact
on skin microbiota diversity. For example, orally administered doxycycline significantly
reduces the number of C. acnes [74]; minocycline decreases the abundance of Cutibacterium,
Corynebacterium, Prevotella, Lactobacillus, and Porphyromonas [75]; lymecycline reduces the
presence of Cutibacterium and increases the number of Streptococcus, Staphylococcus, Mi-
crococcus, and Corynebacterium [76], and fluoroquinolones (pefloxacin) and macrolides
(erythromycin) significantly decrease the number of C. acnes [77].

Despite the lack of studies, some research showed that cosmetics may affect the skin
microbiome’s diversity. For example, Bouslimani et al. [78] reported that antiperspirants
and foot powders increased the diversity of the skin microbiome, but the effect disappeared
after stopping antiperspirant application, and, in contrast, arm and face lotions had little
effect on bacterial communities and archaea.

Other cosmetics, such as soap, effectively reduce the number of microorganisms.
However, too frequent use of soap or other antiseptics for hand disinfection can alter
the microbiome and reduce its diversity due to damage to the skin barrier, weakening
its function [55]. So, more studies are needed to elucidate the effects of cosmetics on the
skin microbiota.

Clothing is also of interest when studying the skin microbiome. Skin–clothing contact
can cause microorganism transference and the formation of a so-called textile and volatile
microbiome. Microorganisms that adhere to the fibers can use the lipid components of
sebum and dirt as a substrate and produce volatile substances as byproducts that contribute
to unpleasant odors [55]. Furthermore, Ferro de Oliveira et al. [79] investigated the role of
clothing on the skin microbiome, finding that different textile compositions can lead to the
growth or inhibitions of certain microorganisms. For example, Staphylococcus hominis had a
high affinity for cotton but did not grow in fleece and viscose; Staphylococcus spp. showed
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significant adhesion to textile fibers; and cotton and wool enhanced the growth of different
bacteria species, including Staphylococcus epidermidis, Enhydrobacter spp., Cutibacterium spp.,
and Micrococcus spp. Additionally, cellulose-based fibers exhibited low microbial growth
rates for most axillary bacteria, except for Staphylococcus spp., and polyester facilitated a
greater growth of Cutibacterium spp., Enhydrobacter spp., and Micrococcus spp. Therefore, the
authors revised the existing bioactive textiles based on their specificity against microorgan-
isms, i.e., antifungal, antibacterial, and antiviral textiles, and concluded that this knowledge
may be an opportunity for the development of microbiota-friendly textiles or antimicrobial
textile products capable of targeting specific populations of the skin microbiota with the
aim of alleviating skin disorders, allergies, or bad odors, preventing growth and the spread
of pathogenic microorganisms [79].

Figure 3 summarizes the intrinsic (genetics, age, gender, hormones, immunity, sleep
and stress factors, and metabolism) and external factors (climate, sunlight, hygiene, and
cosmetics routine, air and water pollution, exposure to chemicals, physical activity, and
diet) that influence the skin microbiome.
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4. Skin Microbiome and Dermatological Disorders

It is very well known that the skin microbiome plays an important role in developing
and maintaining homeostasis and in the regulation of the host immune system. Belkaid
and Segre [39] summarized the “dialogue between skin and immune system” as follows:
Microorganisms present on the surface and skin appendages (bacteria, fungi, viruses) can
produce antimicrobial peptides and regulate the production of antimicrobial peptides by
keratinocytes as well as the production of immune mediators, such as complement and
IL-1. These molecules can directly or indirectly improve skin immunity by improving
cellular microbicidal function and by promoting cytokine production and the recruitment
of effector cells. Furthermore, IL-17 production by the microbiota may promote the effector
function of keratinocytes against invading microbes. Additionally, skin-residing microbes
can release defined metabolites that can be captured directly by skin-residing dendritic
cells [39].

Skin disorders such as acne, atopic dermatitis, and psoriasis have all been associated
with dysbiosis of the skin microbiota. Dysbiosis is the alteration in the composition,
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activity, or distribution of the cutaneous microbiota. According to Mustari et al. [80], three
mechanisms can be involved: (1) overgrowth of a microbiota member (e.g., Cutibacterium
acnes in acne); (2) elimination of a microbiota member; and (3) invasion by non-member
microorganisms (e.g., Staphylococcus aureus in atopic dermatitis) [80]. Dysbiosis is associated
with various dermatological conditions, such as psoriasis, atopic dermatitis (AD), seborrheic
dermatitis, acne, rosacea, vitiligo, hidradenitis suppurative, lepra, and others linked to
viruses, but it is not entirely clear if the changes in the microbiota cause diseases or whether
certain conditions cause an imbalance in microbial communities [81].

The gut microbiome also plays a role in some skin disorders; there appears to be
a bidirectional link between the gut and the skin, which in turn is linked to the body’s
homeostasis, the so-called gut–skin axis. The gut microbiota modulates the functionality
and composition of the innate and adaptive immune system, and vice versa. This fact could
explain why some skin diseases are linked to intestinal dysbiosis and an imbalance of skin
homeostasis, suggesting a role of the intestinal microbiota in the pathogenesis of several
inflammatory skin diseases [82]. Multiple studies support a connection between them, and
several skin diseases associated with gastrointestinal disorders, but more studies are needed
to attribute a cause-and-effect relationship between the gut microbiome and dermatological
conditions. For example, between 10% and 25% of patients with gastrointestinal diseases,
such as Crohn’s and celiac disease and ulcerative colitis, also have associated skin disorders,
specifically skin ulcers and psoriasis [83].

Inchingolo et al. [81] postulated that the intestinal microbiota contributes to the allosta-
sis and homeostasis of the integumentary system after any inflammatory process due to the
relationship with innate and adaptive immunity. Proinflammatory cytokines could damage
the intestinal barrier, and severe intestinal dysbiosis provokes inflammation beyond the
intestinal, and therefore low-grade systemic inflammation with skin involvement.

Many studies have shown that the overgrowth (or decline) of pathogens on the skin
is a common occurrence in various skin diseases and conditions. The main changes are
summarized in Table 1.

Table 1. Changes in the skin microbiota profile is the most frequent skin disorders.

Skin Disease or Condition Microbiome Disbalance Reference

Acne

Proliferation or presence of certain strains of
Cutibacterium acnes

Sánchez-Pellicer et al., 2022 [82]; Dreno et al., 2017 [84];
2020 [85]; Condrò et al., 2022 [86]

The relative abundance of S. epidermidis
increases at the expense of C. acnes Xu et al., 2019 [75]

C. acnes inhibits the development of
S. epidermidis Dagnielle et al., 2022 [87]; Claudel et al., 2019 [88]

Firmicutes spp., Proteobacteria spp.,
Actinobacteria spp., Staphylococcus spp., and

Streptococcus spp. are increased; S. epidermidis
is decreased

Weng & Cheng, 2022 [89]

Atopic Dermatitis

Staphylococcus aureus skin colonization Wollina, 2017 [90]

Increase in the abundance of S. aureus and loss
in anaerobic species Fyhrquist et al., 2019 [91]

Psoriasis

Increase in Streptococcus and Staphylococcus
and decrease in Malassezia and Cutibacterium Lewis et al., 2019 [92]

Taxonomic diversity reduction; increase in
Firmicutes and Actinobacteria Alekseyenko et al., 2013 [93]

Decrease in Staphylococcus epidermidis and
Cutibacterium acnes

Chang et al., 2018 [94]
that leads to a higher colonization with

Staphylococcus aureus
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Table 1. Cont.

Skin Disease or Condition Microbiome Disbalance Reference

Rosacea

Demodex folliculorum mites that are suspected
carriers of Bacillus oleronius Sánchez-Pellicer et al., 2022 [82]

Involvement of Staphylococcus epidermidis,
Demodex folliculorum, Helicobacter pylori,

Bacillus oleronius, and Chlamydia pneumonia in
pathogenesis

Zhu et al., 2023; Lacey et al., 2007; Murillo et al., 2014;
Kim HS et al., 2020; Yuan et al., 2020 [95–99]

Higher proportions of Firmicutes and
Proteobacteria

Lower proportions of Actinobacteria
Weng & Chen, 2022 [89]

Seborrheic Dermatitis

Role of Malassezia Paulino et al., 2016 [100]

Acinetobacter, Staphylococcus, and Streptococcus
dominated the skin microbiome of lesions Tanaka et al., 2016 [101]

Over-colonization of Staphylococcus epidermidis An et al., 2017 [102]

Dandruff (middle SD) increased the
colonization with Malassezia restricta and

Staphylococcus species
Wang et al., 2015 [103]

Hidradenitis suppurativa
Propionibacterium may be part of the

pathogenesis via a dysbiotic condition of the
microbiota

Ring et al., 2017 [104]

Tinea pedis

Increase in fungal diversity and decrease in
bacterial diversity compared to healthy

controls
Increase in Trichophyton rubrum

Most prevalent bacteria phyla: Firmicutes,
Actinobacteria, and Proteobacteria; Staphylococcus

(more than 30% of the bacterial genera)

McLoughlin et al., 2022 [105]

Acne is a chronic inflammatory skin disease characterized by the presence of come-
dones, papules, pustules, and sometimes nodules and scars that appear in oily areas of
the face and upper trunk. The pathogenesis of acne vulgaris is multifactorial and involves
an increased production of cutaneous sebum, hyperplasia of sebaceous glands due to
the androgenic influence, and infra-infundibulum hyper-keratinization, which leads to
ductal obstruction; proliferation, or presence of certain strains of Cutibacterium acnes and the
infiltration of inflammatory cells. In terms of skin microbiota changes, C. acnes is considered
the most likely acne pathogen, but there are several recognized sub-groups of C. acnes (I, II,
and III) and different ribotypes [82]. Thus, more investigations are needed to clarify its role
in the pathogenesis of acne. In addition to its role in inflammation, C. acnes also intervenes
in the homeostasis of the skin microbiome by interacting with other skin microorganisms,
such as Staphylococcus epidermidis, Streptococcus pyogenes, and Pseudomonas species. In the
microbiome of healthy skin, S. epidermidis may limit the over-colonization with C. acnes
strains and reduce C. acnes-induced IL-6 and TNF-α production by keratinocytes. In turn,
C. acnes may limit the proliferation of S. aureus and S. pyogenes by promoting triglyceride
hydrolysis and propionic acid secretion, which collaborates in the maintenance of the
acidic pH in the pilosebaceous follicle. Furthermore, in the pilosebaceous follicles, C. acnes
inhibits the development of S. epidermidis by the same mechanisms, hydrolyzing sebum
triglycerides, secreting propionic acid, and maintaining the acidic pH of the pilosebaceous
follicle [87,88]. In acne, a modified profile of C. acnes is observed, with different phylotypes
differing between patients with and without acne [84–86].

