
Citation: Kebkal, K.; Kabanov, A.;

Kramar, O.; Dimin, M.; Abkerimov,

T.; Kramar, V.; Kebkal-Akbari, V.

Practical Steps towards Establishing

an Underwater Acoustic Network in

the Context of the Marine Internet of

Things. Appl. Sci. 2024, 14, 3527.

https://doi.org/10.3390/app14083527

Academic Editors: Feiyun Wu and

Yuehai Zhou

Received: 12 March 2024

Revised: 10 April 2024

Accepted: 17 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Practical Steps towards Establishing an Underwater Acoustic
Network in the Context of the Marine Internet of Things
Konstantin Kebkal 1 , Aleksey Kabanov 1 , Oleg Kramar 1, Maksim Dimin 1 , Timur Abkerimov 1 ,
Vadim Kramar 1,* and Veronika Kebkal-Akbari 2

1 Research Laboratory of Robotics and Intelligent Control Systems, Sevastopol State University,
Sevastopol 299053, Russia; konstantin.kebkal@gmail.com (K.K.); kabanovaleksey@gmail.com (A.K.);
rolets@yandex.ru (O.K.); tvabkerimov@gmail.com (M.D.); dimin.maksim@yandex.ru (T.A.)

2 Independent Researcher, Sevastopol 299006, Russia; veronica.kebkal@gmail.com
* Correspondence: kramarv@mail.ru

Abstract: When several hydroacoustic modems operate simultaneously in an area of mutual coverage,
collisions of data packets received from several sources may occur, which lead to information loss.
With an increase in the number of simultaneously operating hydroacoustic modems, physical layer
algorithms do not provide stable data transmission and the likelihood of collisions increases, which
makes the operation of modems ineffective. To ensure effective operation in a hydroacoustic signal
propagation environment and to reduce collisions when exchanging data between two modems
that do not have the ability to operate synchronously and to reduce the access time to the signal
propagation environment, methods of the medium access control layer using link layer protocols are
required. Typically, this problem is solved using code separation of hydroacoustic channels. If you
need to transfer over a network, this option will not work, since network transfer involves working
on the basis of “broadcast” messages, particularly between data source and data sink that remain
too far from each other, outside of their mutual audibility. In practical use, it is convenient to place
these protocols into a software environment for developing specific user applications for solving
network communication problems. This software framework allows for custom modification of
existing network algorithms, as well as the inclusion of new network hydroacoustic communication
algorithms. To build a predictive model, the DACAP, T-Lohi, Flooding, and ICRP protocols were
used in this work. The implementation is performed in Erlang. The paper presents algorithms
for implementing these protocols. A comparative analysis of network operation with and without
protocols is provided. Efficiency of operation, i.e., data rates and probabilities of data delivery,
was assessed.

Keywords: Marine Internet of Things; hydroacoustic communications; network protocols;
software framework

1. Introduction

In the domain of Marine Internet of Things (MIoT), there exists a backlog of tech-
nical solutions capable of expediting practical outcomes, particularly in the pursuit of
establishing underwater hydroacoustic networks [1].

Underwater systems that operate simultaneously, including autonomous and remotely
operated underwater vehicles (AUV/ROV), underwater sensors, and buoys, necessitate
continuous data exchange [2–5]. The same principle applies to devices functioning as a
part of group, considering the changing network geometry resulting from changes in the
relative positions of these devices [6].

MIoT provides a range of wireless communication and networking choices. These
options include acoustic, optical, radio frequency, and magnetic fusion communications for
data transmission. Among these, acoustic communication is particularly well suited for the

Appl. Sci. 2024, 14, 3527. https://doi.org/10.3390/app14083527 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7623-256X
https://orcid.org/0000-0002-3105-7283
https://orcid.org/0000-0002-4638-1385
https://orcid.org/0000-0002-8968-8352
https://orcid.org/0000-0002-0528-1978
https://doi.org/10.3390/app14083527
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083527?type=check_update&version=2

Appl. Sci. 2024, 14, 3527 2 of 29

underwater environment due to its ability to transmit over long distances, ranging from
several hundred meters to tens of kilometers [1,7–9]. However, it does come with several
limitations, such as low bandwidth, high intensity, long-duration reverberation, relatively
large Doppler spectrum expansion, etc. [10,11].

The process of addressing data transmission challenges via the hydroacoustic chan-
nel entails integrating hydroacoustic modems into the sensor modules of underwater
devices [12]. Typically, underwater acoustic modems are most effective when dealing with
a limited number of asynchronously interacting data sources or recipients.

When multiple acoustic modems operate simultaneously within an overlapping area,
collisions of data packets received from various sources can occur. These collisions result in
the loss of some or all information. As the number of concurrently operating hydroacoustic
modems increases, the stability of data transmission provided by physical layer algorithms
diminishes, and the probability of collisions rises. Consequently, the effective operation of
modems becomes compromised, and in some cases, even unfeasible.

In the context of airspace, numerous methods exist for routing and resolving data
collisions [13]. However, in hydroacoustics, these methods may not always be employed
and are typically subjected to significant limitations.

To ensure effective operation in a hydroacoustic signal propagation environment
and to minimize or eliminate collisions during data exchange and delivery between two
modems that lack synchronous operation capability, as well as to reduce access time to the
signal propagation environment, methods from the media access control layer that utilize
data link layer protocols are necessary.

Typically, this problem is addressed by employing code division or frequency division
across hydroacoustic channels, i.e., when modems operate at distinct frequencies, ensuring
non-interference. This enables underwater network subscribers to communicate either
in a “point-to-point” (P2P) format or in “multicast” mode, where each communication
occurs independently. However, if network-wide transmission is required, this approach
becomes unsuitable, as network transmission relies on “broadcast” messages and some
network nodes, particularly data source and data sink, which can stay too far from each
other, outside of their mutual audibility (operation ranges).

For transmitting data in a hydroacoustic network with constantly changing conditions
of emission and reception of signals, specialized network protocols have recently been
developed. These protocols can consider and utilize a dynamically varying number of
network nodes situated in the region of mutual audibility or (due to the asymmetry of
communication channel characteristics) one-way audibility. An essential focus in creating
network communication techniques is the design of algorithms for forming the so-called
ad hoc networks [14–16].

To manage multiple devices within the same coverage area, specialized network
layer protocols are essential. These protocols facilitate broadcasting across the underwater
network, even between data source and data sink that are separated by large distances by
the means of intermediate network nodes, so called relay nodes. Additionally, data link
layer protocols handle collisions between data packets [17–22].

In practical applications, these protocols are typically integrated into the software
development environment (framework) of specific user applications to address network
communication issues. Such a framework is commonly referred to as a software framework,
which enables users to modify the existing network algorithms within the framework and
incorporate new network communication algorithms as needed.

The article outlines an approach of developing Marine Internet of Things (IoT) [1]
systems. This approach relies on leveraging the existing technical foundations in the domain
of hydroacoustic modems and software frameworks. By doing so, it aims to enhance the
functionality of these modems, effectively transforming them into network devices.

For underwater communication systems, there are currently four advanced software
frameworks known for integrating heterogeneous communication devices and transform-
ing them into network devices. These frameworks also allow the flexible integration of

Appl. Sci. 2024, 14, 3527 3 of 29

modems with various sensor devices, including actuators, drive mechanisms, manipulators,
and sensor systems. The following software frameworks exist in the public domain and
have the following names: (1) SUNSET (developed by Sapienza University, Italy) [14],
(2) DESERT (developed by the University of Padua, Italy) [23], (3) UnetStack (developed
by the National University of Singapore) [5], and (4) EviNS (developed by Evologics,
Germany) [24].

The EviNS software [24] URL: https://github.com/okebkal/evins.git (accessed on 5
October 2022) framework is the least resource-intensive option. It offers users a broad spec-
trum of capabilities for integrating different software modules, peripherals, and systems. It
can run in real time on a low-performance processor platform, including directly on the
computing platform of a hydroacoustic modem or one of the integrated devices.

The EviNS (Evologics Intelligent Networking Software Framework) software frame-
work [24] is a compact open-source software developed in the Erlang programming lan-
guage. One of its advantages is that a set of basic programs implementing access control
protocols and routing protocols are already included in the framework.

As a part of the EviNS software framework development, two hydroacoustic modems
were chosen for testing: the uWAVE, manufactured by the Underwater Communications
and Navigation Laboratory in Russia, and the hydroacoustic S2C series modem, produced
by Evologics, Germany.

To leverage the extensive capabilities of the EviNS software framework, user applica-
tions were designed in the form of environment access control layer protocols and network
layer protocols. These applications were equipped to handle various roles, which, in turn,
enabled the technical integration of modems from different manufacturers into the EviNS
software framework. Specifically, a uWave modem command parser was developed to
incorporate the uWave modem into the program framework. For the development of user
software aimed at addressing network communication challenges in Marine Internet of
Things (IoT) systems, the **EviNS software framework** is recommended as a versatile
tool. It can be deployed either on a third-party computer or directly on the hydroacoustic
modem computing platform. When executed, it seamlessly integrates with the standard hy-
droacoustic modem software, transforming the modest hydroacoustic modem from a basic
simplex digital communication device into a fully functional network communication node.

This paper makes the following contributions:

• A model for constructing hydroacoustic networks that allows taking into account
potential implementations with modems from different manufacturers as nodes in
this network.

• Creation of a software platform for developing and configuring proprietary algorithms
for transmitting data via a hydroacoustic communications channel, which enables
the modification of the existing algorithms and the inclusion of new communication
techniques to achieve optimal settings for information transfer underwater.

• Presentation of a comparative evaluation of network performance with and without
different protocols, allowing the assessment of data transfer rates and the probability
of successful delivery.

The article is organized as follows. Section 2 highlights the versatility of the software
network add-in, demonstrating its ability to “unlink” from execution on specific hardware
and software platforms of the hydroacoustic modem. It also explores the potential for
modifying the existing protocols within the access control layer and data routing protocols.
Section 3 considers the concept of constructing the EviNS software framework. Section 4
provides details on the implementation of network and link layer protocols, which enable
data transmission even in conditions of relatively low network dynamics while minimiz-
ing energy consumption per unit of data delivered to the recipient. Finally, Section 5
presents the findings from experimental studies, followed by a discussion of the results
and conclusions.

https://github.com/okebkal/evins.git

Appl. Sci. 2024, 14, 3527 4 of 29

2. Versatility of the Software Network Add-In of the Hydroacoustic Modem

From the deployment and usage perspective, the versatility of the EviNS software
framework across various computational platforms is ensured by two factors. Firstly, the
creation of the EviNS software framework in the Erlang programming language provides a
foundation for its adaptability. Secondly, the ability for the cross-platform compilation of
the software framework, written in Erlang, further enhances its versatility.

Ensuring these two conditions, after cross-platform compilation, for instance, on a
desktop PC, the EviNS software framework can also be deployed on other platforms, par-
ticularly on embedded (low-power) computing platforms with relatively low performance.

A distinctive feature of EviNS is its utilization of the Erlang programming language
for its development, characterized by a number of advantages such as built-in support for
parallelism with distribution and duplication of computational processes, resulting in fault
tolerance. Erlang applications have proven themselves in large telecommunication systems
(distributed, reliable, soft real-time parallel systems). Another significant advantage of
Erlang is its open-source nature URL: http://www.erlang.org (accessed on 5 October 2022)
and a large number of OTP (Open Telecom Platform) libraries, enabling a wide range of
actions in telecommunication systems, from compiling ASN.1 applications (in a language
describing the abstract syntax of data used in the OSI telecommunication architecture) to
developing various user applications in Erlang and creating web servers. Moreover, OTP
libraries are also accompanied by open-source code. Erlang/OTP has its own program
execution environment, called the BEAM virtual machine. Using BEAM, Erlang source
code can be compiled into bytecode, which is a set of instructions understood by both the
compiler and the Erlang runtime environment. Compiled code managed by BEAM on one
computing platform can then be executed on other computing platforms containing the
same BEAM virtual machine. Thanks to this capability, applications written in Erlang can
run on various computing platforms, providing high flexibility in using an application
once written without the need for extensive code reworking for other computing platforms.

Furthermore, there is the possibility of cross-compiling an Erlang application for use
even on platforms that are incapable of running an operating system. In such cases, the
so-called “dockers” provided by the manufacturers of computing platforms are typically
used. A docker can be deployed on any general-purpose computing machine (usually
running on the Linux operating system) to simulate the computing environment of the
target processor. By placing the BEAM virtual machine in a docker, it can facilitate the
compilation of Erlang/OTP with subsequent transfer of the resulting code to the target
processor for execution. Additionally, by creating user applications in the Erlang language
and compiling these applications on a general-purpose computing machine using the
BEAM virtual machine, the resulting BEAM files can also be transferred for execution on
the target processor simply by copying them.

