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Abstract: Carbon Capture and Storage (CCS) stands as a pivotal technological stride toward a sustain-
able future, with the practice of injecting supercritical CO2 into subsurface formations being already
an established practice for enhanced oil recovery operations. The overarching objective of CCS is to
protract the operational viability and sustainability of platforms and oilfields, thereby facilitating a
seamless transition towards sustainable practices. This study introduces a comprehensive framework
for optimizing well placement in CCS operations, employing a derivative-free method known as
Bayesian Optimization. The development plan is tailored for scenarios featuring aquifers devoid of
flow boundaries, incorporating production wells tasked with controlling pressure buildup and injec-
tion wells dedicated to CO2 sequestration. Notably, the wells operate under group control, signifying
predefined injection and production targets and constraints that must be adhered to throughout the
project’s lifespan. As a result, the objective function remains invariant under specific permutations
of the well locations. Our investigation delves into the efficacy of Bayesian Optimization under
the introduced permutation invariance. The results reveal that it demonstrates critical efficiency in
handling the optimization task extremely fast. In essence, this study advocates for the efficacy of
Bayesian Optimization in the context of optimizing well placement for CCS operations, emphasizing
its potential as a preferred methodology for enhancing sustainability in the energy sector.

Keywords: CCS; machine learning; Bayesian optimization; Gaussian process; regression; predictive
modeling; well placement optimization

1. Introduction

In recent years, the discourse surrounding climate change has intensified, with a
growing consensus on the imperative need to transition the global economy towards
achieving net-zero greenhouse gas emissions by mid-century. This ambitious goal, essential
to averting dangerous anthropogenic interference with the climate system, requires rapid
investment increase in near-zero emission technologies across all sectors [1]. Among
these technologies, Carbon Capture and Storage (CCS), also referred to as CCUS, where
“U” stands for utilization, shows to be a pivotal solution to reducing carbon emissions,
addressing climate change, and facilitating the transition to a carbon-neutral future [2,3]. Its
significance lies in its potential to address emissions from various sources, including power-
generating plants, hard-to-abate industries (such as cement and refineries), and hydrogen
production. CCUS is the only technology capable of guiding industries to absolute net
neutrality by capturing and treating emissions.

Once CO2 is captured, it undergoes compression and transport to be permanently
stored in geological formations, acting as a “sink” through injection. These geological
formations must possess certain key characteristics [4]. Essential conditions for a formation
to be considered a suitable carbon storage site include the formation of a pore unit with
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sufficient capacity to store the intended CO2 volume; pore interconnectivity allowing
injection at the required rate; and the presence of an extensive cap rock or barrier at the top
of the formation to retain the injected CO2, prevent unwanted migration, and ensure long-
term containment [5]. Saline water-bearing formations [6–8] are widely regarded as the
most mature options for CO2 storage, as demonstrated by numerous projects worldwide.
Additionally, depleted oil and gas fields have recently emerged as potential storage sites,
benefitting from operational experience gained through CO2-EOR operations [9–11].

Deploying CCUS technology on a large scale in saline aquifers or hydrocarbon fields
necessitates accurate characterization of the storage site and reservoir, involving a complex
process, from screening to deep geological and geophysical characterization [12]. Numerical
simulation and modeling using computational fluid dynamics (CFD), possibly coupled
with reactive transport simulations, are employed to address complex subsurface geology,
simulating the flow behavior of the injected and the in situ fluids. The goal of such models
is to estimate the field sequestration capacity of the injected CO2 under different trapping
mechanisms, such as structural, dissolution, residual, and mineral storage, during all
project phases [13,14].

Reservoir simulation is a crucial tool in the field of petroleum engineering that aids
in modeling and predicting fluid flow behavior within subsurface reservoirs. The pri-
mary objective is to simulate the complex interactions among various components, such
as rock, fluids, and wells. One of the fundamental principles underlying reservoir sim-
ulation is Darcy’s law, which describes the flow of fluids through porous media. The
Darcy equation (Equation (1)) relates fluid velocity to pressure gradient, permeability, and
fluid viscosity [15]. The simulator employs numerical methods to solve the mass, momen-
tum, and energy differential equations governing fluid flow (2) in the porous medium.
The most widely used flow model in reservoir simulation is the black-oil one [16]. In
the black-oil formulation [17], the model is considered to consist of three separate fluid
phases or pseudocomponents (water, oil, and gas). Mixing among phases is allowed, and
the amount of how much each phase is dissolved in the others and how it affects flow
properties need to be kept tracked of.