Weng and Cheng [89] carried out a comprehensive review in which studies on the
relationships between the skin microbiome and acne vulgaris, rosacea, and skin aging
were included. Authors summarized that in acne Firmicutes spp., Proteobacteria spp.,
Actinobacteria spp., Staphylococcus spp., and Streptococcus spp. were increased, while S.
epidermidis were decreased [89].

Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting approximately
20% of children. In 95% of cases, AD’s first manifestation appears within the first 5 years of
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life, and, in 25% of the cases, AD continues into adulthood [106]. Genetic and epigenetic
factors modulate AD: exposure to indoor and outdoor allergens and pollutants, nutrition,
and microbiome are considered to influence and contribute to the development and severity
of AD [90]. AD is characterized by an abnormal immune response; high levels of pro-
inflammatory cytokines (e.g., IL-4, IL-13, IL-22) promote skin inflammation and contribute
to barrier derangement and dysfunction. Due to inflammation, the skin may produce
antimicrobial peptides (AMPs), such as defensins and cathelicidins, which can disbalance
the skin microbiome [107].

AD has long been linked with Staphylococcus aureus skin colonization; disease out-
breaks are associated with a spread of S. aureus in injured areas of the skin and a substantial
loss of biodiversity in the skin microbiome. Staphylococcal exoproteins and superantigens
cause inflammatory reactions in the host [90]. Fyhrquist et al. [91] also reported a significant
increase in colonization by S. aureus and a loss of anaerobic species in AD. Koh et al. [108]
appointed that S. aureus isolated from patients with AD also expresses higher levels of
virulence factors and a propensity to develop biofilms to promote its colonization. So,
therapies aim to reduce S. aureus (with antimicrobials) but also aim to balance the diversity
of the skin microbiome.

Psoriasis is an immune-mediated inflammatory skin disease, the development of
which is linked to both genetic factors and external triggers [109,110]. However, its patho-
genesis is still not fully understood, and the influence of the gut and skin microbiota is
still being investigated. Psoriasis is characterized by multiple erythematous lesions with
scaly plaques that arise mainly on the elbows, knees, scalp, navel, and lower back, but,
in some cases, the disease spreads throughout the body in the form of erythroderma. In-
creased vascularization can also be found, which allows the accumulation of inflammatory
subpopulations of neutrophils, dendritic cells, and T lymphocytes.

Psoriasis is frequently associated with inflammation in other organ systems. Thus,
7–11% of patients with inflammatory bowel disease (IBD) are also diagnosed with psoriasis,
reflecting a strong association with gastrointestinal inflammation. Changes in the gut
microbiome in psoriasis are similar to those observed in patients with IBD; in both diseases,
Faecalibacterium prausnitzii, Bifidobacterium spp., Lactobacillus spp., Parabacteroides, and Co-
probacillus were underrepresented, while the abundance of Salmonella sp., Campylobacter sp.,
Helicobacter sp., Escherichia coli, Alcaligenes sp., and Mycobacterium sp. was increased [111].
Other studies showed that psoriatic exacerbation was considered to be associated with
increased colonization of Staphylococcus aureus, Candida albicans, and Malassezia in the skin
and gut [112]. Another similarity between psoriasis and IBD is the reduced abundance of
two beneficial bacteria species (Parabacteroides and Coprobacillus) observed in patients with
psoriasis and psoriatic arthritis and in those with IBD [113]. Thus, it is generally accepted
that the inflammatory and immune mechanisms of psoriasis are based on the dysregulation
of the gut–brain–skin axis [114].

Additionally, a decrease in Bacteroidetes and an increase in Firmicutes in the intestines of
patients with psoriasis compared to control patients were also found [115]. Similar findings
were reported by other authors who found an increased abundance of Firmicutes, Proteobac-
teria, and Actinobacteria, together with a decrease in Bacteroidetes in the gut microbiome of
patients with psoriasis [116,117].

Other recent studies confirmed this relationship between the gut microbiota and
psoriasis. Zang et al. [118] identified nominal protective roles of Bacteroidetes and Prevotella
in the risks of acquiring psoriasis. Moreover, some bacterial taxa were recognized as
risk factors, including Lactococcus, Ruminiclostridium 5, and Eubacterium fissicatena; but
Odoribacter demonstrated a protective effect against psoriasis [119].

When revising the role of the skin microbiome in psoriasis, studies have shown rela-
tive increases in Streptococcus and Staphylococcus and decreases in Malassezia and Cutibac-
terium [92].

On the other hand, Alekseyenko et al. [93], comparing swap samples of patients
with psoriasis and healthy controls, demonstrated that the microbiome of psoriatic lesions



Appl. Sci. 2024, 14, 3505 12 of 38

is characterized by an increase in Firmicutes and Actinobacteria and a general taxonomic
diversity reduction. Additionally, Chang et al. [94] found that the microbiome of psoriatic
skin has reduced stability compared to the microbiome of healthy skin. Further, the loss
of community stability and decrease in immunoregulatory bacteria such as Staphylococcus
epidermidis and Propionibacterium acnes may result in increased colonization with pathogens,
such as Staphylococcus aureus, which can exacerbate skin inflammation along the Th17
axis [94].

Rosacea is an inflammatory chronic skin disease that appears exclusively on the central
area of the face, such as the cheeks, nose, and chin, symmetrically, and on the central fore-
head. It is characterized by flushing, papules and pustules, telangiectasia, and sometimes
phymatous alterations, which are accompanied by stinging or itching [120]. Generally,
rosacea is classified into four morphologic subtypes: phymatous rosacea, papulopustular
rosacea, erythematotelangiectatic rosacea, and ocular rosacea [121].

The clinical manifestations of rosacea are multifactorial and are linked to abnormal
neurovascular activation, dysregulated production and release of inflammatory molecules,
and overgrowth of microorganisms that naturally inhabit the skin [122].

Demodex folliculorum is found to be implicated in rosacea; still, Demodex is unlikely to
be the only cutaneous microorganism that contributes to the disease since Demodex mites
are suspected of carrying Bacillus oleronius, a pro-inflammatory Gram-negative bacterium
that is receptive to many antibiotics recurrently used to treat rosacea [82], resulting in an
amelioration of the disease when treating it with antibiotics.

The origin of rosacea development is unclear, but several factors are involved, includ-
ing genetic factors, local skin immune imbalance, disorders of neuroimmune function, skin
barrier dysfunction, and skin microbiota dysbiosis, as well as alterations in neurovascular
circuitry [123]. The role of the microbiota in rosacea pathogenesis is supported by sev-
eral sources. Studies conducted by different authors have pointed to the implication of
Staphylococcus epidermidis, Demodex folliculorum, Helicobacter pylori, Bacillus oleronius, and
Chlamydia pneumonia in the pathogenesis of rosacea [95–99]. However, there are discrep-
ancies between the results of these investigations and the specific mechanisms by which
the microorganisms are involved in the pathogenesis of rosacea are not clear as they are
commensal microorganisms. More specifically, the distribution, relative abundance, mecha-
nisms involved, and thus the role of Cutibacterium acnes and S. epidermidis in rosacea need
to be further investigated to provide evidence for future probiotic therapy [124].

Finally, the aforementioned review by Weng and Chen [89] described that, in papulo-
pustular rosacea, the proportions of Firmicutes and Proteobacteria are higher and Actinobacte-
ria proportions are lower.

Seborrheic dermatitis (SD) is an inflammatory rash that appears on sebaceous areas of
skin, such as the scalp, face, and trunk [102]. The incidence of SD reaches the highest point
at three ages of life—infancy, puberty, and in adults over 50 years old—suggesting the role
of hormones in sebum production in its pathogenesis [45]. SD is generally associated with
Malassezia; however, its role in the development of SD is still poorly understood [100].
Some studies suggest that there are other microorganisms involved. For example, Tanaka
et al. [101] found that Acinetobacter, Staphylococcus, and Streptococcus are the dominant
genera on the skin microbiome of lesional areas affected with SD compared to healthy
skin; An et al. [102] found that patients with SD have a significant over-colonization of
Staphylococcus epidermidis, concluding that this high colonization along with alteration of
the skin barrier function, which is more permeable, contributes to the appearance of SD.