In preparing the materials for the current article, the advantages of the universality of
the EviNS software framework were utilized. Specifically, after its cross-platform compila-
tion on a desktop PC with OS Linux Debian and the Erlang virtual machine, the resulting
set of compiled BEAM files was transferred to another computing platform where OS
Linux Debian and the Erlang virtual machine were also installed. However, this computing
platform was no longer a desktop PC but instead was a compact platform, the ODROID
H2. In general, program execution can also be achieved on computing platforms such as
System-on-Module (SoM) with integrated ARM processors, including the NVIDIA Jetson
NX, Microchip Atmel, or Raspberry Pi.

From the perspective of user programs developed for the EviNS software framework,
the universality of the software networking overlay of the modem was ensured by the
inherent framework approach for constructing EviNS. In this approach, any program
configuration consisted of two parts: the first, constant part, i.e., the framework itself,
which remained unchanged from one configuration to another but contained slots where
the second (variable) part could be placed, and interchangeable modules or extension points.
With this approach, user programs created and compiled on a PC were simply added to the

http://www.erlang.org

Appl. Sci. 2024, 14, 3527 5 of 29

deployed EviNS framework on another computing platform by straightforwardly copying
them as BEAM files.

Thus, user programs could be developed for the EviNS software framework, for
example, on a desktop PC, and then simply copied for execution on another computing
platform, such as a modem platform (with the EviNS framework already deployed on it),
without the need to recompile the entire code on the new platform (i.e., both the framework
code and the newly added module code).

Figure 1 illustrates the architecture of the EviNS software framework URL: https:
//github.com/EvoLogics/evins/wiki (accessed on 5 October 2022), which (according to
the framework construction concept) includes a set of independently operating processes,
each defined as a finite state machine, with these finite state machines being controlled by
external and internal events.

Appl. Sci. 2024, 14, 3527 5 of 29

second (variable) part could be placed, and interchangeable modules or extension points.
With this approach, user programs created and compiled on a PC were simply added to
the deployed EviNS framework on another computing platform by straightforwardly cop-
ying them as BEAM files.

Thus, user programs could be developed for the EviNS software framework, for ex-
ample, on a desktop PC, and then simply copied for execution on another computing plat-
form, such as a modem platform (with the EviNS framework already deployed on it),
without the need to recompile the entire code on the new platform (i.e., both the frame-
work code and the newly added module code).

Figure 1 illustrates the architecture of the EviNS software framework URL:
https://github.com/EvoLogics/evins/wiki (accessed on 5 October 2022), which (according
to the framework construction concept) includes a set of independently operating pro-
cesses, each defined as a finite state machine, with these finite state machines being con-
trolled by external and internal events.

Figure 1. The architecture of the EviNS software framework.

From the perspective of the interaction between the user application and the modem,
the universality of the EviNS software framework is in the development of the network
modem’s command interface as an open-ended list. This means that, in addition to the
initial set of network-level commands provided by the framework developer, allowing
the control of the modem, and a set of acknowledgments (which the modem returns to
the user application to notify it of the details of command execution), users were also given
the opportunity to develop their own additional commands and macros based on them,
thus modifying/extending the functional capabilities laid down by the software frame-
work developer.

Therefore, the EviNS software framework can be considered as a universal tool for
users to develop their own applications, which can be executed on the computing plat-
form of their choice from a wide range of models. Moreover, a significant convenience is
the ability to focus solely on the “core work”, creating applications of practical interest,
without being distracted by numerous peripheral tasks related to the specifics of the com-
puting platform, or the need to link the developed application with a multitude of pro-
cesses in the computing environment to ensure its functioning. This work is performed
for the user by the constant part of the software framework.

Figure 1. The architecture of the EviNS software framework.

From the perspective of the interaction between the user application and the modem,
the universality of the EviNS software framework is in the development of the network
modem’s command interface as an open-ended list. This means that, in addition to the
initial set of network-level commands provided by the framework developer, allowing
the control of the modem, and a set of acknowledgments (which the modem returns to
the user application to notify it of the details of command execution), users were also
given the opportunity to develop their own additional commands and macros based on
them, thus modifying/extending the functional capabilities laid down by the software
framework developer.

Therefore, the EviNS software framework can be considered as a universal tool for
users to develop their own applications, which can be executed on the computing platform
of their choice from a wide range of models. Moreover, a significant convenience is the
ability to focus solely on the “core work”, creating applications of practical interest, without
being distracted by numerous peripheral tasks related to the specifics of the computing
platform, or the need to link the developed application with a multitude of processes in the
computing environment to ensure its functioning. This work is performed for the user by
the constant part of the software framework.

In general, for the development of user applications (protocols of the data link and
network layers), the EviNS software framework was considered universal in terms of
the following:

https://github.com/EvoLogics/evins/wiki
https://github.com/EvoLogics/evins/wiki

Appl. Sci. 2024, 14, 3527 6 of 29

• Its deployment and usage on various computing platforms, particularly its capability
for cross-platform compilation on a desktop PC (with OS Linux Debian and the Erlang
virtual machine) followed by transfer to another computing platform (the experimental
part was conducted on the Odroid H2 computing platform).

• The framework approach for constructing EviNS, where the user application com-
prised two parts: a constant part, which the user did not modify (it facilitated in-
teraction with the computing environment), and a variable part (it contained the
user module and facilitated the operation of the application according to the user’s
algorithm of practical interest).

• The interaction between the user application and the modem, for example, where the
set of commands of the data link and network layer protocols remained unchanged
for modems from different manufacturers; the only thing that changed was the syn-
tax analyzer of commands, adapting the command set of a modem from a specific
manufacturer to the command set typical for the software framework.

Previously, there have been no instances found in the literature of using the EviNS
software framework to integrate modems from third-party manufacturers into underwater
networks (i.e., modems not being manufactured by Evologics company, Berlin, Germany).

Therefore, in this article, before discussing an example of using the EviNS software
framework to develop a user application (a set of network layer protocols) for modems
from a third-party manufacturer, it is advisable to examine the concept of constructing the
EviNS software framework in more detail.

3. The Concept of Building the EviNS Software Framework

As mentioned earlier, the EviNS software framework is distributed under an open-
source license, such as GPL/MIT. In this form, the EviNS software framework can be used
in educational processes or in initial research in the development of the Internet of Things
in the maritime domain. However, the software framework may also include numerous
user libraries with closed-source code, thereby prohibiting the free distribution of a user’s
(specialized) version of the software framework. This type of usage of EviNS is intended
for developers of commercial software products, particularly in the creation of industrial
products for the Internet of Things in the maritime domain. (According to the terms of the
license, in this case, the developer of the commercial software product is obliged to pay a
licensing fee to the developer of the open-source software framework.)

As depicted in Figure 1, the EviNS software framework is based on the utilization
of the Erlang virtual machine and comprises a set of independently operating agents.
Furthermore, the implementation of the EviNS software framework adheres to the design
principles of Erlang/OTP concerning the structure of code written in the Erlang language,
as well as its processes, modules, and directories. Figure 2 presents the fundamental
concept of the EviNS software framework—a model of process structuring based on the
interaction of work environments and supervisors URL: https://github.com/EvoLogics/
evins/wiki/arch (accessed on 5 October 2022). Work environments encompass working
processes that perform useful computations, which may include agents, interface handlers,
and configurators. Supervisors are processes responsible for monitoring the functioning
of the work environment or the operation of other supervisors. A supervisor can restart
processes within the work environment upon detecting faults in them.

As illustrated in Figure 2, the finite state machine (FSM)—the top-level supervisor
(abbreviated as FSM-TLS)—monitors the operation of the configuration FSM (FSM-SFC)
and the agent supervisor FSM (FSM-AS) in the EviNS software framework. In the event of
a failure in the FSM-SFC or one of the FSM-ASs, the top-level supervisor FSM-TLS restarts
the corresponding process without affecting other running processes. Each FSM-AS is
configured and launched by the FSM-SFC configurator. According to its configuration,
each FSM-AS starts and oversees specific modules assigned to it, implementing the func-
tionalities of the work environment FSM (FSM-WES), the roles of the work environment
(RWE), and other FSMs, including those that are part of Erlang/OTP.

https://github.com/EvoLogics/evins/wiki/arch
https://github.com/EvoLogics/evins/wiki/arch

Appl. Sci. 2024, 14, 3527 7 of 29Appl. Sci. 2024, 14, 3527 7 of 29

Figure 2. Process structuring model—interaction of workflows and supervisors.

As illustrated in Figure 2, the finite state machine (FSM)—the top-level supervisor
(abbreviated as FSM-TLS)—monitors the operation of the configuration FSM (FSM-SFC)
and the agent supervisor FSM (FSM-AS) in the EviNS software framework. In the event
of a failure in the FSM-SFC or one of the FSM-ASs, the top-level supervisor FSM-TLS re-
starts the corresponding process without affecting other running processes. Each FSM-AS
is configured and launched by the FSM-SFC configurator. According to its configuration,
each FSM-AS starts and oversees specific modules assigned to it, implementing the func-
tionalities of the work environment FSM (FSM-WES), the roles of the work environment
(RWE), and other FSMs, including those that are part of Erlang/OTP.

The general approach in implementing the EviNS software framework involves di-
viding the process code into a common part (functional modules) and a special part
(callback modules).

The functionalities of the RWE ensure communication through interfaces supported
by the software framework. The previously mentioned interface handlers are implemen-
tations of work environment roles. To implement new functionalities of work environ-
ment roles, assigning callbacks responsible for parsing raw data into user-defined data
structures (tuples) and for reconstructing raw data from user tuples, initializing the
callback, managing the callback configurator, and stopping the callback when the process
is completed is necessary. The FSM-SFC can control multiple interface handlers according
to the agents’ configurations.

Good examples of interface handlers are roles that perform functions of command
syntax parsers for interfaces of modems from various companies (or command interface
converters), or roles acting as syntax analyzers for the widely used NMEA interface.

The functionalities of the work environment FSM (WE-FSM) support agent initiali-
zation and the interaction of agents with interface handlers. The implementation of the
WE-FSM must necessarily define callbacks responsible for creating processes and for
agent initialization based on configurator data.

Figure 2. Process structuring model—interaction of workflows and supervisors.

The general approach in implementing the EviNS software framework involves di-
viding the process code into a common part (functional modules) and a special part
(callback modules).

The functionalities of the RWE ensure communication through interfaces supported
by the software framework. The previously mentioned interface handlers are implementa-
tions of work environment roles. To implement new functionalities of work environment
roles, assigning callbacks responsible for parsing raw data into user-defined data struc-
tures (tuples) and for reconstructing raw data from user tuples, initializing the callback,
managing the callback configurator, and stopping the callback when the process is com-
pleted is necessary. The FSM-SFC can control multiple interface handlers according to the
agents’ configurations.

Good examples of interface handlers are roles that perform functions of command
syntax parsers for interfaces of modems from various companies (or command interface
converters), or roles acting as syntax analyzers for the widely used NMEA interface.

The functionalities of the work environment FSM (WE-FSM) support agent initial-
ization and the interaction of agents with interface handlers. The implementation of the
WE-FSM must necessarily define callbacks responsible for creating processes and for agent
initialization based on configurator data.

The functionalities of the finite state machine (FSM) ensure the operation of agents
such as a user-defined FSM or an FSM with a stack. To define an agent, the FSM must be
explicitly declared as a structure defining states and transitions to other states, equipped
with a transition callback. Additionally, initialization and termination callbacks must be
capable of returning initial and final events of the FSM, respectively. To handle events,
a callback performing preliminary processing of incoming messages must be provided.
Messages received from interface handlers or timers are converted into events of the
specific FSM. For each state, a corresponding handler must be created, invoked upon each
event occurrence. The implementation of a user-defined FSM must also include callbacks
responsible for creating a process, initializing it, and terminating it.

Appl. Sci. 2024, 14, 3527 8 of 29

Each agent is explicitly defined as an FSM or an FSM with a stack and is controlled by
events generated externally by interface handlers or internally by event handlers or timers.
It is important that all agents are isolated from each other to protect against failures—the
failure of one agent should not affect the behavior of another agent functioning properly.
For this purpose, the operation of each agent is isolated within its own work environment
and is supervised by a supervisor. Figure 2 demonstrates the interaction of a grouped set
of work environments controlled by a supervisor. In the case of an error in the operation
of one of the agents, the supervisor restarts its operation. The remaining agents continue
executing their programs regardless of the failure of the “faulty” agent. Thanks to the
isolated operation, errors in one or several agents do not affect the execution of the entire
computational process. Each supervisor can be supervised by another supervisor. For
greater resilience of the computational process, agents and supervisors can be duplicated.