va = −λaK(∇pa − ρag) (1)

∂

∂t
(ϕAa) +∇ua + qa = 0 (2)

where the subscript a denotes the pseudocomponent oil (o), gas (g), or water (w). For each
one, the variables are defined as follows: va is the phase flux, and λa is the mobility of
the phase. This is defined as λa =

kr,a
µa

, where µa and kr,a are the viscosity and the relative
permeability of each phase, respectively. In short, relative permeability is a measure of the
effective permeability reduction of a phase in the presence of other phases and is a function
of saturation. pa is the pressure, ρa is the density, and qa is the well outflux/influx of each
phase, i.e., the volumetric flow rate at which each pseudocomponent is produced/injected
from the system. Aa = f (bw, bo, bg, sw, so, sg) are accumulation terms dependent on phase
saturation (sa) and shrinkage phase factors (ba). The flux terms ua = f (vw, vo, vg, bw, bo, bg)
are known functions of shrinkage factor and phase fluxes. Finally, the terms ϕ and K are
the porosity and permeability, respectively.

The other popular simulation model is the compositional one [18,19]. The difference
between the black-oil and compositional models lies in that the former traces the flow of
each separate phase; hence, it only considers single-phase (gas, oil, and water) density
and compressibility effects, as well as dissolution of gas in the oil phase. The fact that
the volumetric and dissolution factors can be easily described by simple functions of
the pressure is based on the assumption that the overall composition does not change
significantly during reservoir depletion or waterflooding. On the other hand, compositional
modeling, facilitated by means of an EoS model, is used when some “alien” composition is
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incorporated in the reservoir fluids. This is the typical case when handling EOR cases of
CO2, natural or acid gas injection, and injection of dry gas in gas condensate reservoirs.

Equations (1) and (2) are combined in a second-order partial differential equation
(PDE) which can be analytically solved under simplifying assumptions (incompressible,
single-phase system with constant porosity and permeability). However, when trying to
model realistic subsurface formations, these assumptions do not hold. In this case, the
discretization of the equation through linearization is a key step in numerical reservoir
simulation. This process involves dividing the reservoir into a grid to represent the spa-
tial distribution of rock properties and fluid flow and using a linearization scheme [20].
Common methods for discretization include finite differences, finite volumes, and finite
elements. Finite volumes [21], in particular, are widely used in reservoir simulation due
to their simplicity and efficiency. Gridding plays a vital role in the discretization process,
involving defining the size and shape of the cells within the reservoir grid. Various types of
grids, such as Cartesian, corner-point, and unstructured grids, are used based on the geolog-
ical complexity of the reservoir. The choice of grid impacts the accuracy and computational
efficiency of the simulation.

Petrophysical and fluid properties, such as porosity, permeability, fluid saturation,
compressibility, and relative permeability, are crucial inputs for reservoir simulation [22,23].
Accurate characterization of these properties is essential for realistic simulation results.
Furthermore, incorporating phase behavior models is essential to accurately representing
the complex interactions among different phases of fluids and dissolved particles in multi-
phase flow simulations. For instance, in CCS simulations, it is crucial to capture the
dynamics of CO2 dissolution, which significantly depends on the concentration of salts in
the aquifer [24].

Building upon the foundation of accurate simulation models, the optimization of well
placement becomes paramount to maximizing the sequestration potential of the aquifer
in CCS endeavors [25,26]. The primary objective of CCS projects is to maximize CO2
storage while adhering to constraints and technical policies [27,28]. In its most commonly
employed form, the CCS plan requires that brine producers be closed off once significant
CO2 breakthrough occurs, whereas the injectors rate is reduced when the bottomhole
pressure reaches the safety limit. Consequently, optimal well placement significantly
influences the overall success of the sequestration project by delaying the breakthrough
time. The objective function maximization in this context is defined as achieving the
highest attainable CO2 storage, considering the spatial distribution of the injection and
brine withdrawal wells. This multi-dimensional function has an unknown functional form
and its point values are expensive to compute since each one requires a fully implicit
simulation to be run. Therefore, it needs to be treated as a black-box function.