Dandruff, considered a form of middle seborrheic dermatitis, has also been found to be
linked to Malassezia. A study performed by Wang et al. [103], using molecular techniques,
showed increased colonization of Malassezia restricta and of Staphylococcus species when
compared to healthy scalps.

Other skin disorders have also been associated with skin microbiome dysbiosis.
Hidradenitis suppurativa was found to be linked to the dermal microbiota as the microbial
composition differs significantly from that of healthy individuals. Overall, the following
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five types of microbes were identified: Corynebacterium spp. (type I), Acinetobacter and
Moraxella spp. (type II), Staphylococcus epidermidis (type III), Peptoniphilus spp. and Porphy-
romonas (type IV), and Propionibacterium acnes (type V), suggesting that Propionibacterium
may be involved on its pathogenesis [104].

Tinea pedis is a dermatophyte infection that especially affects the interdigital network
and/or the sides of the feet. Different factors have been found that may be related to its
appearance, such as sweating, occlusive footwear, trauma, and an immunocompromised
state, among others. When studying the skin microbiota, epidermal samples from patients
with tinea pedis have been shown to exhibit decreased bacterial diversity and increased
fungal diversity compared to healthy controls; an increase in Trichophyton rubrum was
observed in patients with tinea pedis compared to healthy controls, with the most prevalent
bacterial phyla being Firmicutes, Actinobacteria, and Proteobacteria, while Staphylococcus
constituted more than 30% of the bacterial genera [105].

Finally, it is worth mentioning the relationship between the microbiome and melanoma.
Fortman et al. [125] revised the studies related to the microbiome and cancer, showing that
there is evidence that the gut microbiome can alter the responses to chemotherapy and im-
mune checkpoint inhibitors (ICIs). Authors concluded that preclinical and clinical studies
have demonstrated the effects of the gut microbiome’s modulation upon ICI response and
immune-related adverse event development in advanced melanoma, with significative evi-
dence supporting the ability of the gut microbiome to improve ICIs’ responses in advanced
melanoma through an increased intake of dietary fiber and a fecal microbiome transplant.

5. Nutribiotics: An Opportunity to Improve Skin Health

The history of probiotics can be tracked back to ancient times, nearly 10,000 years ago,
since probiotic microorganisms and fermented products, such as kefir, kumis, bread beer,
and wine, were very frequently used for nutritional and therapeutic purposes [126]. Know-
ing that the composition of the human microbiota is directly linked with the development
and function of the immune system, oral supplementation with prebiotics and probiotics
could be a tool for improving overall human health, but more research is needed to better
understand the interactions between the diet, the microbiome, and the immune system
to design specific diets with the aim of treating various diseases [127]. Gao et al. [128]
explain the immunological pathway of oral probiotics as follows: when probiotics enter, the
intestinal tract can interact with the host, improving intestinal homeostasis; moreover, they
take part in immunomodulation, gut microbiota homeostasis, digestion, and the absorption
of nutrients, improving the intestinal mucosal barrier.

The use of probiotics in skin care is more recent since the gut-skin axis was investigated.
Polak et al. [129] revised the use of prebiotics and probiotics in chronic skin diseases, finding
studies mainly on atopic dermatitis (children and adults) but also on acne, chronic ulcers, se-
borrheic dermatitis, and burns. Later on, in a similar revision, Kianmehr et al. [130] showed
that the administration of prebiotics, probiotics, and synbiotics has auspicious effects on
preventing and treating various inflammatory skin disorders, such as atopic dermatitis and
acne [131,132]. The oral administration of probiotics affects the intestinal microbiome and
can improve skin conditions, such as atopic dermatitis, acne, or rosacea [133,134]. Moreover,
other studies showed that using probiotics during gestation and early life can reduce the
incidence and severity of atopic dermatitis via immune modulation and by promoting
the maturation of the gut barrier’s function [130,135,136]. Additionally, probiotics were
investigated to treat different allergy illnesses, including atopic dermatitis, asthma, allergic
rhinitis, and food allergy [137]. Despite of this, Małolepsza and Dembowski [138], after
reviewing several studies, concluded that alterations in the intestinal microbiome play
an important role not only in the development and aggravation of many skin diseases
but also influence skin aging, although more research is necessary to evaluate the impact
of probiotics.

On the other hand, Pimentel et al. [139] revised the health effects of postbiotics,
including skin conditions both in vitro and in vivo, and Mehta et al. [25] discussed the
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potential of para-probiotics and postbiotics to modulate the immune system. There are
also studies about the topical use of pre-, pro-, and postbiotics for skin care, but this issue
exceeds the aim of this work.

The following sections describe the use of pre-, pro-, syn-, post-, and para-probiotics
in skin care. Table 2 summarizes the clinical studies.

Table 2. Oral pre-, pro-, syn-, post-, and para-probiotics used in skin care (clinical studies).

Skin Disease or Condition Pre/Pro/Synbiotics Key Results * Reference

Acne

Lactobacillus acidophilus and
Lactobacillus bulgaricus 80% clinical improvement Siver 1961 [140]

L. acidophilus and Bifidobacterium
bifidum Adjuvant in antibiotic therapy Marchetti et al., 1987 [141]

Lactobacillus acidophilus,
Lactobacillus delbrueckii bulgaricus,

and B. bifidum

67% reduction in lesion counts
after twelve weeks Jung et al., 2013 [133]

Lactobacillus rhamnosus SP1
Adult acne improvement

32% reduction in IGF-1 and a 65%
increase in FOXO1

Fabbrocini et al., 2016 [142]

B. lactis W51, B. lactis W52,
L. acidophilus W55, L. casei W56,
L. salivarius W57, L. lactis W58

Increase in IL-10 levels Rahmayani et al., 2019 [143]

Lactobacillus paracasei NCC2461

Inhibition of CD-4+ T cell
activation and induction of the

anti-inflammatory cytokines IL-10
and TGF-b.

Benyacoub et al., 2014 [144]

Konjac glucomannan
hydrolysates + (L. casei,

L. plantarum, L. gasseri, L. lactis)
Inhibition of bacteria growth Al-Ghazzewi et al., 2010 [145]

Escherichia coli Nissle 1917 80% clinical improvement Manzhalii et al., 2016 [146]

Bifidobacterium breve BR03 DSM
16604, Lacticaseibacillus casei LC03
DSM 27537, and Ligilactobacillus

salivarius LS03 DSM 22776 +
Solanum melongena and Echinacea

botanical extract

Decrease in the number of acne
lesions, rate of desquamation, rate
of sebum secretion, and presence

of C. acnes

Rinaldi et al., 2022 [147]

Nitrosomonas eutropha

Significant reduction in overall
severity

Reduction in the number of
inflammatory lesions

AOBiome [148]

Atopic dermatitis

Oligosaccharide
prebiotic-supplemented formula

Lower 5-year cumulative
incidence of AD Arslanoglu et al., 2012 [149]

Mixture of neutral
oligosaccharides and
pectin-derived acidic

oligosaccharides

Primary prevention of AD in
low-atopy-risk infants Grüber et al., 2010 [150]

Lactobacillus rhamnosus GG
Improvement in SCORAD

Decrease in TNF-α and fecal
α1-antitrypsin

Isolauri et al., 2000 [151]

Lactobacillus rhamnosus GG
Anti-inflammatory activity

Increased levels of IL-10 and
(TGF-β2)

Pessi et al., 2000; Rautava et al.,
2002 [152,153]

Lactobacillus rhamnosus 19070-2
and Lactobacillus reuteri

DSM 12246

Moderate improvement in clinical
severity Rosenfeldt et al., 2003 [154]

Lactobacillus rhamnosus GG Decreased proportions of IgA-
and IgM-secreting cells Nermes et al., 2011 [155]

Bifidobacterium lactis HN019 and
Lactobacillus rhamnosus HN001

Improvement in natural killer cell
and phagocytic activity Ouwehand et al., 2009 [156]
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Table 2. Cont.

Skin Disease or Condition Pre/Pro/Synbiotics Key Results * Reference

Atopic dermatitis

Lactobacillus rhamnosus GG,
Lactobacillus acidophilus GKA7,
Bifidobacterium longum GKL7,
Lactobacillus plantarum GKM3,

Bifidobacterium bifidum GKB2, and
Lactobacillus paracasei GKS6 +

inulin, isomalto-oligosaccharides,
and fructo-oligosaccharides

Improvement in EASI with no
adverse effects

Increase in Bacteroides fragilis and
Lactobacillus acidophilus

Choy et al., 2023 [157]

Psoriasis

Bacillus indicus (HU36), Bacillus
subtilis (HU58), Bacillus coagulans

(SC208), Bacillus licheniformis
(SL307), and Bacillus clausii

(SC109) + fructooligosaccharides,
xylooligosaccharides, and
galactooligosaccharides

Improvement in PASI, DLQI,
inflammatory markers, and skin

thickness
Buhas et al., 2023 [158]

Lactobacillus sporogenes Lesion involution in pustular
psoriasis

Vijayashankar and Raghunath,
2012 [159]

Rosacea

Escherichia coli Nissle 1917

Improvement in quality of life
and clinical signs of dermatosis

Increase in IgA levels to
normal values

Suppression of the
proinflammatory cytokine IL-8

Manzhalii et al., 2016 [146]