Due to the fact that each agent is defined as a finite state machine or a finite state
machine with a stack, it is a standalone software component that provides strictly defined
functions and has a precisely defined interface specification for messaging. As mentioned
earlier, agents can act, for example, as a protocol for network data exchange, solving
computational tasks (including preprocessing sensor data), or act as an intermediate agent
between external sensors and the communication modem to optimize data exchange over
the communication channel.

Regarding the interaction between agents, they are interconnected with each other
and with external processes through interface handlers, transforming raw data received
from external interfaces into strictly defined messages, or vice versa, converting messages
received from corresponding agents back into raw data. Interface handlers necessary
for connecting to each agent are specified for each agent. Agents are independent of the
message source.

Determining the message source is the task of the configurator, which allows linking
all agents together and with external interfaces through interface handlers defined for the
corresponding agents. The agent’s configuration can either be predefined in a configuration
file or generated “on the fly” through interaction with the configuration agent observer.

Together with interface processors, the agent can be viewed as a virtual device con-
nected via customizable physical or virtual interfaces to other components of the system.

As for the types of interface handlers, the EviNS framework utilizes four types of inter-
faces for different types of interactions among agents and external applications (Figure 3)
(URL: https://github.com/EvoLogics/evins/wiki/arch (accessed on 5 October 2022)):

1. TCP Socket: this is the most common type of interface handler used for interaction
between agents as well as between agents and external applications.

2. Erlang Port: this type of interface handler serves as the primary mechanism for
communication with the external world and is exclusively used for interactions
between agents and external applications.

3. Erlang Message Queue: this interface type enables direct message exchange between
agents without the need for syntax parsing by interface handlers.

4. Cowboy HTTP Server: Cowboy is a lightweight, fast, and modular HTTP server
written in Erlang. This interface type translates user actions in a web browser into
messages delivered to agents via interface handlers and generates necessary notifica-
tions in response to user requests.

It is worth delving into this further. Currently, EviNS includes the AT Commands
role, which serves as a syntax parser only for commands specific to Evologics modems.
However, there are numerous modem manufacturers who do not have a direct means to
utilize EviNS protocols for their own network communication tasks.

To address the integration of arbitrary modems with EviNS, two approaches can be
taken. The first involves modifying the AT Commands role to enable the protocols of the
data link and network layers to work with the commands of the chosen modem.

https://github.com/EvoLogics/evins/wiki/arch

Appl. Sci. 2024, 14, 3527 9 of 29

Appl. Sci. 2024, 14, 3527 9 of 29

4. Cowboy HTTP Server: Cowboy is a lightweight, fast, and modular HTTP server writ-
ten in Erlang. This interface type translates user actions in a web browser into mes-
sages delivered to agents via interface handlers and generates necessary notifications
in response to user requests.

Figure 3. Types of interfaces used in the EviNS software framework.

It is worth delving into this further. Currently, EviNS includes the AT Commands
role, which serves as a syntax parser only for commands specific to Evologics modems.
However, there are numerous modem manufacturers who do not have a direct means to
utilize EviNS protocols for their own network communication tasks.

To address the integration of arbitrary modems with EviNS, two approaches can be
taken. The first involves modifying the AT Commands role to enable the protocols of the
data link and network layers to work with the commands of the chosen modem.

The second approach entails embedding additional roles into EviNS alongside the
AT Commands role, providing the ability for the protocols of the data link and network
layers to work with commands from third-party modems. This is illustrated in Figure 4.

Figure 4. The structure of the interaction of hydroacoustic modems with the Evans (v2021) software
framework in its current version.

To connect any other modem to EviNS, the software framework must include an ad-
ditional (newly developed) modification of the medium access control protocol, as well as

Figure 3. Types of interfaces used in the EviNS software framework.

The second approach entails embedding additional roles into EviNS alongside the AT
Commands role, providing the ability for the protocols of the data link and network layers
to work with commands from third-party modems. This is illustrated in Figure 4.

Appl. Sci. 2024, 14, 3527 9 of 29

4. Cowboy HTTP Server: Cowboy is a lightweight, fast, and modular HTTP server writ-
ten in Erlang. This interface type translates user actions in a web browser into mes-
sages delivered to agents via interface handlers and generates necessary notifications
in response to user requests.

Figure 3. Types of interfaces used in the EviNS software framework.

It is worth delving into this further. Currently, EviNS includes the AT Commands
role, which serves as a syntax parser only for commands specific to Evologics modems.
However, there are numerous modem manufacturers who do not have a direct means to
utilize EviNS protocols for their own network communication tasks.

To address the integration of arbitrary modems with EviNS, two approaches can be
taken. The first involves modifying the AT Commands role to enable the protocols of the
data link and network layers to work with the commands of the chosen modem.

The second approach entails embedding additional roles into EviNS alongside the
AT Commands role, providing the ability for the protocols of the data link and network
layers to work with commands from third-party modems. This is illustrated in Figure 4.

Figure 4. The structure of the interaction of hydroacoustic modems with the Evans (v2021) software
framework in its current version.

To connect any other modem to EviNS, the software framework must include an ad-
ditional (newly developed) modification of the medium access control protocol, as well as

Figure 4. The structure of the interaction of hydroacoustic modems with the Evans (v2021) software
framework in its current version.

To connect any other modem to EviNS, the software framework must include an
additional (newly developed) modification of the medium access control protocol, as well
as an additional (newly developed) modification of the network protocol. In other words,
as many modems need to be connected to EviNS, an equal number of modified or newly
developed protocol pairs must be included in the software framework. For each modem,
there will also be a need to develop a role responsible for parsing commands specific to
that modem.

Due to the openness of the EviNS source code, all of this is achievable. However, imple-
menting such changes would require significant modifications to the software framework.
In many respects, altering a well-functioning software framework is undesirable.

Therefore, another approach could be considered, which involves not modifying the
software framework but rather adding applications to it that are inherently capable of

Appl. Sci. 2024, 14, 3527 10 of 29

working with multiple modems (with different roles). This is illustrated in Figure 5—in
addition to or instead of the existing protocol, a protocol could be developed that works
not only with the AT command role but also with roles of other commands.

Appl. Sci. 2024, 14, 3527 10 of 29

an additional (newly developed) modification of the network protocol. In other words, as
many modems need to be connected to EviNS, an equal number of modified or newly
developed protocol pairs must be included in the software framework. For each modem,
there will also be a need to develop a role responsible for parsing commands specific to
that modem.

Due to the openness of the EviNS source code, all of this is achievable. However,
implementing such changes would require significant modifications to the software
framework. In many respects, altering a well-functioning software framework is undesir-
able.

Therefore, another approach could be considered, which involves not modifying the
software framework but rather adding applications to it that are inherently capable of
working with multiple modems (with different roles). This is illustrated in Figure 5—in
addition to or instead of the existing protocol, a protocol could be developed that works
not only with the AT command role but also with roles of other commands.

This approach could significantly reduce the costs associated with expanding the ca-
pabilities of the software framework, particularly by enhancing its ability to create hydro-
acoustic networks based on modems from different manufacturers. In turn, this would
contribute to broadening the scope of tasks related to the Internet of Things in the mari-
time domain.

As a part of the current project to expand the capabilities of the software framework,
custom protocols for the medium access control and network layers have been developed.
These protocols are capable of working with a variety of roles responsible for parsing
commands from modems of different manufacturers, such as the uWave modem and the
Evologics modem.

These roles enable the parsing of commands specific to the corresponding modem
and convert them into the format of internal messages characteristic of EviNS applica-
tions. They also facilitate the reverse process, parsing commands from EviNS applications
and converting them into the format of internal messages for the respective modem. For
EviNS utilization, user application is created.

Figure 5. The structure of the interaction of hydroacoustic modems with the software framework,
taking into account the change in the approach to the development of its protocols.
Figure 5. The structure of the interaction of hydroacoustic modems with the software framework,
taking into account the change in the approach to the development of its protocols.

This approach could significantly reduce the costs associated with expanding the
capabilities of the software framework, particularly by enhancing its ability to create
hydroacoustic networks based on modems from different manufacturers. In turn, this
would contribute to broadening the scope of tasks related to the Internet of Things in the
maritime domain.

As a part of the current project to expand the capabilities of the software framework,
custom protocols for the medium access control and network layers have been developed.
These protocols are capable of working with a variety of roles responsible for parsing
commands from modems of different manufacturers, such as the uWave modem and the
Evologics modem.

These roles enable the parsing of commands specific to the corresponding modem
and convert them into the format of internal messages characteristic of EviNS applications.
They also facilitate the reverse process, parsing commands from EviNS applications and
converting them into the format of internal messages for the respective modem. For EviNS
utilization, user application is created.

The EviNS framework source code resides on the GitHub web service, which hosts
projects using the Git version control system. This platform provides extensive oppor-
tunities for the collaborative development of open-source IT projects. The link, URL:
https://github.com/okebkal/evins (accessed on 5 October 2022), provides access to the di-
rectory structure where the EviNS software framework is located. For instance, the/include
directory contains macros that describe the structure of a finite state machine. The/src
directory houses the source code for agents that have already been created. The examples
catalog includes application samples that serve as templates, helping to lower the “entry
threshold” for the practical use of the EviNS software framework.

https://github.com/okebkal/evins

Appl. Sci. 2024, 14, 3527 11 of 29

To build the EviNS software framework on a Linux PC, the user can clone the EviNS
project into a directory prepared for the clone via the terminal, in particular using the com-
mand git clone, URL: https://github.com/okebkal/evins.git (accessed on 5 October 2022).

After cloning the EviNS project, you can install it using the make command from the
terminal in the project’s root directory. During installation, the EviNS project also includes
a list of dependencies, allowing you to install all the necessary libraries from GitHub. Once
the EviNS software framework is installed, configuration is required before EviNS can
be operational.

The implementation of initial network protocols can be considered as a component of
the comprehensive EviNS software framework. This framework, in turn, has the potential
to become a part of standard hydroacoustic modem software. Such implementation holds
practical significance for establishing an underwater sensor network within Marine Internet
of Things (MIoT) systems. Notably, several essential network layer protocols have already
been incorporated into the EviNS software framework.

To reduce the occurrence of collisions (or even prevent them altogether), a specialized
environment access control protocol variant called CSMA-Aloha has been incorporated
into the EviNS software framework. Currently, this protocol is specifically designed for
broadcast data packets. According to the protocol, each hydroacoustic modem “listens” to
the hydroacoustic channel before transmitting its own data packet. It begins broadcasting
only when there is no activity from other network participants. Each participant in the
network receives information about when they can access the channel. This capability is
achieved by including the protocol in each of the network nodes.

In addition to controlling access to the environment, network participants may also be
interested in the location of the source or recipient of the data they plan to exchange during
a data exchange session. When participants in the network are separated by a significant
distance, the data sources may not have a direct connection to the data recipients. However,
with sufficient connectivity within the hydroacoustic network, data transmission can occur
through neighboring participants who are within a working distance from the desired data
sources or recipients. These neighboring participants contribute to redirecting the data
flow in the correct direction. To address this challenge, the EviNS software framework
incorporates two specialized data routing protocols, i.e., static routing and avalanche
routing, both of which control the number of transmitted packets.

According to the static routing protocol, each network participant is pre-assigned
one of the two roles: either a relay or a passive participant. Upon receiving a data packet,
the relay participant forwards it to the next address (also pre-assigned) of another relay
participant, and this process continues until the data reaches its final recipient. While this
protocol can be efficient in terms of energy consumption and data delivery time, it suffers
from limited applicability due to the inability to alter the geometry of the hydroacoustic
network after it has been deployed underwater.

The second protocol is designed for networks with rapidly changing geometries (such
as those involving mobile participants like Autonomous Underwater Vehicles (AUVs)).
While it may be redundant in terms of the amount of transmitted data within the network
(and consequently, energy consumption), it reliably functions with any network dynamics.
Under this protocol, each network participant determines the current data packet number
that they have received. If a packet is not intended for them and is received for the first
time, they redirect it to other network participants within their working range. This process
continues until the package reaches its intended recipient.