Well placement decisions cannot rely solely on static properties, since geological vari-
ables are mostly non-linearly correlated to production performance. This is demonstrated
in Figure 1, where the objective function of oil production in the form of the expected
net present value (NPV) is evaluated for the placement of a single oil producer in each
cell. The complexity and non-linearity in CCS projects parallel those encountered in oil
production, underscoring the importance of optimized well placement for maximizing
storage efficiency while considering factors such as CO2 dissolution dynamics and aquifer
characteristics. In general, well placement optimization poses a formidable challenge due
to the large number of the decision variables involved, the high non-linearity of the system
response, the abundance of local optima, and the well placement constraints. Due to the
discontinuities and the inherent non-smoothness of the objective, research has been mostly
focused on derivative-free optimization methods such as Genetic Algorithms [29] and
Particle Swarm Optimization [30] combined with various heuristics.

Guyaguler et al. (2002) [31] developed and applied the Hybrid Genetic Algorithm
(HGA) [32] to determine the optimal location and number of vertical wells, while Badru
et al. (2003) [33] extended this work to also include horizontal wells. In essence, HGA
comprises Genetic Algorithm (GA), the polytope algorithm for selecting the fittest indi-
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viduals and a kriging proxy to expedite the optimization process. The results showed
that after a few simulation runs, the method was able to optimize the production’s NPV
compared with the base case. In another work, Emerick et al. (2009) [34] designed a tool
for well placement optimization using a GA with non-linear constraints. They applied the
GENOCOP III algorithm [35] which utilizes two separate populations where the evolution
in one influences the evaluation of the other. The first population, named the “search
population”, consists of individuals that satisfy the linear constraints, whereas the sec-
ond, called the “reference population”, consists only of those that satisfy both linear and
non-linear constraints. By using this procedure, the research team developed a tool that
handled a total of eight decision variables per well (six in total that define the heel and
toe coordinates of the well, one binary for producer or injector, and one defining active
or inactive well). The results showed a significant increase in the NPV of the production
plan in comparison with the base case proposed plans. Stopa et al. (2016) [36] applied both
GA and PSO to optimize well placement and well rates. Their approach was different in
that they utilized an objective function that measures the ratio of the volume of mobile
CO2 phase (plume) over the volume of CO2 injected after 10 years of injection and 80 years
of monitoring. Their goal was to minimize this ratio, since by minimizing the plume,
leakage risk is also reduced. In essence, they tried to find configurations that maximized
the residual and solubility trapping of CO2. In their work, PSO was able to find the optimal
value of 12.5% in 500 simulation runs, while GA needed more than 850. Similarly, Goda
and Sato (2013) [37] utilized a similar objective function by using a global sampling method
known as Latin Hypercube Sampling (LHS) [38]. Notably, in their work, they enhanced the
definition of immobile CO2 by taking into account the irreducibility of relative permeability
curves. Besides the mentioned landmark works, there have been dozens more published
on this optimization problem. Islam et al. (2020) [39] provided a detailed review of research
conducted on the well placement optimization problem, focusing mostly on derivative-free
and machine learning regression methods.

Bayesian Optimization (BO) [40] is a global optimization method that efficiently con-
structs and updates surrogate models representing black-box objective functions, rendering
it suitable for addressing the well placement optimization problem. In this work, our goal
is to apply this method to optimize the carbon sequestration capabilities of a saline aquifer.
BO represents a cutting-edge methodology that dynamically balances the exploration of
the solution space with the exploitation of promising regions to efficiently discover well
placement that can lead to the global optimum configuration. BO relies on constructing a
probabilistic surrogate model, often a Gaussian Process (GP), to approximate the underly-
ing objective function, which, in this context, measures total carbon storage. This surrogate
model not only captures the observed data but also quantifies the uncertainty associated
with predictions, allowing for the incorporation of prior knowledge and continuous re-
finement as new information becomes available through successive simulation runs. By
iteratively selecting well locations based on the surrogate model’s predictions and subse-
quently updating the model with the actual reservoir response, BO intelligently adapts its
search strategy. This adaptive nature makes it particularly well suited for navigating the
high-dimensional and uncertain parameter space, providing a systematic and data-driven
means of identifying optimal well configurations for enhanced carbon sequestration.