Doxycycline (40 mg/day) +
Bifidobacterium breve BR03 and

Lactobacillus salivarius LS01
No relapse or flare-up of disease Fortuna et al., 2016 [160]

Seborrheic dermatitis Lactobacillus paracasei NCC 2461
Improvement in adherent

dandruff, erythema, and the
global clinical score

Reygagne et al., 2017 [161]

Wound healing

Lactobacillus plantarum,
Lactobacillus casei, Lactobacillus
acidophilus, and Lactobacillus

rhamnosus

Lower incidence of surgical site
infections, foot ulcer infection,

and burn infections
Fijan et al., 2019 [162]

Ageing and photoaging

Lactobacillus plantarum HY7714
Improvement in skin hydration,

gloss, elasticity
Decreased wrinkle depth

Lee et al., 2015 [163]

Lactobacillus johnsonii La-1 Restoration of CD1a Langerhans
cell markers after UV radiation Peguet-Navarro et al., 2008 [164]

Lactobacillus johnsonii La-1,
lycopene, and β-carotene

Increase in intercellular adhesion
molecule-1 (ICAM-1) ** Marini et al., 2014 [165]

Butyrate supplementation Counterbalance age-related
microbiota dysbiosis Boyajian et al., 2021 [166]

L. casei Shirota
B. animalis ssp. lactis HN019 Improvement in innate immunity Dong et al., 2013; Miller et al.,

2017 [167,168]

Bifidobacterium longum subsp.
longum BB536, B. longum subsp.

infantis M-63, Bifidobacterium breve
M-16V and B. breve

Improvement in mental condition
and bowel movement

Decrease in body mass index
Inoue et al., 2018 [169]

Lactobacillus johnsonii +
carotenoids

Prevention of UV-DL-induced
decrease in Langerhans

cell density
Increase in factor XIIIa+ type I

dermal dendrocytes
Reduction in dermal
inflammatory cells

Bouilly-Gauthier et al., 2010 [170]
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Table 2. Cont.

Skin Disease or Condition Pre/Pro/Synbiotics Key Results * Reference

Other skin care:
skin barrier and hydration

B. breve strain Yakult +
galactooligosaccharides

(in fermented milk)

Optimum level of skin hydration,
and decreased cathepsin L-like

endopeptidase activity and
phenol content in serum and urine

Kano et al., 2013 [171]

L. casei
Reduction in transepidermal
water loss (TEWL) and skin

flakiness
Saito et al., 2017 [172]

Other skin care:
melasma

Lactococcus lactis, Lactobacillus
acidophilus, Lactobacillus casei,

Bifidobacterium longum,
Bifidobacterium infantis, and

Bifidobacterium bifidum,
+fructo-oligosaccharide, skim milk

powder, lactose, maltodextrin,
and citric acid

Reduction in melasma score Piyavatin et al., 2020 [173]

Systemic lupus erythematous L. helveticus, B. infantis, B. bifidum +
fructo-oligosaccharides

Decrease in systemic
inflammation

Mitigation of SLE disease activity
Widhani et al., 2022 [174]

Oral mucositis

L. rhamnosus GG

Protective effect against oral
mucositis in patients with cancer

Österlund et al., 2007 [175]

Kefir containing Lactobacillus spp.,
and Bifidobacterium spp. Topuz et al., 2008 [176]

L. brevis CD2 Sharma et al., 2012 [177]

B. longum, L. lactis, and
Enterococcus faecium Jiang et al., 2019 [178]

L. brevis CD2 De Sanctis et al., 2019 [179]

L. plantarum MH-301, B. animalis
subsp. Lactis LPL-RH,

L. rhamnosus LGG-18, and
L. acidophilus

Xia et al., 2021 [180]

Bacillus clausii Mirza et al., 2022 [181]

Atopic dermatitis

Heat-killed Lactobacillus plantarum
+ mixture of Lactobacillus

rhamnosus GG, Lactobacillus
acidophilus GKA7, Lactococcus lactis

GKL2, Lactobacillus casei GKC1,
Lactobacillus paracasei GKS6,

Bifidobacterium bifidum GKB2, and
Bifidobacterium lactis GKK2 +

inulin, galacto-oligosaccharides,
and fructo-oligosaccharides

Improvement in AD severity
Improvement in the diversity of

gut microbiome
Wang et al., 2022 [182]

Bifidobacterium animalis subsp.
lactis BS01 (LMG P-21384),

Lacticaseibacillus rhamnosus LR05
(DSM 19739), and
Lactiplantibacillus

plantarum LP14 (DSM 33401)
(Atopicina®, Milan, Italy)

Reduction in severity scores:
erythema, edema/papules,

excoriation, TIS, and
PRURISCORE

Colombo et al., 2023 [183]

Aging and Photoaging Heat-killed Lactococcus lactis
H61 cells Antioxidant activity Kimoto-Nira 2018 [184]

Other skin care:
skin barrier and hydration Heat-killed L. lactis

Decrease in melanin content and
cheek elasticity

Increase in sebum content
Kimoto-Nira et al., 2012 [185]

* Clinical studies. ** In prevention of polymorphic light eruption.

5.1. Acne

As mentioned above, the gut and skin microbiomes influence each other and contribute
to skin health through immune modulation. The preservation of skin homeostasis and the
reinforcement of the skin’s barrier function is one of the major objectives in skin care, and
the axis gut–skin may take part in it [186].
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Probiotics aim to modify the skin’s environment to prevent over-colonization of C.
acnes and other bacteria linked to acne. It has been shown that probiotics directly inhibit
C. acnes via the synthesis of antibacterial proteins and organic acids by certain bacterial
strains. Additionally, a large-scale review on acne vulgaris concluded that oral probiotic
administration was associated with a decrease in acne breakouts [187].

One of the first studies was performed by Robert H. Sawyer in 1961, who reported on
the potential benefits of probiotic Lactobacillus. He followed up 300 patients who consumed
commercial probiotics, that is, Lactinex® (Benton, UK) tablets comprising a mixture of L.
acidophilus and L. bulgaricus. The protocol consisted of 8 days of an oral probiotic, a 2-week
washout, and another 8 days of treatment. An improvement of 80% was found, with it
being more notable in cases of inflammatory acne [140]. Later on, similar results were
found in studies performed in patients under antibiotic therapy with supplementation of
oral probiotics L. acidophilus and Bifidobacterium bifidum as adjuvant therapy [141]. In 2018,
Mottin et al. [188] carried out a review of the main strains used in the treatment of acne
and atopic dermatitis, finding that those that showed the highest potential to control acne
were Staphylococcus, Streptococcus, Lactococcus, Lactobacillus, and Enterococcus, and Vitreoscilla
filiformis, Staphylococcus epidermidis, and species of Lactobacillus and Bifidobacterium in the
treatment of atopic dermatitis.

In addition, other studies demonstrated that antibiotics and oral probiotics can provide
a synergistic effect, especially in inflammatory acne. A randomized, prospective open-label
trial demonstrated that the consumption of Lactobacillus acidophilus, Lactobacillus delbrueckii
subsp. bulgaricus, and B. bifidum was as effective as minocycline in the treatment of acne,
with a 67% reduction in lesions after twelve weeks of oral treatment, finding fewer side
effects [133].

Another randomized controlled study with twenty subjects showed that the oral
administration of Lactobacillus rhamnosus SP1 concluded with an improvement or marked
improvement in adult acne compared to the placebo [142]. Researchers also measured gene
expression on the skin of IGF-1, a hormone involved in acne development, and FOXO1, a
transcription factor whose deficiency is associated with acne pathogenesis. The intervention
also showed a 32% reduction in IGF-1 and a 65% increase in FOXO1 [142].

Other studies focused on interleukin-10 serum levels in acne vulgaris before and
after 30 days of oral probiotics, which was a sachet containing B. lactis W51, B. lactis W52,
L. acidophilus W55, L. casei W56, L. salivarius W57, and L. lactis W58 with total bacterial
cells > 108 CFU. Results showed a significant increase in IL-10 levels after this therapy [143].

Additionally, in an in vitro cell culture skin model, the probiotic strain Lactobacillus
paracasei NCC2461 demonstrated dose-dependent inhibition of CD-4+ T cell activation and
induction of the anti-inflammatory cytokines IL-10 and TGF-b [144].

Moreover, in a review performed by Goodarzi et al. [189], the authors concluded that
probiotics can be effective as an adjunct therapy both in topical or oral administrations
by preventing the growth of opportunistic bacteria or by controlling inflammation. They
suggested that, despite numerous in vitro and in vivo studies, interventional studies using
more samples and long-term follow-ups to demonstrate the effectiveness of these type of
probiotics and determine potential advantages and disadvantages are needed.

Other studies combine probiotics and plants in oral formulations. For example, Tolino
et al. [190] conducted a double-blind clinical trial in men with mild to moderate acne treated
with an oral supplement containing probiotics, biotin, vitamin E, zinc, nicotinamide, beta-
sitosterol, and Boswellia serrata extract. After 12 weeks of treatment, these patients presented
clinical improvement, which was shown by the reduction in the Global Acne Grading
System (GAGS) score [190].