The utilization of these protocols in practical scenarios was conducted as a part of a
study in [25]. This study investigated the performance characteristics of a digital hydroa-
coustic network built upon these protocols, as well as the advantages and disadvantages
associated with their practical use. The findings revealed that the combination of properties
inherent to these protocols confers an advantage to users in networks with dynamically
changing geometry—such as acoustically interconnected cooperative or coordinated groups
of fast-moving AUVs. Notably, these advantages encompass minimal transmission time

https://github.com/okebkal/evins.git

Appl. Sci. 2024, 14, 3527 12 of 29

and the highest probability of successful data delivery to the ultimate recipient within the
network. However, it is essential to acknowledge that the specific energy consumption for
transmitting a unit of information within such a network is relatively high (attributable
to frequent data delivery route duplication). Consequently, the autonomous operational
duration of such a network remains relatively short.

In the following section, the implementation of a number of network and link layer
protocols that were developed and deployed by the authors within the EviNS software
framework is presented. This implementation is capable of functioning in a dynamic
network. However, in cases of rapid changes in network geometry, it may struggle to adapt
to the evolving connections among its mobile participants. Under this protocol, network
participants periodically search for and reassign data delivery routes (for relatively short
periods). During data transmission, packets are only forwarded by those participants
included in the updated route and designated as relay nodes. It is expected that the use of
this protocol will result in relatively low levels of excess data transmission in the network
(and consequently, lower energy consumption) compared to avalanche routing. However,
this protocol is not intended for use in networks with rapidly changing geometries. In other
words, the presented implementation of this network-level protocol strikes a compromise
between network dynamics and energy efficiency and is limited to applications where such
a compromise is acceptable.

A notable aspect of the current work involves creating user applications in the form of
protocols for the environment’s access control layer and network layer. These protocols are
designed to interact with different roles, enabling the technical capability to connect third-
party modems to the EviNS software framework. Specifically, this includes Russian-made
uWAVE modems. Importantly, this example highlights another advantage of utilizing a
software framework for constructing hydroacoustic networks, i.e., the ability to leverage
previously developed protocol stacks within the software framework to control hydroa-
coustic from various manufacturers, thereby significantly enhancing their functionalities.

4. Medium Access and Network Layer Protocols
4.1. Medium Access Layer Protocols

Data transfer between two hydroacoustic modems in point-to-point (P2P) mode
involves one modem connected to the data source and the second modem connected to
the receiver. The transfer uses physical layer algorithms and is limited by the mutual
coverage area. However, if more than two modems are within this coverage area, stable
data transmission is not guaranteed due to collisions and mutual interference.

To manage multiple devices within the same coverage area, we need methods for the
media access control layer (also known as the data link layer). These methods ensure the
resolution of collisions between data packets.

To ensure the functioning of multiple digital hydroacoustic communication devices
within the same coverage area, specialized control algorithms are being developed at
the channel level of the OSI model. These algorithms consider the time dispersion and
propagation delays of the hydroacoustic signal.

To enhance operational efficiency in a hydroacoustic signal propagation environment
and mitigate collisions during data exchange and delivery to modems lacking synchronous
operation capabilities, a data transmission algorithm was devised. This algorithm utilizes
the DACAP [17] channel layer protocol, which operates asynchronously, and relies on
individual connections between network nodes to minimize access time to the signal
propagation environment.

4.1.1. User Implementation of Distance-Aware Collision Avoidance Protocol

The distance-aware collision avoidance protocol (DACAP) [17] is an access control
protocol that operates asynchronously and is based on the acknowledgment of individual
connections between modems. When exchanging data, the modem sender planning to
transmit information to another modem generates a Request to Send (RTS). Upon receiving

Appl. Sci. 2024, 14, 3527 13 of 29

the Request to Send (RTS), the modem receiver immediately responds with a Clear to Send
(CTS) and then waits for the data packet. After sending the transmission-enabling packet,
if the modem receiver detects activity in the transmission medium that could lead to signal
corruption, it generates a short warning signal, resulting in message transmission cessation.
Following the receipt of the clearance command, the modem sender observes a brief pause.
If during this pause there is activity from other modems or the modem sender receives a
warning signal from the modem receiver, data transmission is canceled. The delay time for
transmission depends on the distance between the source and the recipient. The waiting
period is chosen to ensure the absence of harmful collisions. Consequently, the “handshake”
time between nearby neighbor modems can be kept short, while between remote nodes, it
needs to be longer.

To optimize network bandwidth, a predefined minimum handshake length, denoted
as tmin, is established for all nodes. This mechanism facilitates efficient data transfer
performance and guarantees minimal waiting time.

The waiting period is selected to prevent any detrimental collisions. Consequently,
the handshake duration between proximate modems, such as those used by neighbors, can
be kept brief. However, for remote nodes, it is essential to extend the handshake time.

The protocol’s overall structure is illustrated in Figure 6.

Appl. Sci. 2024, 14, 3527 13 of 29

To enhance operational efficiency in a hydroacoustic signal propagation environ-
ment and mitigate collisions during data exchange and delivery to modems lacking syn-
chronous operation capabilities, a data transmission algorithm was devised. This algo-
rithm utilizes the DACAP [17] channel layer protocol, which operates asynchronously,
and relies on individual connections between network nodes to minimize access time to
the signal propagation environment.

4.1.1. User Implementation of Distance-Aware Collision Avoidance Protocol
The distance-aware collision avoidance protocol (DACAP) [17] is an access control

protocol that operates asynchronously and is based on the acknowledgment of individual
connections between modems. When exchanging data, the modem sender planning to
transmit information to another modem generates a Request to Send (RTS). Upon receiv-
ing the Request to Send (RTS), the modem receiver immediately responds with a Clear to
Send (CTS) and then waits for the data packet. After sending the transmission-enabling
packet, if the modem receiver detects activity in the transmission medium that could lead
to signal corruption, it generates a short warning signal, resulting in message transmission
cessation. Following the receipt of the clearance command, the modem sender observes a
brief pause. If during this pause there is activity from other modems or the modem sender
receives a warning signal from the modem receiver, data transmission is canceled. The
delay time for transmission depends on the distance between the source and the recipient.
The waiting period is chosen to ensure the absence of harmful collisions. Consequently,
the “handshake” time between nearby neighbor modems can be kept short, while between
remote nodes, it needs to be longer.

To optimize network bandwidth, a predefined minimum handshake length, denoted
as tmin, is established for all nodes. This mechanism facilitates efficient data transfer per-
formance and guarantees minimal waiting time.

The waiting period is selected to prevent any detrimental collisions. Consequently,
the handshake duration between proximate modems, such as those used by neighbors,
can be kept brief. However, for remote nodes, it is essential to extend the handshake time.

The protocol’s overall structure is illustrated in Figure 6.

Figure 6. DACAP finite state machine. Figure 6. DACAP finite state machine.

Figure 6 illustrates the state machine and transition events for a device involved in
transmitting and receiving data. The left and right sides represent the states, while the
center contains states relevant to both roles. The algorithm begins in the IDLE state. If there
are data to send and the RTS signal was previously sent, it transitions to the WAIT_CTS
state. On the receiving side, if the RTS is accepted, the device enters either the SEND_CTS
or the BACKOFF state, depending on whether the data are intended for it.

The DACAP protocol relies on the packet transmission time between transmitting and
receiving nodes. The priority value is determined by the distance between these nodes,

Appl. Sci. 2024, 14, 3527 14 of 29

and RTS/CTS “handshakes” are essential for distinguishing transmissions among nearby
nodes. If a node does not participate in the transfer, it enters a “rollback” state, from which
it exits either at the end of other nodes’ transfers or after reaching the waiting time interval
calculated using the following formula:

Tper =

{
tmin − 2U/C, U/c > tmin−min(∆D/c,tdata ,2T−tmin)

2
2(U + ∆D)/c − tmin, U/c > tmin−min(∆D/c,tdata ,2T−tmin)

2

,

where c represents the speed of sound propagation in water; U + ∆D denotes the minimum
distance to the interfering node, where correct reception is still feasible; tdata signifies the
data transfer rate; and tmin corresponds to the time of transmission for CTS/RTS signals.
The algorithm of the DACAP protocol is presented in Appendix A, Algorithm A1.

4.1.2. User Implementation of Tone Lohi Protocol

An energy-efficient protocol called Tone Lohi (T-Lohi) [20] has been developed for an
underwater acoustic network of short-range sensors [6,20]. This protocol ensures stable
access to the transmission medium even under conditions of low power from the on-board
transmitter and limited energy resources. The T-Lohi protocol [20] incorporates a channel
redundancy mechanism to prevent message collisions during transmission. Additionally,
the protocol requires specialized equipment with a wake-up function based on a tone
signal. This approach effectively resolves conflicts related to channel redundancy without
significantly increasing energy consumption.

The T-Lohi protocol employs specific mechanisms to transition equipment into power-
saving mode and to wake up or request network resources using a distinct tonal acoustic
signal. This approach can lead to substantial energy savings.

There are three distinct implementations of this protocol. ST-Lohi (Synchronized
T-Lohi): this implementation prioritizes energy-efficient transmission. According to the
modeling presented in the same work, the protocol achieves efficiency within 3% of the
maximum value. aUT-Lohi (Aggressive Unsynchronized T-Lohi): this variant allows for
the maximum bandwidth utilization among the three implementations, with a channel
utilization of approximately 50%. cUT-Lohi (Conservative Unsynchronized T-Lohi): this
implementation focuses on reliable data transmission with minimal loss. It ensures ef-
ficient use of the transmission medium while maintaining stable bandwidth and high
energy efficiency.

The T-Lohi protocol [6] relies on the utilization of short messages (tones) to reserve a
communication channel. It also permits competitive requests for channel access from other
network nodes (as depicted in Figure 7). As a result, this medium access control (MAC)
level protocol ensures stable bandwidth and low power consumption.

Figure 7 schematically depicts four devices: A, B, C, and D. Device B has previously
allocated a channel for transmitting information and has sent packets to devices A, C, and
D, effectively blocking other devices from transmitting. Consequently, only device A will
have the chance to exit the Backoff/Blocking state during the third competition round and
data transfer.

The protocol operates based on the following principle: when a node have data to
transmit, it notifies other devices and enters the contention round (CR). Each device that
receives a tone enters the “Backoff” state for a duration w, where w is a normally distributed
random value within the range from 0 to the number of applicants (CTC). Consequently,
the device that exits the “Backoff” state earlier or one that was not a part of it reserves the
channel, initiating the next competitive round for the remaining devices.

The protocol data frame’s structure is depicted in Figure 8. Each frame comprises
a backup period (RP), followed by a block of payload data. Within each RP, a series of
negotiation rounds occurs until one node successfully reserves a channel.

Appl. Sci. 2024, 14, 3527 15 of 29

Appl. Sci. 2024, 14, 3527 15 of 29

receives a tone enters the “Backoff” state for a duration w, where w is a normally distrib-
uted random value within the range from 0 to the number of applicants (CTC). Conse-
quently, the device that exits the “Backoff” state earlier or one that was not a part of it
reserves the channel, initiating the next competitive round for the remaining devices.

Figure 7. The operating principles of the T-Lohi.

The protocol data frame’s structure is depicted in Figure 8. Each frame comprises a
backup period (RP), followed by a block of payload data. Within each RP, a series of ne-
gotiation rounds occurs until one node successfully reserves a channel.

To identify collisions and estimate the number of competitors, a collision resolution
mechanism is employed, considering both spatial and temporal uncertainties as well as
the significant latency in the data packet delivery.

Based on the number of incoming tones, applicants for the channel (CTC) are tallied.
When the device has detected a tone, it enters the “Backoff” state for a duration of w:

W = U × CTC, where U∼Uniform (0,1).

If, after the competition round (CR) expires, the device has not entered the “Backoff”
state, it reserves a channel for transmitting its data packet and exits the CR. The period
between competition rounds is calculated as follows: 𝐶𝑅 𝑇 𝑇 ,
where 𝑇 is the longest packet transmission time in the environment, and 𝑇 is the
transmission time of a short message (tone).

The algorithm of the T-Lohi protocol is presented in Appendix A, Algorithm A2.

Figure 7. The operating principles of the T-Lohi.

Appl. Sci. 2024, 14, 3527 16 of 29

Figure 8. The structure of the T-Lohi protocol frame.

4.2. Network Layer Protocols
4.2.1. Flooding

Flooding is a component of routing protocols where packets are broadcasted to all
nodes within the network. This behavior is known as “flooding”. In this routing mode,
package delivery is ensured to be over 100%. However, if flooding is uncontrolled, each
node will relay packets to all its neighboring nodes, resulting in an overwhelming number
of broadcast messages and a network failure (known as a “broadcast storm”). This can
severely degrade bandwidth and necessitate substantial network resources. To prevent a
broadcast storm, conditional logic must be implemented.