BO for well placement optimization was implemented in the work of Balabaeva
et al. (2020) [41]. In their work, the researchers attempted to optimize well locations
by maximizing the cumulative drainage area of wells by using various derivative-free
methods, with BO being one of them. In another work, Bordas et al. (2020) [42] utilized a
BO framework for field development planning while quantifying the effect of geological
uncertainty. They generated a surrogate model that was able to identify well placement
positions that maximized NPV while accounting for uncertainty. Kumar [43,44] also
presented works on novel BO realizations, such as trust region BO [45] and sparse-axis-
aligned subspaces BO (SAASBO) [46]. BO has additionally been investigated for optimizing
various decision variables crucial in reservoir exploitation besides well placement. Lu et al.
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(2022) [47] utilized BO to optimize the time cycle of gas/surfactant injection in Water
Alternating Gas (WAG) schemes. Their study conducted at the Cranfield reservoir site
resulted in a 16% increase in gas storage volume and a 56% reduction in water/surfactant
usage compared with the baseline WAG schedule. In an MSc thesis, Javed [48] employed
a BO framework to optimize deviated well trajectories in a synthetic reservoir model
located in the North Sea. The optimized trajectories led to a 28% enhancement in the
objective function compared with the base case. Additionally, Wang and Chen (2017) [49]
investigated the Cardium tight formation, where they successfully optimized fracturing
design parameters by using BO, achieving a notable 55% improvement in the objective
function. These studies prove BO to be a suitable framework in reservoir engineering.
However, to our knowledge, BO has not been studied for the well placement optimization
problem in CCS specifically.

The rest of the paper is organized as follows: In Section 2, we delve into a comprehen-
sive explanation of the Bayesian Optimization method. Following that, Section 3 offers a
detailed description of the specific problem, elucidating how BO was strategically applied
to address the challenges encountered, such as non-linear constraints and permutation
invariance in the input space. In Section 4, we present results stemming from various
implementations of the BO method, comparing the performance of various acquisition
functions and inspecting the exploration–exploitation trade-off. Section 5 initiates an ex-
pansive discussion of the obtained results. Finally, Section 6 draws insightful conclusions
based on the findings and discussions presented throughout the study.

Figure 1. NPV evaluation for oil production with a single well [50].

2. Bayesian Optimization
2.1. Gaussian Process (GP) Regression

In order to properly understand BO, the GP framework needs to be explained in detail.
The complete treatment of GP can be found in Rasmussen and Williams (2006) [51]. Most
of the material in this section has been inspired by Frazier (2018) [40] and Dou (2015) [52]
and the articles by Distill [53,54], which provide visual and interactive explanations of the
materials discussed here.

Multivariate Gaussian distributions (MVN) [55] act as the building blocks of GP. They
express the distribution of multiple random variables that are distributed normally and
whose joint distribution is also Gaussian. They are defined by a mean vector µ, which
describes the expected value of the distribution, and a positive semidefinite covariance
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matrix Σ, which models the variance along each dimension and determines how the
different random variables are correlated. The diagonal elements of Σ express the variance
of each random variable. The off-diagonal elements Σi,j describe the correlation between
the ith and jth random variables. The probability density of an MVN in d dimensions is
shown in Equation (3).

N(x|µ, Σ) =
1

(2π)d/2|Σ|1/2 exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
(3)

where µ is the d × 1 mean vector and Σ is the d × d covariance matrix. A GP is the
extension of this MVN to the space of functions, defining a probability measure on a
function space. This function space acts as the probabilistic surrogate objective function,
which will eventually converge to the actual objective function through sampling and
utilization of the GP regression algorithm. At first, the probability measure is interpreted
as our prior knowledge about the unknown objective function before data are seen. A GP
is defined via its mean and covariance just like the MVN; however, those now represent
functions. Given a finite collection of q points x1:q ∈ Rd that appropriately discretize the
d-dimensional input space, the objective function’s values f(x1:q) are assumed to be drawn
by an MVN.

f(x1:q) ∼ N(m(x1:q), K(x1:q, x1:q)) (4)

Compared with a multivariate normal, we have the following:

• A random function vector f(·) instead of a random vector x;
• A mean function vector m(·) instead of a mean vector µ;
• A covariance (kernel) function matrix K(·, ·) instead of a covariance matrix Σ.