Oral synbiotics were also investigated. In 2010, Al-Ghazzewi et al. [145] studied
the capacity of konjac glucomannan hydrolysates and probiotics (L. casei, L. plantarum, L.
gasseri, L. lactis) to inhibit C. acnes, finding that significantly inhibited the growth of bacteria,
suggesting further research to confirm the use of this type of synbiotics as a therapeutic or
prophylactic [145].
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The Escherichia coli Nissle 1917 strain has also been used in clinical trials in patients with
acne. Manzhalii et al. [146] performed a study in which this strain was orally administered
to 82 patients with intestinal-borne dermatoses (some of them were diagnosed with acne,
and others with papular-pustular rosacea and seborrheic dermatitis). They compared two
groups of patients: one group of patients were treated with conventional topical therapy,
and other with the probiotic E. coli Nissle 1917 strain administered orally for one month. A
total of 89% of the patients treated with E. coli Nissle 1917 improved significantly, while
56% improved in the group treated with the conventional therapy. After studying the
composition of gut microbiota and other parameters, the authors concluded that the E. coli
Nissle 1917 strain was able to restore the intestinal microbiota, protect the intestinal barrier,
and ameliorate the mentioned diseases [146].

Rinaldi et al. [147] evaluated the efficacy of a mixture of the probiotic strains Bifidobac-
terium breve BR03 DSM 16604, Lacticaseibacillus casei LC03 DSM 27537, and Ligilactobacillus
salivarius LS03 DSM 22776 combined with a botanical extract of Solanum melongena and
Echinacea in subjects with mild to moderate acne over an 8-week study period through a
randomized, placebo-controlled clinical trial. Results showed a decreased presence of C.
acnes, number of acne lesions, rate of sebum secretion, and rate of desquamation in patients
who were treated with the probiotic mixture and the botanical extract as well as the mixture
of both, concerning placebo treatment. The most notable effects were observed with the
probiotic mix plus the botanical extract [147].

The ammonia-oxidizing bacteria Nitrosomonas eutropha was also used to treat adult
patients with mild or moderate acne, finding that, after 12 weeks of treatment, a significant
reduction in overall severity was seen, along with as a tendency of a reduction in the
number of inflammatory lesions compared to the control group [148].

Topic probiotics could also be useful in treating acne. The production of short-chain
fatty acids (such as succinic acid) on the skin can inhibit C. acnes growth [191]. Lactic
acid [192] and ceramide [193] produced after topical probiotic administration showed
direct antimicrobial activity against C. acnes.

Additionally, Kang et al. [194] used a cell-free culture supernatant from E. faecalis SL-5
in patients with mild to moderate acne with a topical application. The study concluded
that this bacteriocin was able to reduce inflammation; thus, researchers suggested that E.
faecalis could be an alternative option in future acne therapy [194].

Additionally, a bacteriocin produced by Lactococcus sp. HY499 exerted an inhibitory
effect on inflammatory and pathogenic bacteria in the skin, such as S. epidermidis, Staphy-
lococcus aureus, S. pyogenes, and P. acnes, without affecting the growth and proliferation
of fibroblasts. The authors recommended this bacteriocin as an antimicrobial in cosmetic
formulations [195].

5.2. Atopic Dermatitis

There are few studies about the use of oral prebiotics to prevent atopic dermatitis. A
meta-analysis by Osborn and Sinn [196] analyzed 4 studies (1218 infants) exploring the
effect of specific prebiotics in the prevention of allergy. They found a significant reduction in
eczema when using a fructooligosaccharide and galactooligosaccharide combination [196].
Additionally, another research study showed that infants at risk of atopy who were fed
with an oligosaccharide prebiotic-supplemented formula during the first 6 months of
life had a significantly lower cumulative incidence of AD in 5 years [149]. Furthermore,
a formula containing a specific mixture of neutral oligosaccharides and pectin-derived
acidic oligosaccharides was effective as the primary prevention of AD in low-atopy-risk
infants [150]. Additionally, Kim et al. [197] demonstrated that AD-like skin lesions induced
in NC/Nga mice were reduced via an oral administration of a prebiotic diet (long-chain
fructooligosaccharides, inulin, or β-glucan), and intestinal microbiota richness and diversity
were also increased with this prebiotic treatment.

Several studies confirm the positive effects of oral probiotic supplementation in AD.
Fanfaret et al. [198] reviewed the most relevant articles related to the use of probiotics or
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prebiotics alone and in combination, finding that the most studied probiotics strains were
Lactobacilli and Bifidobacteria. However, the authors concluded that the results are difficult
to interpret as, in many studies, the authors suggest that the disease may tend to improve
over time in some groups of patients [198].

Oral supplementation with Lactobacillus rhamnosus GG (LRGG) for 1 month caused
a significant improvement in the AD severity score of the atopic dermatitis (SCORAD)
index with decreased levels of inflammatory markers, such as tumor necrosis factor (TNF-
α) and fecal α1-antitrypsin [151]. LRGG also demonstrated anti-inflammatory activity
with significantly increased levels of IL-10 and transforming growth factor-β2 (TGF-β2) in
patients with AD [152,153]. In addition, the administration of probiotic Lactobacillus strains
(a mixture of Lactobacillus rhamnosus 19070-2 and Lactobacillus reuteri DSM 12246) to children
with AD has been shown to result in a moderate improvement in clinical severity [154].

Other studies in vitro and in vivo confirmed the potential use of probiotics in AD.
Lactobacillus casei (LC) is one of the most studied species. Several studies in vivo and in vitro
showed that LC may exert an immunomodulatory effect, and the active component has
been identified as a protein P14 that has been shown to selectively downregulate serum IgE
and interleukin-4 cytokine levels as well as the AD index and scratching score in AD-like
NC/Nga mice [199].

Kim et al. [200,201] investigated the immunomodulatory capacity of Duolac ATP, a
mixed formulation of probiotics, composed of four different strains of probiotics: L. casei
CBT LC5 (KCTC12398BP), L. plantarum CBT LP3 (KCTC10782BP), L. rhamnosus CBT LR5
(KCTC12202BP), and B. lactis CBT BL3 (KCTC11904BP), both in vitro and in vivo [200,201].
Results showed that Duolac ATP regulated IL-10 and TGF-beta expression and allowed
DCs to become functionally tolerant and potentially induce Treg differentiation. Addition-
ally, this formulation regulated transcription factors and cytokines to drive naïve T cell
differentiation toward Th1 lineages. The authors concluded that this formula could be a
good ally in the management of AD symptoms and serve as an immunomodulatory agent
for AD [201].

In another study, the probiotic strain Lactobacillus rhamnosus GG decreased the pro-
portions of IgA- and IgM-secreting cells in babies with AD. There were no significant
differences in the species composition of intestinal bifidobacteria between the studied
group and the control group. On the skin, bacterial counts of the genus Bifidobacterium
versus Clostridium coccoides in treated and untreated infants were similar [155]. Additionally,
the oral administration of probiotic bacteria Bifidobacterium lactis HN019 and Lactobacil-
lus rhamnosus HN001 has been observed to improve natural killer cells and phagocytic
activity [156].

Later studies showed that AD symptoms can be improved using Lactobacillus paracasei
KBL382 isolated from the feces of healthy Koreans. In this study, mice with Dermatophagoides
farinae extract (DFE)-induced AD were fed with L. paracasei KBL382 for 4 weeks, demon-
strating that oral administration of L. paracasei KBL382 significantly reduced AD-associated
skin lesions, epidermal thickening and serum levels of immunoglobulin E, and immune
cell infiltration. Furthermore, the administration of L. paracasei KBL382 was able to change
the gut microbiota composition in mice with AD [202].

Several studies focus on oral probiotic supplementation during pregnancy and breast-
feeding. D’Elios et al. [203] revised the efficacy of the most commonly studied probiotic
strains for the prevention and treatment of AD, concluding that probiotic supplementa-
tion during the prenatal and postnatal periods seems to reduce the incidence of AD in
infants and children who are at high risk, especially beginning in gestation and through
the first 6 months of life. The revised studies included monostrain probiotics such as
Bifidobacterium dentium [204], Lactobacillus rhamnosus MP108 [205], and heat-treated Lac-
tobacillus paracasei [206]; multi-strain probiotics such as Lactobacillus acidophilus La-5, and
Bifidobacterium animalis subsp. lactis Bb-12 [207], Lactobacillus paracasei and Lactobacillus
fermentum [208]; Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis [209]; and
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multi-strain Bifidobacterium lactis CECT 8145, B. longum CECT 7347, and Lactobacillus casei
CECT 9104 [210].

A systematic review and meta-analysis of randomized controlled trials performed by
Cuello-Garcia et al. [211] concluded that probiotic supplementation during the last trimester
of pregnancy or breastfeeding could reduce the risk of eczema in infants, although the
certainty of the evidence was low. Li et al. [212] achieved similar findings, concluding that
the use of probiotics during both the prenatal and the postnatal period significantly reduced
the incidence of AD; however, the analysis of studies of probiotics administered prenatally
only or postnatally only did not reach statistical significance. Similarly, Tan-Lim et al. [213]
revised randomized clinical trials related to the use of oral probiotics to prevent AD, finding
that the top 3 probiotic preparations in terms of efficacy in reducing the risk of AD are
multi-strain Lactobacillus paracasei ST11, Bifidobacterium longum BL999, and Lactobacillus
paracasei ssp. paracasei F19, Lactobacillus rhamnosus GG, and Bifidobacterium animalis ssp.
lactis Bb-12.

Recently, a meta-analysis and systematic review performed by Chen et al. [214] evalu-
ated the efficacy of probiotic supplementation for the prevention of AD in infants, showing
that oral probiotic supplementation in both mothers and infants was effective in preventing
AD in infants.