The Dynamic Probabilistic Flooding Protocol (DPFlooding) [11] determines whether
to forward a received data packet based on the current count of neighboring nodes (i.e.,
available connections). For each node, a probability value is generated based on this count,
and the node uses this value to decide whether to transmit the last received data packet
further across the network. The more “neighbors” a network node has, the less likely it is
to retransmit the last received data packet. As a result of this operational logic, the volume
of redundant information transmitted over the network is significantly reduced.

To prevent fatal network overflow due to re-received data packets and ensure the
reliability of controlled flooding, the SNCF (Sequence Number Controlled Flooding) al-
gorithm is employed. In SNCF, retransmitted packets are equipped with the number and
address of the transmitting node within the network. Upon receiving a packet, the recipi-
ent node compares its number with the list of previously received packet numbers. Only
packets with new numbers are eligible for further transmission. Since each node maintains
sequence numbers and address information, the SNCF protocol appends its own sequence
number and addresses to the packet. If a packet arrives at a node that already has the same
packet in memory, the node promptly discards it.

RPF (Reverse Path Forwarding) is a technique that involves controlled flooding. The
node forwards the packet only in the forward direction to the next node. If the packet
arrives from the next node, it is sent back to the original sender.

Selective Flooding (SF) is a variant of the flooding algorithm that directs packets to
routers in a single specific direction. Instead of forwarding every incoming packet across
all available connections, nodes selectively transmit packets only along the lines that ap-
proximately align with the desired direction.

Preferably, the digital hydroacoustic network is a dynamic ad hoc network with a
decentralized wireless self-organizing structure. In this design, user devices, especially
underwater sensors or vehicles, can connect on the fly. Each network node is capable of
forwarding (retransmitting) data intended for other nodes. The order of data transfer is
dynamically determined based on the network’s connectivity.

Features of flooding protocols: during packet forwarding, all available routes be-
tween the source and destination are utilized for transmission; there is always a shortest
route; successfully delivering data along this path results in the shortest delivery time; all
nodes discovered on the network are utilized for transmission; no network-related infor-
mation is needed, including topology and network load; since the network comprises all
nodes connected either directly or indirectly, there is no possibility of any node being

Figure 8. The structure of the T-Lohi protocol frame.

To identify collisions and estimate the number of competitors, a collision resolution
mechanism is employed, considering both spatial and temporal uncertainties as well as the
significant latency in the data packet delivery.

Based on the number of incoming tones, applicants for the channel (CTC) are tallied.
When the device has detected a tone, it enters the “Backoff” state for a duration of w:

W = U × CTC, where U∼Uniform (0,1).

If, after the competition round (CR) expires, the device has not entered the “Backoff”
state, it reserves a channel for transmitting its data packet and exits the CR. The period
between competition rounds is calculated as follows:

CR = Tmax + Ttone,

where Tmax is the longest packet transmission time in the environment, and Ttone is the
transmission time of a short message (tone).

The algorithm of the T-Lohi protocol is presented in Appendix A, Algorithm A2.

Appl. Sci. 2024, 14, 3527 16 of 29

4.2. Network Layer Protocols
4.2.1. Flooding

Flooding is a component of routing protocols where packets are broadcasted to all
nodes within the network. This behavior is known as “flooding”. In this routing mode,
package delivery is ensured to be over 100%. However, if flooding is uncontrolled, each
node will relay packets to all its neighboring nodes, resulting in an overwhelming number
of broadcast messages and a network failure (known as a “broadcast storm”). This can
severely degrade bandwidth and necessitate substantial network resources. To prevent a
broadcast storm, conditional logic must be implemented.

The Dynamic Probabilistic Flooding Protocol (DPFlooding) [11] determines whether
to forward a received data packet based on the current count of neighboring nodes (i.e.,
available connections). For each node, a probability value is generated based on this count,
and the node uses this value to decide whether to transmit the last received data packet
further across the network. The more “neighbors” a network node has, the less likely it is
to retransmit the last received data packet. As a result of this operational logic, the volume
of redundant information transmitted over the network is significantly reduced.

To prevent fatal network overflow due to re-received data packets and ensure the
reliability of controlled flooding, the SNCF (Sequence Number Controlled Flooding) al-
gorithm is employed. In SNCF, retransmitted packets are equipped with the number and
address of the transmitting node within the network. Upon receiving a packet, the recipient
node compares its number with the list of previously received packet numbers. Only
packets with new numbers are eligible for further transmission. Since each node maintains
sequence numbers and address information, the SNCF protocol appends its own sequence
number and addresses to the packet. If a packet arrives at a node that already has the same
packet in memory, the node promptly discards it.

RPF (Reverse Path Forwarding) is a technique that involves controlled flooding. The
node forwards the packet only in the forward direction to the next node. If the packet
arrives from the next node, it is sent back to the original sender.

Selective Flooding (SF) is a variant of the flooding algorithm that directs packets
to routers in a single specific direction. Instead of forwarding every incoming packet
across all available connections, nodes selectively transmit packets only along the lines that
approximately align with the desired direction.

Preferably, the digital hydroacoustic network is a dynamic ad hoc network with a
decentralized wireless self-organizing structure. In this design, user devices, especially
underwater sensors or vehicles, can connect on the fly. Each network node is capable of
forwarding (retransmitting) data intended for other nodes. The order of data transfer is
dynamically determined based on the network’s connectivity.

Features of flooding protocols: during packet forwarding, all available routes between
the source and destination are utilized for transmission; there is always a shortest route;
successfully delivering data along this path results in the shortest delivery time; all nodes
discovered on the network are utilized for transmission; no network-related information
is needed, including topology and network load; since the network comprises all nodes
connected either directly or indirectly, there is no possibility of any node being overlooked
during data propagation; they are highly reliable; even if several intermediate nodes fail,
data packets are still likely to reach their destinations; and relatively easy to implement
and configure, as each network node can only be aware of its “neighbors”.

Appendix A (Algorithm A3) shows the algorithm for the DPFlooding protocol using
controlled flooding (the network topology is shown in Figure 9).

The algorithm operates as follows: Data are transmitted from node A to node F. When
a packet arrives at node A, it is forwarded to nodes D, C, and B. Node B then relays this
packet to nodes E and C. Node C further sends the packet to nodes F and D. Additionally,
node D forwards the packet to nodes F and C. Finally, node E transmits a packet directly to
node F.

Appl. Sci. 2024, 14, 3527 17 of 29

Appl. Sci. 2024, 14, 3527 17 of 29

overlooked during data propagation; they are highly reliable; even if several intermediate
nodes fail, data packets are still likely to reach their destinations; and relatively easy to
implement and configure, as each network node can only be aware of its “neighbors”.

Appendix A (Algorithm A3) shows the algorithm for the DPFlooding protocol using
controlled flooding (the network topology is shown in Figure 9).

Figure 9. The network topology.

The algorithm operates as follows: Data are transmitted from node A to node F. When
a packet arrives at node A, it is forwarded to nodes D, C, and B. Node B then relays this
packet to nodes E and C. Node C further sends the packet to nodes F and D. Additionally,
node D forwards the packet to nodes F and C. Finally, node E transmits a packet directly
to node F.

4.2.2. Information-Carrying Routing Protocol
The Information-Carrying Routing Protocol (ICRP) [22] is a routing protocol that op-

erates by transmitting combined packets containing both service information and payload
data. In this type of protocol, the service data required to establish a data delivery route
are included as a part of a payload data packet. As a result, the routing and data transmis-
sion mechanism is energy-efficient and characterized by relatively short routing times.
Importantly, ICRP is not dependent on the number of network participants or their rela-
tive locations, making it easily scalable for any arbitrary number of participants, regard-
less of spatial separation or mobility.

Finally, the ICRP is a reactive protocol designed for scalable routing and reduced
network load. The routing task is performed by a small number of nodes. The sender ini-
tiates the establishment of the path. If there is no set path containing the path detection
packet, the sender must transmit the message in a broadcast. Nodes that receive this mes-
sage must broadcast it and save the return route. When the destination node receives this
message, it is possible to obtain the full return route. All routes have timeouts, and it is
necessary for the route to be detected within a certain timeout.

The ICRP assessment exposes several performance limitations. Because decisions
rely on stored information, ICRP is inadequate for underwater networks where nodes are
in constant motion. Another notable drawback is the necessity to broadcast packets when
a node lacks a route to its destination, resulting in higher power consumption.

The ICRP protocol’s algorithm is provided in Appendix A (Algorithm A4). Each node
continuously broadcasts its routing table to all neighboring nodes. Upon receiving this
information from a neighbor, the node compares the received routing table with its own.
The router then compares the routes in the resulting table with those in its routing table.
If a new route has a better metric, it can replace the existing one. To optimize protocol
operation, a generalized metric is used instead of a simple route metric, providing a more
accurate characterization of the route. For routing stability, traffic can be distributed
across multiple routes within a specified metric range, rather than relying solely on the
lowest metric route. Based on the aforementioned metrics, a generalized Proute metric is

Figure 9. The network topology.

4.2.2. Information-Carrying Routing Protocol

The Information-Carrying Routing Protocol (ICRP) [22] is a routing protocol that oper-
ates by transmitting combined packets containing both service information and payload
data. In this type of protocol, the service data required to establish a data delivery route
are included as a part of a payload data packet. As a result, the routing and data trans-
mission mechanism is energy-efficient and characterized by relatively short routing times.
Importantly, ICRP is not dependent on the number of network participants or their relative
locations, making it easily scalable for any arbitrary number of participants, regardless of
spatial separation or mobility.

Finally, the ICRP is a reactive protocol designed for scalable routing and reduced
network load. The routing task is performed by a small number of nodes. The sender
initiates the establishment of the path. If there is no set path containing the path detection
packet, the sender must transmit the message in a broadcast. Nodes that receive this
message must broadcast it and save the return route. When the destination node receives
this message, it is possible to obtain the full return route. All routes have timeouts, and it is
necessary for the route to be detected within a certain timeout.

The ICRP assessment exposes several performance limitations. Because decisions rely
on stored information, ICRP is inadequate for underwater networks where nodes are in
constant motion. Another notable drawback is the necessity to broadcast packets when a
node lacks a route to its destination, resulting in higher power consumption.

The ICRP protocol’s algorithm is provided in Appendix A (Algorithm A4). Each node
continuously broadcasts its routing table to all neighboring nodes. Upon receiving this
information from a neighbor, the node compares the received routing table with its own.
The router then compares the routes in the resulting table with those in its routing table.
If a new route has a better metric, it can replace the existing one. To optimize protocol
operation, a generalized metric is used instead of a simple route metric, providing a more
accurate characterization of the route. For routing stability, traffic can be distributed across
multiple routes within a specified metric range, rather than relying solely on the lowest
metric route. Based on the aforementioned metrics, a generalized Proute metric is calculated
for each route, determining the best route. The following formula is used in this case:

Proute =

[
K1

K2
+ K2Dc

]
r,

where K1 and K2 are constants; Dc is the delay time; and r is reliability (the percentage of
information successfully transmitted to the next node).

The constants represent the weighting factors for throughput and latency. In this
scenario, the specific value of the weighting factor varies based on the type of information
being transmitted across the network. For instance, interactive traffic requires lower latency,
while file transfers benefit from greater bandwidth.

Appl. Sci. 2024, 14, 3527 18 of 29

The route with the lowest generalized metric is the most preferred. If there are multiple
routes to the same recipient, the router can transmit information along all of these routes
(or some of them). The exact transfer process depends on the generalized metric of each
route. For instance, if one route has a generalized metric of one and another has three, three
times more data will be sent through the route with a generalized metric of one (in other
words, this route will be used three times more frequently). However, only those routes
whose generalized metrics fall within a certain range will be utilized.

ICRP achieves energy efficiency and low latency data delivery. It transmits routing
control packages via data packets, resulting in an energy-efficient mechanism with mini-
mal end-to-end delivery delay. Unlike traditional approaches, protocol does not rely on
information about node locations. Additionally, it operates efficiently without requiring the
knowledge of sensor node statuses, involving only a small subset of nodes in the routing
process. As a result, ICRP is scalable and suitable for fixed, mobile, and hybrid networks.

The ICRP serves as an efficient communication tool for data exchange within a single
network or between networks connected by routers that share route information. Note-
worthy features include simultaneous load balancing across multiple paths and support
for IPv6 connectivity, making it well suited for various applications. However, its 255-hop
limit could be limiting for larger networks, and the triggered updates might introduce
communication delays during network topology changes.