Synbiotics also seem to be useful in AD. Children with mild to moderate AD, aged 1 to
10 years, were treated with one sachet of a novel synbiotics formula daily, which contained a
mixture of six types of gastro-resistant probiotics (not less than 1.5 × 1010 CFU/sachet at the
time of production), and triple prebiotics containing inulin, isomalto-oligosaccharides, and
fructo-oligosaccharides for 8 weeks. The probiotic mixture was composed of Lactobacillus
rhamnosus GG, Lactobacillus acidophilus GKA7, Bifidobacterium longum GKL7, Lactobacillus
plantarum GKM3, Bifidobacterium bifidum GKB2, and Lactobacillus paracasei GKS6. Results
showed an important improvement in Eczema Area and Severity Index (EASI) without
any adverse effects. The presence of key microbial drivers, including Bacteroides fragilis and
Lactobacillus acidophilus, was significantly increased at week 8. The authors also found that
high responsiveness to an 8-week probiotic treatment was associated with improvements
in the gut microbiome profile with greater relative abundance of probiotic species [157].

Post- and parabiotics were also studied. In 2016, Choi et al. [215] assessed the effect
of heat-killed Enterococcus faecalis EF-2001 (EF-2001) on AD in an in vivo AD model by
repeated local exposure of Dermatophagoides farinae extract, finding that the symptoms and
pathological signs were attenuated and so was the production of Ig and the expression
of various pathogenic cytokines in the ears, lymph nodes, and splenocytes. Considering
previous studies in allergic diseases, which reported that heat-killed Lactobacillus casei
Shirota suppressed pro-inflammatory, Th1, and Th2 cytokines in splenocytes [216], authors
suggested that EF-2001 is able to significantly inhibit the inflammatory response by blocking
both Th1 and Th2 in AD lesions of the tissues in the ears as well as in the cervical lymph
nodes and splenocytes [215].

Formulas including a mixture of prebiotics, probiotics, and postbiotics have also
been tested. Patients with a diagnosis of AD were treated for 8 weeks with an oral
formula containing seven types of gastro-resistant probiotics (mixture of Lactobacillus
rhamnosus GG, Lactobacillus acidophilus GKA7, Lactococcus lactis GKL2, Lactobacillus casei
GKC1, Lactobacillus paracasei GKS6, Bifidobacterium bifidum GKB2, and Bifidobacterium lactis
GKK2, no less than 2 × 1010 CFU/capsule), a postbiotic heat-killed Lactobacillus plantarum
(10 mg/capsule), and triple prebiotics containing inulin (22 mg/capsule), galactooligosac-
charides (8.1 mg/capsule), and fructooligosaccharides (0.9 mg/capsule). Results showed
an improvement in the diversity of the gut microbiome and a significant improvement in
AD severity [182].

Colombo et al. [183] performed a real-life, multi-center, retrospective observational in-
vestigation designed to evaluate the efficacy and tolerability of a commercial pre- and post-
biotic supplement. Patients consumed a daily sachet containing a concentration exceeding
2.5 × 109 AFU (active fluorescent units) of three patented probiotic species: Bifidobacterium
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animalis subsp. lactis BS01 (LMG P-21384), Lacticaseibacillus rhamnosus LR05 (DSM 19739),
and Lactiplantibacillus plantarum LP14 (DSM 33401). Results showed a significant over-
all and even intra-individual reduction in all severity scores: erythema, edema/papules,
excoriation, TIS (Three Item Severity score), and PRURISCORE [183].

While the use of orally administered probiotics for the prevention and treatment of
AD have been largely studied, only a small number of studies have focused on the topical
application of probiotics, which may be due to the difficulty of delivering viable bacteria to
the skin, given that creams and lotions typically have to be preserved [217].

The most used probiotics and postbiotics for a topical application in AD are heat-
inactivated Lactobacillus johnsonii NCC533 [218], Aquaphilus dolomiae, and Vitreoscilla fili-
formis, which are able to reduce S. aureus colonization [219], and Lactobacillus reuteri DSM
17938, which showed a statistically and clinically significant improvement in the SCORAD
index and local SCORAD in adults suffering from AD after 4 and 8 weeks of continuous
use [220]. Previous studies showed that the production of the anti-inflammatory molecule
IL-10 by dendritic cells was increased after a local application of Vitreoscilla filiformis extracts
on skin with AD [221,222].

In a study performed by Nakatsuji et al. [223], a strain of Staphylococcus hominis A9
(ShA9) was selected and applied to the skin of patients with AD, showing that ShA9 can
inhibit skin inflammation by inhibiting quorum sensing. Phase II of clinical trials is ongoing,
and results are still not available.

As was mentioned before, Nitrosomonas eutropha (B244) is a bacterium that produces
nitric oxide, a potential anti-inflammatory molecule. In phase II of a randomized controlled
trial (RCT) in adults, B244, which was administered as a spray, induced a significant
improvement in pruritus. Additionally, an open-label phase Ib pediatric trial showed a
similar effect on itching [224].

Finally, it is also worth citing the studies of Myles et al. [225,226] on topical microbiome
transplantation with Roseomonas mucosa, which was able to reduce S. aureus colonization.

5.3. Psoriasis

Chen et al. [227] conducted an in vivo study where the oral administration of Lacto-
bacillus pentosus GMNL-77 was found to significantly decrease erythematous scaling lesions.
Real-time polymerase chain reaction showed that treatment with L. pentosus GMNL-77 sig-
nificantly decreased the mRNA levels of proinflammatory cytokines, including interleukin
(IL)-6, tumor necrosis factor-alpha, and the IL-23/IL-17A axis-associated cytokines (IL-23,
IL-17A/F, and IL-22) in the skin of imiquimod-treated mice.

Buhas et al. [158] performed a 12-week open-label, single-center clinical trial with
the aim to evaluate the efficacy of probiotics: Bacillus clausii (SC109), Bacillus coagulans
(SC208), Bacillus indicus (HU36), Bacillus subtilis (HU58), and Bacillus licheniformis (SL307),
and prebiotics such as xylooligosaccharides, fructooligosaccharides, and galactooligosac-
charides in patients with psoriasis under topical therapy. Results showed that patients with
psoriasis receiving anti-psoriatic local therapy and probiotic and prebiotic supplementation
performed better results in Psoriasis Area and Severity Index (PASI) and Dermatology Life
Quality Index (DLQI) scores, inflammatory biomarkers, and skin thickness compared with
those not receiving supplementation [158].

Finally, it is worth mentioning a case report related to the treatment of a case of pustular
psoriasis resistant to steroids, dapsone, and methotrexate that responded well to Lactobacillus
sporogenes. The patient was administered one sachet thrice daily with biotin 10 mg, and all
other drugs were stopped immediately. Within fifteen days, the fever decreased, the lesions
began to regress, and no new lesions appeared after two weeks. Therefore, the authors
concluded that future research should be conducted in this field [159].

5.4. Rosacea

According to the ROSacea International Expert Group (ROSIE), comprising European
and US rosacea experts, treatment for rosacea aims to reduce symptoms such as facial
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flushing and telangiectasias, and the eruption of papules and pustules, to prevent or
delay the exacerbation of disease manifestations as well as to maintain remission [228].
Treatments are based on topical and systemic therapies (antibiotics, retinoids, etc.), light
therapies (e.g., laser), and dermocosmetics [228]. In the literature, there is a lack of studies
focused on nutribiotics, although some are promising.

The aforementioned study by Manzhalii et al. [146] in patients with papulopustular
exanthema (including 36% with rosacea) who received the bacteria Escherichia coli Nissle
1917 as an oral probiotic as well as a standard topical therapy, demonstrated that oral
probiotics therapy had better results than patients who only received standard treatment,
improving quality of life and the clinical signs of dermatosis.

Clinical improvement was associated with the suppression of the proinflammatory
cytokine IL-8 and a significant increase in IgA levels to normal values in serum. Fortuna
et al. [160] also reported a case of rosacea with scalp involvement that was treated with
a combination of low-dose doxycycline (40 mg/day) and oral probiotics (Bifidobacterium
breve BR03 and Lactobacillus salivarius LS01) for 8 weeks, followed by probiotics alone. No
relapse or worsening of the disease was observed during the 6 months of follow-up.

5.5. Seborrheic Dermatitis

Dandruff, seborrheic dermatitis, and scalp-associated disorders showed significant
improvements after the oral supplementation of Lactobacillus paracasei NCC 2461 ST11,
observing that free and adherent dandruff, erythema, and the global clinical score improved
significantly after 56 days of oral intake of a sachet containing ST11 (1 × 109 CFU) compared
to placebo [161].

Additionally, Di Domenico et al. [229] assessed the impact of a topical oily suspension
containing Lactobacillus crispatus P17631 and Lacticaseibacillus paracasei I1688 in patients
affected by severe to moderate seborrheic dermatitis, finding that this mixture was able
to reduce symptoms and modulate the microbiome composition, showing that the topical
administration of probiotics could also be useful in seborrheic dermatitis.

5.6. Wound Healing

It has been shown that the absence of microbiota can decrease healing time; further-
more, wound infections appear when exogenous bacteria become dominant over systemic
and local host resistance factors, and only when a balance is achieved between bacteria and
the host can healing processes develop [230].