5. Experimental Part
5.1. The Hardware

For the development and testing of user software intended to address tasks in the field
of networked communication, an emulator of modem networks was utilized, represented as
an online service, providing access to a multitude of emulated modems. The user “places”
them within a virtual space, thus defining the geometry of the communication network,
which can be altered at any given moment or initially set as continuously evolving. For
instance, this could entail the emulation of modem networks carried by AUVs. The EviNS
software framework was executed on an Odroid H2 single-board computer (Figure 10).

Appl. Sci. 2024, 14, 3527 19 of 29

between two modem nodes exchanging data in a P2P connection and for a group of mo-
dems interconnected within a network using network layer protocols. The network in the
emulator comprises six nodes, the layout of which is depicted in Figure 11. The network
nodes are positioned at distances ranging from 0.5 to 4 km from each other, with depth
ranging from 14 to 15 m. The emulated modems are situated at depths of 12–13 m. Signal
reception conditions are favorable, with the emulated bit error probability being 0.001.
Hence, nearly all losses observed below are attributed to data packet collisions when mul-
tiple modems operate within the network.

Figure 10. A single-board computer with installed EviNS.

In the tests, one of the network nodes acts as a data source, generating and sending
packets to the four most distant nodes in the network at random intervals, once every 15
s for a duration of 600 s.

During protocol stack testing, the transmission of a payload array across the network
occurs in the zone of indirect modem interaction (mediated). Specifically, nodes M3, M4,
M2, and M1 within the network depicted in Figure 11 interact with each other.

The test packet consists of a message containing information in string format:

<n_p>,<depth>,<temp>,<volt>

where n_p is the number of transmitted packets, temp is the environment temperature,
and volt is the modem operating voltage.

Figure 10. A single-board computer with installed EviNS.

The emulated modems adhere to a predefined message format in the form of AT Com-
mands. All commands commence with the prefix “AT”, where “AT” signifies “Attention
code”. Thus, the device receives a signal indicating that a command follows. Command
symbols and/or alphanumeric values conclude the command string.

Example of a simple sent message:

AT*SEND,<length>,<destination address>,<data>,

Appl. Sci. 2024, 14, 3527 19 of 29

where length is the length of payload (user information), destination address is the hydroa-
coustic address of a recipient, and data is the payload (user information), to work with such
a message format, and a parser and a message generator are implemented and developed
in the software framework. Tests are conducted for two interaction scenarios: between
two modem nodes exchanging data in a P2P connection and for a group of modems inter-
connected within a network using network layer protocols. The network in the emulator
comprises six nodes, the layout of which is depicted in Figure 11. The network nodes are
positioned at distances ranging from 0.5 to 4 km from each other, with depth ranging from
14 to 15 m. The emulated modems are situated at depths of 12–13 m. Signal reception
conditions are favorable, with the emulated bit error probability being 0.001. Hence, nearly
all losses observed below are attributed to data packet collisions when multiple modems
operate within the network.

Appl. Sci. 2024, 14, 3527 19 of 29

between two modem nodes exchanging data in a P2P connection and for a group of mo-
dems interconnected within a network using network layer protocols. The network in the
emulator comprises six nodes, the layout of which is depicted in Figure 11. The network
nodes are positioned at distances ranging from 0.5 to 4 km from each other, with depth
ranging from 14 to 15 m. The emulated modems are situated at depths of 12–13 m. Signal
reception conditions are favorable, with the emulated bit error probability being 0.001.
Hence, nearly all losses observed below are attributed to data packet collisions when mul-
tiple modems operate within the network.

Figure 10. A single-board computer with installed EviNS.

In the tests, one of the network nodes acts as a data source, generating and sending
packets to the four most distant nodes in the network at random intervals, once every 15
s for a duration of 600 s.

During protocol stack testing, the transmission of a payload array across the network
occurs in the zone of indirect modem interaction (mediated). Specifically, nodes M3, M4,
M2, and M1 within the network depicted in Figure 11 interact with each other.

The test packet consists of a message containing information in string format:

<n_p>,<depth>,<temp>,<volt>

where n_p is the number of transmitted packets, temp is the environment temperature,
and volt is the modem operating voltage.

Figure 11. The network topology.

In the tests, one of the network nodes acts as a data source, generating and sending
packets to the four most distant nodes in the network at random intervals, once every 15 s
for a duration of 600 s.

During protocol stack testing, the transmission of a payload array across the network
occurs in the zone of indirect modem interaction (mediated). Specifically, nodes M3, M4,
M2, and M1 within the network depicted in Figure 11 interact with each other.

The test packet consists of a message containing information in string format:

<n_p>,<depth>,<temp>,<volt>

where n_p is the number of transmitted packets, temp is the environment temperature, and
volt is the modem operating voltage.

The total size of each packet is 20 bytes, and 50 packets are transmitted. Data exchange
occurs both with and without the utilization of network protocols, and after which, the
metrics that are assessed are as follows:

1. Time taken to transmit a data packet between two devices in P2P mode and across
the network;

2. Probability of successful transmission of data packets between two devices in P2P
mode and across the network.

Furthermore, experiments were conducted on UC&NL uWave modem units [4]
(Figure 12a), with the layout scheme depicted in Figure 12c. Additionally, experiments
under analogous conditions were conducted using physical (non-emulated) modem units

Appl. Sci. 2024, 14, 3527 20 of 29

from the company Evologics (Figure 12b). However, due to the limited number of hy-
droacoustic modems, testing in the physical environment was conducted only for the link
layer protocols.

Appl. Sci. 2024, 14, 3527 20 of 29

Figure 11. The network topology.

The total size of each packet is 20 bytes, and 50 packets are transmitted. Data ex-
change occurs both with and without the utilization of network protocols, and after which,
the metrics that are assessed are as follows:
1. Time taken to transmit a data packet between two devices in P2P mode and across

the network;
2. Probability of successful transmission of data packets between two devices in P2P

mode and across the network.
Furthermore, experiments were conducted on UC&NL uWave modem units [4] (Fig-

ure 12a), with the layout scheme depicted in Figure 12c. Additionally, experiments under
analogous conditions were conducted using physical (non-emulated) modem units from
the company Evologics (Figure 12b). However, due to the limited number of hydroacous-
tic modems, testing in the physical environment was conducted only for the link layer
protocols.

(a)

(c) (b)

Figure 12. Testing equipment: (a) UC&NL uWave hydroacoustic modems; (b) Evologics S2C1834
hydroacoustic modems; and (c) uWave modems under experimental conditions (submerged in a
pool filled with water).

5.2. Testing of the Channel Layer Protocols
5.2.1. Experimental Results for P2P Connection without Protocols

Metrics for the Evologics and uWave modems, obtained under the specified condi-
tions of sequential packet transmission from one device to another, are presented in Fig-
ures 13 and 14.

As a result, the data transmission success rate is 96%, with an average transmission
time of 0.15 s and an average transmission rate of 104 bytes per second. It is also notewor-
thy that, in physical environments, packet delivery may occur; however, the correspond-
ing acknowledgment packet sent back to the sender may contain an irreparable number
of bit errors and hence may be discarded upon reception. Furthermore, in asynchronous
operation attempts of the modem units, there are instances where information transmis-
sion to one recipient from two devices occurs simultaneously, leading to packet collisions
during reception and resulting in packet corruption (Figures 15 and 16).

Figure 12. Testing equipment: (a) UC&NL uWave hydroacoustic modems; (b) Evologics S2C1834
hydroacoustic modems; and (c) uWave modems under experimental conditions (submerged in a pool
filled with water).

5.2. Testing of the Channel Layer Protocols
5.2.1. Experimental Results for P2P Connection without Protocols

Metrics for the Evologics and uWave modems, obtained under the specified con-
ditions of sequential packet transmission from one device to another, are presented in
Figures 13 and 14.

Appl. Sci. 2024, 14, 3527 21 of 29

Figure 13. Metrics from P2P transmissions for Evologics modems.

Figure 14. Metrics from P2P transmissions for uWave modems.

From Figures 15 and 16, it is evident that out of 50 transmitted packets, only 34 were
successfully received (64%). Consequently, the data transmission success rate stands at
68%, with an average transmission time of 0.28 s and an average transmission rate ranging
from 98 to 130 bytes per second.

These results indicate that the collisions that occurred led to an increased load on the
receiving modem, consequently resulting in packet loss.

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Transmitted packet

succ=82%

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Statistical success rate of the transfer

succ=96.8062%

5 10 15 20 25 30 35 40 45 50
0

0.2

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

100

200
Average transmission speed

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Transmitted packet

succ=96%

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Statistical success rate of the transfer

succ=96.5242%

5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15
Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

100

Average transmission speed

Figure 13. Metrics from P2P transmissions for Evologics modems.

Appl. Sci. 2024, 14, 3527 21 of 29

Appl. Sci. 2024, 14, 3527 21 of 29

Figure 13. Metrics from P2P transmissions for Evologics modems.

Figure 14. Metrics from P2P transmissions for uWave modems.

From Figures 15 and 16, it is evident that out of 50 transmitted packets, only 34 were
successfully received (64%). Consequently, the data transmission success rate stands at
68%, with an average transmission time of 0.28 s and an average transmission rate ranging
from 98 to 130 bytes per second.

These results indicate that the collisions that occurred led to an increased load on the
receiving modem, consequently resulting in packet loss.

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Transmitted packet

succ=82%

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Statistical success rate of the transfer

succ=96.8062%

5 10 15 20 25 30 35 40 45 50
0

0.2

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

100

200
Average transmission speed

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Transmitted packet

succ=96%

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Statistical success rate of the transfer

succ=96.5242%

5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15
Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

100

Average transmission speed

Figure 14. Metrics from P2P transmissions for uWave modems.

As a result, the data transmission success rate is 96%, with an average transmission
time of 0.15 s and an average transmission rate of 104 bytes per second. It is also noteworthy
that, in physical environments, packet delivery may occur; however, the corresponding
acknowledgment packet sent back to the sender may contain an irreparable number of
bit errors and hence may be discarded upon reception. Furthermore, in asynchronous
operation attempts of the modem units, there are instances where information transmission
to one recipient from two devices occurs simultaneously, leading to packet collisions during
reception and resulting in packet corruption (Figures 15 and 16).

Appl. Sci. 2024, 14, 3527 22 of 29

Figure 15. Metrics for transmission from two modems to one for Evologics modems.

Figure 16. Metrics for transmission from two modems to one for uWave modems.

5.2.2. Experimental Results for Connectivity Using Channel Protocols
Metrics obtained during data transmission using DACAP and T-Lohi protocols are

shown in Figures 17 and 18.
From Figures 17 and18, it is apparent that the data transmission success rate is 100%,

with an average transmission time of 0.21 s for the DACAP protocol and 0.37 s for the T-
Lohi protocol. The average transmission rate is 45 bytes per second for DACAP and 20
bytes per second for T-Lohi.

Thus, the utilization of the DACAP protocol, incorporating acknowledgments and
error control, has allowed for enhanced transmission stability (success rate). However, the
use of the protocol has increased the load on the bandwidth during data transmission,

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t Transmitted packet

succ=68%

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Pr
ob

ab
ilit

y,
%

Statistical success rate of the transfer

succ=96.0595%

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

50

By
te

/s
ec

s

Average transmission speed

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t

Transmitted packet

succ=68%

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Pr
ob

ab
ilit

y,
%

Statistical success rate of the transfer

succ=78.0079%

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

100

200

By
te

/s
ec

s

Average transmission speed

Figure 15. Metrics for transmission from two modems to one for Evologics modems.

Appl. Sci. 2024, 14, 3527 22 of 29

Appl. Sci. 2024, 14, 3527 22 of 29

Figure 15. Metrics for transmission from two modems to one for Evologics modems.

Figure 16. Metrics for transmission from two modems to one for uWave modems.

5.2.2. Experimental Results for Connectivity Using Channel Protocols
Metrics obtained during data transmission using DACAP and T-Lohi protocols are

shown in Figures 17 and 18.
From Figures 17 and18, it is apparent that the data transmission success rate is 100%,

with an average transmission time of 0.21 s for the DACAP protocol and 0.37 s for the T-
Lohi protocol. The average transmission rate is 45 bytes per second for DACAP and 20
bytes per second for T-Lohi.

Thus, the utilization of the DACAP protocol, incorporating acknowledgments and
error control, has allowed for enhanced transmission stability (success rate). However, the
use of the protocol has increased the load on the bandwidth during data transmission,

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t Transmitted packet

succ=68%

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Pr
ob

ab
ilit

y,
%

Statistical success rate of the transfer

succ=96.0595%

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

50

By
te

/s
ec

s

Average transmission speed

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t

Transmitted packet

succ=68%

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Pr

ob
ab

ilit
y,

%

Statistical success rate of the transfer

succ=78.0079%

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

100

200

By
te

/s
ec

s

Average transmission speed

Figure 16. Metrics for transmission from two modems to one for uWave modems.

From Figures 15 and 16, it is evident that out of 50 transmitted packets, only 34 were
successfully received (64%). Consequently, the data transmission success rate stands at
68%, with an average transmission time of 0.28 s and an average transmission rate ranging
from 98 to 130 bytes per second.

These results indicate that the collisions that occurred led to an increased load on the
receiving modem, consequently resulting in packet loss.

5.2.2. Experimental Results for Connectivity Using Channel Protocols

Metrics obtained during data transmission using DACAP and T-Lohi protocols are
shown in Figures 17 and 18.

Appl. Sci. 2024, 14, 3527 23 of 29

resulting in a stabilized average transmission rate, including packet control (retransmis-
sion) and handshaking, at a lower level (50 bytes per second). A similar situation is ob-
served with the T-Lohi protocol, utilizing competitive cycles, albeit with a decreased
transmission rate of 30 bytes per second.

Figure 17. Metrics for the DACAP protocol for uWave modems.

Figure 18. Metrics for the T-Lohi protocol for uWave modems.

Based on the presented graphs, it can be inferred that link layer protocols, operating
based on delay times, facilitate more stable transmission (with a success rate close to 100%)
of data in conditions of simultaneous transmission.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t Transmitted packet

succ=100%

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Pr
ob

ab
ilit

y,
 %

Statistical success rate of the transfer

succ=100%

5 10 15 20 25 30 35 40 45 50
0.2

0.205

0.21

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

50

By
te

/s
ec

s

Average transmission speed

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t Transmitted packet

succ=100%

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Pr
ob

ab
ilit

y,
 %

Statistical success rate of the transfer

succ=100%

5 10 15 20 25 30 35 40 45 50

0.3

0.31

0.32

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

5

10

By
te

/s
ec

s

Average transmission speed

Figure 17. Metrics for the DACAP protocol for uWave modems.

Appl. Sci. 2024, 14, 3527 23 of 29

Appl. Sci. 2024, 14, 3527 23 of 29

resulting in a stabilized average transmission rate, including packet control (retransmis-
sion) and handshaking, at a lower level (50 bytes per second). A similar situation is ob-
served with the T-Lohi protocol, utilizing competitive cycles, albeit with a decreased
transmission rate of 30 bytes per second.

Figure 17. Metrics for the DACAP protocol for uWave modems.

Figure 18. Metrics for the T-Lohi protocol for uWave modems.

Based on the presented graphs, it can be inferred that link layer protocols, operating
based on delay times, facilitate more stable transmission (with a success rate close to 100%)
of data in conditions of simultaneous transmission.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t Transmitted packet

succ=100%

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Pr
ob

ab
ilit

y,
 %

Statistical success rate of the transfer

succ=100%

5 10 15 20 25 30 35 40 45 50
0.2

0.205

0.21

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

50

By
te

/s
ec

s

Average transmission speed

5 10 15 20 25 30 35 40 45 50
0

0.5

1

Ar
riv

al
 F

ac
t Transmitted packet

succ=100%

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Pr

ob
ab

ilit
y,

 %

Statistical success rate of the transfer

succ=100%

5 10 15 20 25 30 35 40 45 50

0.3

0.31

0.32

Ti
m

e,
 s

ec
s

Packet transmission time

5 10 15 20 25 30 35 40 45 50
Packets

0

5

10

By
te

/s
ec

s

Average transmission speed

Figure 18. Metrics for the T-Lohi protocol for uWave modems.

From Figures 17 and 18, it is apparent that the data transmission success rate is 100%,
with an average transmission time of 0.21 s for the DACAP protocol and 0.37 s for the
T-Lohi protocol. The average transmission rate is 45 bytes per second for DACAP and
20 bytes per second for T-Lohi.

Thus, the utilization of the DACAP protocol, incorporating acknowledgments and
error control, has allowed for enhanced transmission stability (success rate). However,
the use of the protocol has increased the load on the bandwidth during data transmission,
resulting in a stabilized average transmission rate, including packet control (retransmission)
and handshaking, at a lower level (50 bytes per second). A similar situation is observed
with the T-Lohi protocol, utilizing competitive cycles, albeit with a decreased transmission
rate of 30 bytes per second.

Based on the presented graphs, it can be inferred that link layer protocols, operating
based on delay times, facilitate more stable transmission (with a success rate close to 100%)
of data in conditions of simultaneous transmission.

5.3. Experimental Results of Network Layer Protocols

In these tests, once again, a modem network emulator was utilized. For data exchange
within the network, a protocol stack consisting of the flooding network protocol and the
DACAP link layer protocol was employed. The schematic of data packet movement within
the network is illustrated in Figure 19.

The metrics for the data transmission are shown in Figure 20. These metrics are
generalized for the transmission path from node M3 to M1. Considering this, the average
data transmission time amounted to 6.7 s, with an average transmission rate of 7 bytes
per second.

Thus, the flooding network protocol allows for indirect packet transmission within
the network through intermediate nodes. The time and the number of packets received by
the end device depend on the maximum hop count of the network.

The investigation of data transmission parameters across the hydroacoustic chan-
nel revealed that the implementation of network communication protocols enables an
enhancement in the probability of successful data packet exchange among the group’s
devices. However, this increased probability comes at the cost of reduced communication

Appl. Sci. 2024, 14, 3527 24 of 29

speed due to the management of delay values during data packet transmission within the
distribution environment.

Appl. Sci. 2024, 14, 3527 25 of 30

5.3. Experimental Results of Network Layer Protocols

In these tests, once again, a modem network emulator was utilized. For data

exchange within the network, a protocol stack consisting of the flooding network protocol

and the DACAP link layer protocol was employed. The schematic of data packet

movement within the network is illustrated in Figure 19.

The metrics for the data transmission are shown in Figure 20. These metrics are

generalized for the transmission path from node M3 to M1. Considering this, the average data

transmission time amounted to 6.7 s, with an average transmission rate of 7 bytes per second.

Thus, the flooding network protocol allows for indirect packet transmission within

the network through intermediate nodes. The time and the number of packets received by

the end device depend on the maximum hop count of the network.

Figure 19. Packet transmission ordering within the network (the orange arrows indicate packets

sent by node M3, the green arrows indicate packets sent by node M2, and the blue arrows indicate

packets sent by node M1).

Figure 20. Indicators for data transfer between various LATENA devices on the network (blue—

device 1, green—device 2, orange—device 3, and yellow—device 4).

Figure 19. Packet transmission ordering within the network (the orange arrows indicate packets sent
by node M3, the green arrows indicate packets sent by node M2, and the blue arrows indicate packets
sent by node M1).

Appl. Sci. 2024, 14, 3527 25 of 30

5.3. Experimental Results of Network Layer Protocols

In these tests, once again, a modem network emulator was utilized. For data

exchange within the network, a protocol stack consisting of the flooding network protocol

and the DACAP link layer protocol was employed. The schematic of data packet

movement within the network is illustrated in Figure 19.

The metrics for the data transmission are shown in Figure 20. These metrics are

generalized for the transmission path from node M3 to M1. Considering this, the average data

transmission time amounted to 6.7 s, with an average transmission rate of 7 bytes per second.

Thus, the flooding network protocol allows for indirect packet transmission within

the network through intermediate nodes. The time and the number of packets received by

the end device depend on the maximum hop count of the network.

Figure 19. Packet transmission ordering within the network (the orange arrows indicate packets

sent by node M3, the green arrows indicate packets sent by node M2, and the blue arrows indicate

packets sent by node M1).

Figure 20. Indicators for data transfer between various LATENA devices on the network (blue—

device 1, green—device 2, orange—device 3, and yellow—device 4).

Figure 20. Indicators for data transfer between various LATENA devices on the network (blue—device
1, green—device 2, orange—device 3, and yellow—device 4).

Appl. Sci. 2024, 14, 3527 25 of 29

This is supported by the findings from experiments carried out under the conditions
specified in Section 5 of this article, involving a group of hydroacoustic modems. The
transmission results depicted in Figure 19, when not utilizing the developed protocols,
indicate that the average transmission rate within the network is 30–40 bits per second.
However, simultaneously, the probability of successful transmission falls within the range
of only 60–70%.

Figure 21 provides a summary of the baud rate information for each device, both with
and without protocol.

Appl. Sci. 2024, 14, 3527 26 of 30

The investigation of data transmission parameters across the hydroacoustic channel

revealed that the implementation of network communication protocols enables an

enhancement in the probability of successful data packet exchange among the group’s

devices. However, this increased probability comes at the cost of reduced communication

speed due to the management of delay values during data packet transmission within the

distribution environment.

This is supported by the findings from experiments carried out under the conditions

specified in Section 5 of this article, involving a group of hydroacoustic modems. The

transmission results depicted in Figure 19, when not utilizing the developed protocols,

indicate that the average transmission rate within the network is 30–40 bits per second.

However, simultaneously, the probability of successful transmission falls within the range of

only 60–70%.

Figure 21 provides a summary of the baud rate information for each device, both

with and without protocol.

Figure 21. The packet transmission rates using underwater communication protocols and without

protocols.

Using the data link and network layer protocols, the probability of successful

delivery of a packet with data increases to 100% (Figure 20); however, the transfer rate can

decrease to 50 bits/s.

Figure 22 provides a summary of the success rate information for each device, both

with and without protocol.

Figure 21. The packet transmission rates using underwater communication protocols and with-
out protocols.

Using the data link and network layer protocols, the probability of successful delivery
of a packet with data increases to 100% (Figure 20); however, the transfer rate can decrease
to 50 bits/s.

Figure 22 provides a summary of the success rate information for each device, both
with and without protocol.

Therefore, the difference in reliability and speed has been verified to be approxi-
mately twofold. In summary, the EviNS software framework, incorporating underwater
network communication protocols, can be effectively integrated into the concept of the
Marine Internet of Things or the group management of Autonomous Underwater Vehicles
(AUVs). In scenarios where communication channel reliability is crucial, such as situa-
tions where corrupted data may impact navigation information or control signals for other
devices, the EviNS framework plays a vital role in preventing incorrect commands and
emergency incidents.

Appl. Sci. 2024, 14, 3527 26 of 29

Appl. Sci. 2024, 14, 3527 27 of 30

Figure 22. The probability of successful transmission of a packet within a network using network

communication protocols and without such protocols.

Therefore, the difference in reliability and speed has been verified to be

approximately twofold. In summary, the EviNS software framework, incorporating

underwater network communication protocols, can be effectively integrated into the

concept of the Marine Internet of Things or the group management of Autonomous

Underwater Vehicles (AUVs). In scenarios where communication channel reliability is

crucial, such as situations where corrupted data may impact navigation information or

control signals for other devices, the EviNS framework plays a vital role in preventing

incorrect commands and emergency incidents.

6. Conclusions

As a result, a custom extension for the EviNS software framework has been

developed to address the task of underwater acoustic communication networking. This

extension includes a protocol stack at the data link layer consisting of DACAP and T-Lohi

protocols, aimed at reducing or eliminating collisions by managing access delays to the

propagation medium during packet transmission. Additionally, the network layer

protocol stack includes DPFlooding and ICRP protocols to facilitate the formation of

modem groups into a network and ensure reliable packet transmission within this

network.

The testing results of the developed algorithms suggest that the use of these network

and data link layer protocols increases the probability of successful packet transmission

within the network (achieving 100% compared to 60–70% without protocol usage), albeit

at the expense of data exchange speed (reduced from 120 bits/s to 60 bits/s for Evologics

modems). This reduction in speed is attributed to the increase in average access delay to

the propagation medium.

This development can be further enhanced by incorporating software modules that

enable the integration of modems from various manufacturers into the software

framework. Ultimately, it could be utilized in implementing concepts related to the

Internet of Things in the maritime domain or in group management of autonomous

unmanned underwater vehicles.

Author Contributions: Conceptualization, K.K. and A.K.; methodology, K.K., O.K., and V.K.;

software, M.D., T.A., and V.K.-A.; validation, O.K.; formal analysis, V.K.; investigation, O.K., M.D.,

and T.A.; resources, K.K.; data curation, O.K., M.D., T.A., and V.K.-A.; writing—original draft

preparation, V.K.; writing—review and editing, K.K., A.K., and V.K.; visualization, M.D.;

Figure 22. The probability of successful transmission of a packet within a network using network
communication protocols and without such protocols.