The most effective wound management strategy is to prevent infections, promote
healing, and prevent excess scarring, and probiotics may aid in skin repair by exerting
antagonistic effects against pathogens and stimulating the production of immune cells [231].
In a comprehensive review performed by Fijan et al. [162], the authors found that the
most commonly used probiotics against pathogens of wound infections were well-known
strains of the species Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus,
and Lactobacillus rhamnosus. All in vitro studies showed effective inhibitions of wound
pathogens by selected probiotics. In all in vivo studies, probiotics showed strong activities
in counteracting wound infections. Most clinical studies showed a mild or statistically
significant lower incidence of surgical site infection, foot ulcers, or burn infections in
patients using probiotics [162].

Tagliari et al. [232] investigated the effect of the perioperative oral administration of
probiotics on the healing of skin wounds in rats. The probiotic group was supplemented
with Lactobacillus paracasei LPC-37, Bifidobacterium lactis HN0019, Lactobacillus rhamnosus
HN001, and Lactobacillus acidophilus NCFM® (Raleigh, NC, USA) at a dose of 250 mg/day,
and the control group was supplemented with oral maltodextrin 250 mg/day, both daily
for 15 days. In the intervention group, a faster reduction in the wound area was observed,
and the authors postulated that this may probably be attributed to a reduction in the
inflammatory phase, an acceleration of the fibrosis process, and collagen deposition.
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On the other hand, Togo et al. [233] conducted a systematic review focused on the cur-
rently available evidence on the effect of enteral or oral probiotic therapy on wound healing
both of the skin and oral mucosa, which included seven studies involving 348 people. The
results showed that four studies reported positive results for better healing after probiotic
therapy, and none of the studies reported adverse effects or increases in wound healing
time. The authors concluded that the results do not generate strong evidence regarding the
effectiveness of probiotics for wound healing.

Later on, Tembhre et al. [234] revised the role of probiotics in chronic wounds, finding
14 articles and concluding that probiotics help eliminate pathogenic bacteria and restore
normal wound flora when applied topically. The main probiotic strains were from the Lac-
tobacillus species: L. plantarum, L. acidophilus, L. rhamnosus, and Saccharomyces cerevisiae [234].
S. cerevisiae was shown to achieve an overall improvement in the healing process; specifi-
cally provoking an increase in the expression levels of collagen type 1 and transcription
growth factor beta 1 (TGF-β1), as well as an improvement in the morphological and biome-
chanical characteristics of the healing wounds [235]. In vitro study L. acidophilus and L. casei
demonstrated antibacterial activity against Methicillin-resistant Staphylococcus aureus [236];
and L. reuteri and L. rhamnosus reduced the ability of the pathogen to induce keratinocyte
cell death [237]. Additionally, L. fermentum showed an increased wound closure concurrent
with the production of nitric oxide (gNO) [238].

Recently, Canchy et al. [239] revised the relationship between the skin microbiome and
the wound healing process. Most of the studies (as in the previous revision by Tembhre
et al. [234]) are related to probiotics topical administration, and the main probiotics strains
were again from the Lactobacillus species; the authors suggested that probiotics mainly affect
the inflammation phase, which plays an important role in wound healing impairment, and
the suspected mechanism of action is through the regulation of AMPs and, thus, control
microbial proliferation [239]. In the same revision, the use of prebiotics and postbiotics in
wound healing was revised, finding very little research on this topic. Vitreoscilla filiformis
has been shown to increase keratinocyte proliferation, epidermal regeneration in vitro, and
stratum corneum renewal rate in vivo, as well as stimulate the expression of collagen I and
IV. These results may indicate that this strain could be useful for increasing re-epithelization
in wound healing applications [222,239,240].

Another field of interest is phage therapy. Bacteriophages are viruses that infect and
replicate within bacteria which have long been used to treat human bacterial infections.
Phages are specific to the species and often the strain level in targeting and infecting bacteria.
Topical phage therapies have been reported for the treatment of several types of refractory
chronic skin infections, such as diabetic ulcer, venous stasis, or burn-mediated [241], and
other investigations focused on the benefits of using phages to reduce S. aureus biofilm
mass and to treat S. aureus infections [242,243].

5.7. Aging and Photoaging

Since Elia Metchnikoff proposed that all microorganisms are not harmful and that
several intestinal bacteria “produce useful substances against a premature aging”, favoring
instead a “healthy aging” [11], several studies were carried out to investigate the effects
of oral probiotic supplementation on skin aging and photoaging [244]. Thus, protection
and recovery from sunburn have been one of the first research objectives of probiotics for
the skin. These first studies were carried out with fractions of bifidobacteria applied to the
skin, with contradictory results [245].

The oral administration of Lactobacillus johnsonii (La1) at 108 CFU/day for 10 days
protected against the UVR-induced suppression of contact hypersensitivity, increasing IL-10
serum levels and decreasing epidermal Langerhans cell density [246]. Additionally, another
study demonstrated that Lactobacillus sakei lipoteichoic acid inhibited MMP-1 induced by
UVA in normal human dermal fibroblasts [247].

Kim et al. [248] evaluated the effect of Lactobacillus plantarum HY7714 against UVB-
induced photoaging in human dermal fibroblasts and hairless mice. The results showed
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that treatment with L. plantarum HY7714 effectively recovered UVB-reduced procollagen
expression by inhibiting UVB-induced matrix metalloproteinase (MMP)-1 expression in
human dermal fibroblasts. Furthermore, the oral supplementation of L. plantarum HY7714
showed an inhibition of the number and depth of wrinkles in hairless mouse skin and also
was able to inhibit UVB-induced epidermal thickness in mice. In addition, zymography
western blot data also demonstrated that L. plantarum HY7714 effectively inhibited MMP-13
expression as well as MMP-2 and -9 activities in dermal tissue [248].

Additionally, a randomized double-blind clinical trial demonstrated the antiaging
effect of the oral administration of L. plantarum HY7714 (1010 CFU/day for 12 weeks), with
a significant improvement in the hydration, shine, and elasticity of the skin and also in the
reduction in the depth of wrinkles [163].

Gueniche et al. [246] showed that oral supplementation with Lactobacillus johnsonii
at 108 CFU/day for 10 days was able to protect against the UVR-induced suppression
of contact hypersensitivity, decreased epidermal Langerhans cell density, and increased
IL-10 serum levels. Furthermore, in a randomized, double-blind controlled trial, the
oral administration of Lactobacillus johnsonii La-1 demonstrated a restoration of CD1a
Langerhans cell markers compared to placebo on day 4 after UV irradiation [164].

Weill et al. [249] investigated the effect of lipoteichoic acid (LTA) from Lactobacillus
rhamnosus GG against UV-induced carcinogenesis in hairless mice. The results showed that
T-cells in the inguinal lymph node of LTA-treated mice produced higher levels of interferon-
gamma in lymph nodes and numbers of total, helper, and cytotoxic T-cells compared to
controls. A delay in tumors induced by ultraviolet radiation was also found.

Other studies confirmed the use of Lactobacillus to prevent aging. Tyndallized Lacto-
bacillus acidophilus was shown to suppress matrix metalloproteinases (MMPs) for wrinkle
prevention in photoaged skin through the inhibition of elastase activity [250,251] and also
exerted anti-melanogenesis activity by inhibiting the cAMP pathway and suppressing
melanin secretion [251].

Bifidobacterium breve strain Yakult (BBY) was also investigated in hairless mice and was
shown to be able to suppress UV-induced elastase and IL-1beta production and prevent
the loss in elasticity associated with exposure to UV [252]. Similar studies demonstrated
that the administration of Bifidobacterium breve B-3 to hairless mice suppressed changes in
transepidermal water loss, skin hydration, and epidermal thickening and reduced damage
to the basement membrane and tight junction structure induced by chronic UVB irradiation,
showing a protective effect on skin photoaging [253].

Several studies performed by Kimoto-Nira (2018) focused on Lactococcus lactis H61,
finding that the oral intake of heat-killed or live cells improved skin status in Japanese
women; in addition, heat-killed cells of strain H61 demonstrated an antioxidant effect [184].

The prevention of polymorphic light eruption has also been studied. Marini et al. [165],
in a study with light-sensitive patients, investigated the administrations of a combination of
Lactobacillus johnsonii La-1, β-carotene, and lycopene; the results showed that this mixture
was able to improve the alteration, and an increase in intercellular adhesion molecule-1
(ICAM-1) was also observed, suggesting an immunological response.

Prebiotics seem also to be useful for preventing aging. A diet rich in SCFA-producing
dietary fibers may also help age-related microbial dysbiosis and, in turn, suppress the
senescent phenotype. That is the case of butyrate supplementation which was demonstrated
to be able to counteract age-related microbiota dysbiosis [166].

Recently, the term “gerobiotics” has been proposed by Tsai et al. [254] to define those
probiotic strains and their derived postbiotics and para-probiotics that have been shown
to reduce physiological aging processes by attenuating the mechanisms of aging, thus
improving the health span of the host. In an extensive review, the authors highlight
the importance of the new field of gerobiotics, research and updating, biomarkers for
potential targets, and provide recommendations for the development of gerobiotic products,
highlighting its potential to improve health and longevity in the future. In this review,
several strains were highlighted. B. longum BB68, L. gasseri SBT2055, L. fermentum MBC2,
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B. infantis ATCC15697, and B. subtilis PXN21 (in C. elegans model) were able to increase
lifespan. L. brevis OW38, L. paracasei PS23, and L. paracasei K71 (in mice model) were
able to increase memory and/or cognition; L. plantarum AR501 (in mice model) reduced
liver damage; L. helveticus KLDS1.8701 improved the gut microbiota and memory. In rat
models, L. plantarum NDC 75017 increased learning and memory, and L. fermentum DR9
improved exercise capacity [254]. Bifidobacterium animalis ssp. lactis HN019 and L. casei
Shirota improved innate immunity in humans [167,168]. Additionally, supplementation
with a mixture of Bifidobacterium longum subsp. longum BB536, B. longum subsp. infantis
M-63, Bifidobacterium breve M-16V, and B. breve was able to improve mental condition and
decrease body mass index in humans [169].

Teng et al. [255] revised the mechanisms of action of probiotics in photoaging, con-
cluding that oral and topical probiotics, by modulating the skin microbiome and gut–skin
microbial interactions, could be useful in preventing and treating skin photoaging through
multiple pathways, including reducing oxidative stress, the inhibition of ECM remodeling,
the inhibition of inflammatory cascade reactions, and the maintenance of immune home-
ostasis [255]. Most of the studies are in vitro and in vivo, and a few of them are clinical
studies. An example is the investigation performed by Bouilly-Gauthier (2010) to assess
an oral supplement containing Lactobacillus johnsonii and nutritional carotenoids on early
UVR-induced skin damage, finding that intake of this mixture for 10 weeks prevented
UV-DL-induced decrease in Langerhans cell density and increase in factor XIIIa+ type I
dermal dendrocytes and reduced dermal inflammatory cells [170].

5.8. Other Uses of Nutribiotics

One of the main issues in skin care is the maintenance of skin barrier and hydration.
A double-blind trial involving combinations of probiotics and prebiotics (B. breve strain
Yakult + galactooligosaccharides) supplemented with fermented milk (100 mL/day for
4 weeks) resulted in the maintenance of an optimal level of skin hydration, a decrease
in the activity of cathepsin L-type endopeptidase and the phenol content in serum and
urine, exerting beneficial effects on both the intestine and the skin [171]. Additionally,
a trial with L. casei (1 × 1011 bacteria/day for 8 weeks) conducted by Saito et al. [185]
demonstrated a significant reduction in TEWL (trans-epidermal water loss) and skin
flakiness [172]. Furthermore, the oral administration of heat-killed L. lactis (60 mg/day for
8 weeks) significantly modulated various skin properties, such as skin elasticity, melanin
content, and sebum content, with a notable effect in the younger age groups. And a
para-probiotic prepared from Kimchi-derived Lactobacillus plantarum K8 improved the skin
hydration in human keratinocyte [256].

Taking into account that skin immune conditions, such as acne, rosacea, and atopy, are
associated with skin barrier disruption and that the restoration of this barrier is associated
with an amelioration of the conditions [257], the topical application of probiotics is also
considered. For example, Gueniche et al. [258] found Lactobacillus paracasei CNCM I-2116
(ST11) to inhibit P-substance-induced skin inflammation and accelerate the regeneration,
contributing to epidermal barrier repairment; finding that significantly eliminates all the
effects of P-substance, including vasodilatation, edema, mast cell degranulation, and TNF-α
release compared to the controls. Moreover, the ST11-associated skin barrier recovery was
found to be accelerated in an ex vivo skin culture [258]. In a review performed by Benyacoub
et al. [144] related to the immune modulation properties of Lactobacillus paracasei NCC2461
(ST11) strain, the authors concluded that this strain contributes to the reinforcement of the
skin barrier function and modulates the skin’s immune system, reducing skin sensitivity,
which leads to an improvement in defenses and the preservation of skin homeostasis.

Melasma could be also a target for nutribiotics. Piyavatin et al. [173] performed an
experimental study employing a prospective, double-blind, randomized controlled trial
in patients suffering from facial melasma. Participants were randomly treated with oral
synbiotics or placebo, one sachet daily for 12 weeks; melasma severity and skin health
were evaluated at baseline at weeks 4, 8, and 12. Synbiotics consisted of a combination
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of 50 billion CFUs of six probiotics strains: Lactobacillus acidophilus, Lactococcus lactis, Lac-
tobacillus casei, Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium infantis,
with prebiotic fructo-oligosaccharide, skim milk powder, lactose, maltodextrin, and citric
acid. The results showed that the melasma score in the synbiotics supplement group was
significantly lower than that in the placebo group [173].

Regarding the use of probiotics in systemic lupus erythematosus (SLE), a systematic
review performed by Mirfeizi et al. [259] identified 22 articles examining the effects of
probiotics on SLE. These studies, which include in vivo tests, in vitro research, and clinical
trials, indicated that probiotics may be effective against inflammation, improving immuno-
logical responses as well as the metabolic profiles in SLE patients. The main strains were
Lactobacillus delbrueckii and Lactobacillus rhamnosus [260–263]; a mixture of Lactobacillus
rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, Lactobacillus oris, and Lactobacillus
gasseri [264]; and Lactobacillus plantarum [265]. In a double-blind randomized clinical trial,
Widhani et al. [174] investigated the effect of a synbiotic formula comprising L. helicus,
B. infantis, B. bifidum, and fructo-oligosaccharides, finding that this formulation may be
effective in decreasing systemic inflammation, reducing SLE disease activity, and inducing
changes in both the composition and functions of the intestinal microbiota.

Another field of interest is the treatment of oral mucositis. According to Feng
et al. [266], probiotics exerts a significant protective effect against oral mucositis in cancer
patients. In recent review, Liu et al. [267] found eight trials on patients who were treated
with chemotherapy or/and radiotherapy. The oral probiotics used were as follows: L.
rhamnosus GG, one capsule, two times a day during the whole chemotherapy course [175];
oral lavage with kefir containing Lactobacillus spp., and Bifidobacterium spp., swallowed,
250 mL, two times a day after meal, and first 5 days of each chemotherapy cycle [176]; L.
brevis CD2 lozenges, one lozenge, six times a day to be dissolved in the mouth and then
swallowed for 8 weeks [177]; oral rinse containing L. lactis, 15 mL, three or six times a
day [268]; combination of B. longum, L. lactis, and Enterococcus faecium on capsules two times
a day for 7 weeks [178]; L. brevis CD2 lozenges, one lozenge six times/day to be dissolved
in the mouth and then swallowed up to one week after the end of cancer treatment [179];
probiotic combination of L. rhamnosus LGG-18, L. plantarum MH-301, B. animalis subsp. Lac-
tis LPL-RH, and L. acidophilus, one capsule, two times a day for 7 weeks [180]; Bacillus clausii
oral suspension, 5 mL, two times a day, until the completion of radiotherapy course [181].
Therefore, nutribiotics may be useful in this type of sequelae of cancer therapies.

In scientific literature, oral probiotics in post-surgery can be also found. Trone
et al. [269] scrutinized how prebiotics, probiotics, and synbiotics may play a role in modu-
lating the immune response in the perioperative period and the degree to which they may
affect surgical outcomes. The authors suggested that even short-term gut microbiome pre-
habilitation could significantly alter surgical outcomes, and future studies should consider
evidence-based formulations comprising specific strains and also study the optimal treat-
ment duration. In addition, dietary interventions, such as high-fiber diets and fermented
foods, should be considered in perioperative regimens [269].

And in terms of topical application, a research study tried to develop a plaster/bandage
for the application of inhibitory substances produced by probiotics when applied to dis-
eased skin; Lactobacillales were the most active against Cutibacterium acnes, Staphylococcus
aureus, and Pseudomonas aeruginosa. The authors suggested that probiotic-containing pads
can be applied topically for the treatment of skin disorders, either replacing antibiotic
treatment or as adjunctive therapy [270].

6. Conclusions and Future Perspectives

Intense research into the gut microbiome has provided tools to explore the role of the
microbiota in other physiological systems, including the skin. Despite the scarce knowledge
about the physiological role of skin microbiota in cutaneous biology, several strategies
have been implemented to modulate the microbiome and improve skin health. The most
recent strategy is the use of pre, pro, syn, and post and para-probiotics, which seems to
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be beneficial on different skin disorders as atopic dermatitis, psoriasis, acne, seborrheic
dermatitis, etc., as well as repairing the skin barrier, preventing aging, or promoting
wound healing.

Nevertheless, a deeper understanding of the skin microbiome, the distribution of
cutaneous microbial communities, as well as the differences between microbiomes in
healthy and altered skin is needed. Thus, metagenomic technologies could facilitate the
functional characterization of the microbiome and perhaps even provide a personalized
approach to diagnosing and treating conditions underpinned by microbial dysbiosis [44].

It should also consider the potential adverse effects of probiotics, such as risk of
systemic infections, excessive immune stimulation in susceptible individuals, minor gas-
trointestinal side effects [271], or disturbances in the abundance in the gut Bifidobacteria,
as shown in subjects who take unregulated probiotics having a significantly lower rela-
tive abundance of Bifidobacteria, which could potentially have a detrimental impact on
health [272].

New investigations about the use of nanotechnology in the probiotic’s formulation
are also of great interest as its delivery without any effect on gastrointestinal digestion
is one of the most important points for their application [273]. Additionally, the genetic
engineering of microbiomes has recently become an area of interest for researchers since it
provides solutions to a significant health problem. In this context, strategies such as con-
jugative plasmids, bacteriophage, mating-assisted genetically integrated cloning (MAGIC),
and environmental transformation sequencing (ETSeq) could be effective in the genetic
modification of the microbiome [2].

In conclusion, skin microbiome has emerged as a new field with high potential to
develop innovative solutions to manage skin health and disease. Future advances in this
field may facilitate the treatment of skin dysbiosis through means that are more sensitive to
the physiology of the skin, with nutribiotics being a suitable method for skin care.
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