6. Conclusions

As a result, a custom extension for the EviNS software framework has been developed
to address the task of underwater acoustic communication networking. This extension
includes a protocol stack at the data link layer consisting of DACAP and T-Lohi protocols,
aimed at reducing or eliminating collisions by managing access delays to the propagation
medium during packet transmission. Additionally, the network layer protocol stack in-
cludes DPFlooding and ICRP protocols to facilitate the formation of modem groups into a
network and ensure reliable packet transmission within this network.

The testing results of the developed algorithms suggest that the use of these network
and data link layer protocols increases the probability of successful packet transmission
within the network (achieving 100% compared to 60–70% without protocol usage), albeit
at the expense of data exchange speed (reduced from 120 bits/s to 60 bits/s for Evologics
modems). This reduction in speed is attributed to the increase in average access delay to
the propagation medium.

This development can be further enhanced by incorporating software modules that
enable the integration of modems from various manufacturers into the software frame-
work. Ultimately, it could be utilized in implementing concepts related to the Internet
of Things in the maritime domain or in group management of autonomous unmanned
underwater vehicles.

Author Contributions: Conceptualization, K.K. and A.K.; methodology, K.K., O.K. and V.K.; software,
M.D., T.A. and V.K.-A.; validation, O.K.; formal analysis, V.K.; investigation, O.K., M.D. and T.A.;
resources, K.K.; data curation, O.K., M.D., T.A. and V.K.-A.; writing—original draft preparation, V.K.;
writing—review and editing, K.K., A.K. and V.K.; visualization, M.D.; supervision, K.K.; project
administration, A.K.; funding acquisition, A.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Sevastopol State University, which provided an internal grant
(ID 42-01-09/241/2022-2). The work was also supported by the Russian Ministry of Education and
Science, project FEFM-2024-0015.

Appl. Sci. 2024, 14, 3527 27 of 29

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The authors would like to express their gratitude towards the team at Evologics
in Germany for providing an open-source software framework under the GNU GPL/MIT license.
The authors would like to express their gratitude towards Latena J.S.C in Russia for providing access
to the hydroacoustic modem emulator (model 104).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Algorithm A1: Pseudocode for DACAP protocol

1: If you received RTS signal and it’s for you then
2: send CTS signal;
3: else set backoff state to true;
4: while in backoff;
5: if ack; backoff end
6: else compute T; backoff end after T
7: When application invokes MAC send
8: if now state is backoff;
9: if ack; backoff end
10: else compute T; backoff end after T;
11: else send RTS; wait to CTS
12: if receive RTS or CTS not for you, then
13: cancel data transmission; set backoff state and goto line 8;
14: else transmit data; go to idle state

Algorithm A2: Pseudocode for T-Lohi protocol

1: if you receive a contention tone (CTD) while idle
2: set blocking state to true; unset at end of current frame
3: When application invokes MAC send
4: if blocked; wait for end of frame and attempt in next RP.
5: else transmit contention tone; wait for end of current CR.
6: if (contender count (CTC) > 1)
7: Compute w uniformly from [0,CTC]; backoff w CR(s)
8: if CTD; while in backoff
9: set blocking state to true; unset at end of frame
10: wait for end of frame and attempt in next RP.
11: else backoff ends; goto line 5 and repeat contention
12: else contender count = 1; data reservation successful
13: transmit data; when DP ends go to idle state

Algorithm A3: Pseudocode for Flooding protocol

1: When receiving a message from another node
2: if the message has not been received previously
3: forward the message to all neighboring nodes except the one from which the message was
received
4: else ignore the message
5: When sending a message
6: send broadcast message to all neighboring nodes
7: wait for acknowledgment from each neighboring node
8: If acknowledgment is not received from any node
9: retransmit the message to that node
10: else complete the transmission

Appl. Sci. 2024, 14, 3527 28 of 29

Algorithm A4: Pseudocode for ICRP

1: If you receive packet; analyzing
2: if own packet; checking destimation addres
3: if broadcast addres; transmitting packet
4: else if next-hop addres = local addres; node is off
5: else look for routing table
6: if path is existed;
7: modify the next-hop address of packet; transmitting
8: else
9: the next-hop address is modified as broadcast address;
10: transmitting packet
11: else node off; go to idle state

References
1. Kabanov, A.; Kramar, V. Marine Internet of Things Platforms for Interoperability of Marine Robotic Agents: An Overview of

Concepts and Architectures. J. Mar. Sci. Eng. 2022, 9, 1279. [CrossRef]
2. Abreu, P.; Antonelli, G.; Arrichiello, F.; Caffaz, A.; Caiti, A.; Casalino, G.; Volpi, N.C.; de Jong, I.B.; De Palma, D.; Duarte, H.; et al.

Widely Scalable Mobile Underwater Sonar Technology: An Overview of the H2020 WiMUST Project. Mar. Technol. Soc. J. 2016, 50,
42–53. [CrossRef]

3. Ali, M.F.; Jayakody, D.N.K.; Chursin, Y.A.; Affes, S.; Dmitry, S. Recent Advances and Future Directions on Underwater Wireless
Communications. Arch. Comput. Methods Eng. 2020, 27, 1379–1412. [CrossRef]

4. Dikarev, A. Position Estimation of Autonomous Underwater Sensors Using the Virtual Long Baseline Method. Int. J. Wirel. Mob.
Netw. 2019, 11, 13–25. [CrossRef]

5. Chitre, M.; Bhatnagar, R.; Soh, W.-S. UnetStack: An agent-based software stack and simulator for underwater networks. In
Proceedings of the 2014 Oceans—St. John’s, OCEANS 2014, St. John’s, NL, Canada, 14–19 September 2014. [CrossRef]

6. Shah, S.M.; Sun, Z.; Zaman, K.; Hussain, A.; Ullah, I.; Ghadi, Y.Y.; Khan, M.A.; Nasimov, R. Advancements in Neighboring-Based
Energy-Efficient Routing Protocol (NBEER) for Underwater Wireless Sensor Networks. Sensors 2023, 23, 6025. [CrossRef]
[PubMed]

7. Heidemann, J.; Stojanovic, M.; Zorzi, M. Underwater sensor networks: Applications, advances and challenges. Philos. Trans. R.
Soc. A Math. Phys. Eng. Sci. 2012, 370, 158–175. [CrossRef] [PubMed]

8. Schirripa Spagnolo, G.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2261.
[CrossRef] [PubMed]

9. Islam, K.Y.; Ahmad, I.; Habibi, D.; Zahed, M.I.A.; Kamruzzaman, J. Green Underwater Wireless Communications Using Hybrid
Optical-Acoustic Technologies. IEEE Access 2021, 9, 85109–85123. [CrossRef]

10. Gupta, S.; Singh, N.P. Underwater wireless sensor networks: A review of routing protocols, taxonomy, and future directions. J.
Supercomput. 2023, 80, 5163–5196. [CrossRef]

11. Hanashi, A.M.; Algoul, S. The Effectiveness of Dynamic Probabilistic Flooding in On-Demand Routing Protocols for MANETs
was Assessed through a Performance Analysis. Eur. J. Theor. Appl. Sci. 2023, 1, 935–941. [CrossRef] [PubMed]

12. ISO/IEC 30140-1:2018; Information Technology—Underwater Acoustic Sensor Network (UWASN)—Part 1: Overview and
Requirements. ISO: Geneva, Switzerland, 2018.

13. Leonov, A.; Naniy, O.; Treshikov, V. Improving modulation formats in dwdm optical communication systems. LAST MILE Russia
2019, 8, 30–36.

14. Petrioli, C.; Petroccia, R.; Potter, J.R.; Spaccini, D. The SUNSET framework for simulation, emulation and at-sea testing of
underwater wireless sensor networks. Ad Hoc Netw. 2015, 34, 224–238. [CrossRef]

15. Sasson, Y.; Cavin, D.; Schiper, A. Probabilistic broadcast for flooding in wireless mobile ad hoc networks. In Proceedings of the
2003 IEEE Wireless Communications and Networking, New Orleans, LA, USA, 16–20 March 2003; Volume 2, pp. 1124–1130.
[CrossRef]

16. Liu, C. Distributed Databases Synchronization in Named Data Delay Tolerant Networks. Master’s Thesis, Department of
Informatics, University of MINHO, Braga, Portugal, October 2016.

17. Peleato, B.; Stojanovic, M. Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks. IEEE
Commun. Lett. 2007, 11, 1025–1027. [CrossRef]

18. Petrioli, C.; Petroccia, R.; Stojanovic, M. A comparative performance evaluation of MAC protocols for underwater sensor networks.
In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–10. [CrossRef]

19. Syed, A.A.; Ye, W.; Heidemann, J. T-Lohi: A New Class of MAC Protocols for Underwater Acoustic Sensor Networks. In
Proceedings of the IEEE INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April
2008; pp. 231–235. [CrossRef]

20. Syed, A.A.; Ye, W.; Heidemann, J. Comparison and Evaluation of the T-Lohi MAC for Underwater Acoustic Sensor Networks.
IEEE J. Sel. Areas Commun. 2008, 26, 1731–1743. [CrossRef]

https://doi.org/10.3390/jmse10091279
https://doi.org/10.4031/MTSJ.50.4.3
https://doi.org/10.1007/s11831-019-09354-8
https://doi.org/10.5121/ijwmn.2019.11202
https://doi.org/10.1109/OCEANS.2014.7003044
https://doi.org/10.3390/s23136025
https://www.ncbi.nlm.nih.gov/pubmed/37447872
https://doi.org/10.1098/rsta.2011.0214
https://www.ncbi.nlm.nih.gov/pubmed/22124087
https://doi.org/10.3390/s20082261
https://www.ncbi.nlm.nih.gov/pubmed/32316218
https://doi.org/10.1109/ACCESS.2021.3088467
https://doi.org/10.1007/s11227-023-05646-w
https://doi.org/10.59324/ejtas.2023.1(5).80
https://www.ncbi.nlm.nih.gov/pubmed/38600605
https://doi.org/10.1016/j.adhoc.2014.08.012
https://doi.org/10.1109/WCNC.2003.1200529
https://doi.org/10.1109/LCOMM.2007.071160
https://doi.org/10.1109/OCEANS.2008.5152042
https://doi.org/10.1109/INFOCOM.2008.55
https://doi.org/10.1109/JSAC.2008.081212

Appl. Sci. 2024, 14, 3527 29 of 29

21. Abu Zant, M.; Yasin, A. Avoiding and Isolating Flooding Attack by Enhancing AODV MANET Protocol (AIF_AODV). Secur.
Commun. Netw. 2019, 2019, 8249108. [CrossRef]

22. Liang, W. Information-Carrying Based Routing Protocol for Underwater Acoustic Sensor Network. In Proceedings of the 2007
International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007; pp. 729–734. [CrossRef]

23. Masiero, R.; Azad, S.; Favaro, F.; Petrani, M.; Toso, G.; Guerra, F.; Casari, P.; Zorzi, M. DESERT Underwater: An NSMiraclebased
framework to DEsign, Simulate, Emulate and Realize Testbeds for Underwater network protocols. In Proceedings of the
IEEE/OES Oceans, Yeosu, Republic of Korea, 21–24 May 2012. [CrossRef]

24. Kebkal, O.; Kebkal, V.; Kebkal, K. EviNS: Framework for development of underwater acoustic sensor networks and positioning
systems. In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015. [CrossRef]

25. Kebkal, K.G.; Kebkal, V.K.; Minaev, D.D.; Leonenkov, R.V.; Korytko, A.S. An Underwater Digital Network on Acoustic Modems
with EviNS Framework: A Case Study. Gyroscopy Navig. 2018, 9, 325–333. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2019/8249108
https://doi.org/10.1109/ICMA.2007.4303634
https://doi.org/10.1109/OCEANS-Yeosu.2012.6263524
https://doi.org/10.13140/RG.2.1.4117.1922
https://doi.org/10.1134/S2075108718040119

	Introduction
	Versatility of the Software Network Add-In of the Hydroacoustic Modem
	The Concept of Building the EviNS Software Framework
	Medium Access and Network Layer Protocols
	Medium Access Layer Protocols
	User Implementation of Distance-Aware Collision Avoidance Protocol
	User Implementation of Tone Lohi Protocol

	Network Layer Protocols
	Flooding
	Information-Carrying Routing Protocol

	Experimental Part
	The Hardware
	Testing of the Channel Layer Protocols
	Experimental Results for P2P Connection without Protocols
	Experimental Results for Connectivity Using Channel Protocols

	Experimental Results of Network Layer Protocols

	Conclusions
	Appendix A
	References