Above, K(·, ·) = {k(xi, xj)} and k(xi, xj) is the kernel function discussed below.
Equation (4) states that the vector of functions conditional on inputs x1:q and the mean

and covariance functions follows a q-dimensional MVN distribution. To avoid confusion, it
needs to be stated that no assumption has been made on the distribution of the inputs. So
far, the prior Gaussian distribution of the objective function has been defined. Function
values selected in the prior are commonly referred to in the literature as the test data.

In the prior distribution, it is common to set the mean function to a constant value
of zero. This is a reasonable assumption since no prior knowledge is assumed. If prior
knowledge can be assumed to exist, then the mean function can be set to Equation (5).

m(x) = µ0 +
p

∑
i=1

βiΨi(x) (5)

where Ψi are often parametric, low-order polynomials which summarize our prior knowl-
edge on the objective function.

When it comes to choosing a kernel function, it is typically necessary to select it
based on certain properties. First of all, kernel functions need to be positive semidefinite.
Secondly, it is important that points closer in the input space are more strongly correlated,
i.e., if ||x− x′|| < ||x− x′′||, then k(x, x′) > k(x, x′′). There are many kernel functions
commonly used in BO; however, the Matérn kernel [56] will be the main focus, since it is a
more general form of kernel functions.

k(x, x′) = α0
21−ν

Γ(ν)

(√
2ν||x− x′||

)ν
Kν(
√

2ν||x− x′||) (6)

where Kν is the modified Bessel function [57], Γ(ν) is the Gamma function, and α0 is a
hyperparamter [58]. Certain values of ν in Equation (6) reduce the equation to other popular
kernels, including the following:

• Radial basis function (RBF) kernel [59] for ν→ inf;
• Absolute exponential kernel for ν = 0.5;
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• Once-differentiable functions for ν = 1.5;
• Twice-differentiable functions for ν = 2.5.

So far, the prior distribution of functions has been constructed, but no observed
information has been introduced to the model yet. To do so, the objective function’s value
has to be measured at some points, which are denoted by y1:n. These points, commonly
referred to as training data, are observed by sampling the black-box objective function. By
incorporating this information into our model, the posterior distribution can be defined.
First of all, the distribution of f(x1:q, y1:n) is now a (q + n)-dimensional MVN. To acquire
the posterior distribution on a certain point of x1:q, conditioning and marginalization have
to be applied. By using the Bayes rule, Equation (7) is obtained.

f (x)|f(y1:n) ∼ N(µn(x), σ2
n(x)) (7)

where the mean value µn(x) is given by Equation (8) and represents a weighted average
between the prior and an estimate based on the training data.

µn(x) = k(x, y1:n)K(y1:n, y1:n)
−1(f(y1:n)− µ0(y1:n)) + µ0(x) (8)

and the posterior variance σ2
n(x) seen in Equation (9) is equal to the previous covariance,

minus a term that corresponds to the variance removed by observing the training data.

σ2
n(x) = k(x, x)− k(x, y1:n)K(y1:n, y1:n)

−1k(y1:n, x) (9)

This regression process updates the surrogate objective function’s values by condition-
ing on the training data.

2.2. Kernel Functions

Kernel functions are essential in BO since they define the shape of the prior and
posterior distributions. For a function to be a valid kernel, it needs to satisfy Mercer’s
theorem [60].

A symmetric function k(x, y) defined on X × X , where X is some input space, is a
valid kernel function if and only if it satisfies the following conditions:

1. Symmetry : k(x, y) = k(y, x) for all x, y ∈ X .
2. Positive semidefiniteness: For any finite set of points x1, x2, . . . , xn ∈ X , where i, j ∈

{1, ..., n}, the corresponding kernel matrix K(xi, xj) is positive semidefinite.

If there exists a mapping function ϕ(x) that maps x to a higher-dimensional space
such that the inner product in that space is equivalent to the kernel function k(x, y) =<
ϕ(x), ϕ(y) >, then according to Mercer’s theorem, k(x, y) is a valid kernel function. Kernel
functions have important properties commonly used to modify and non-linearly combine
existing kernels to obtain new ones better suited for handling specific problems, such as
the following:

1. Linearity: If k1(x, y) and k2(x, y) are valid kernel functions, then for any constants
a, b ≥ 0, the linear combination a · k1(x, y) + b · k2(x, y) is also a valid kernel function.

2. Product: If k1(x, y) and k2(x, y) are valid kernel functions, then their product k(x, y) =
k1(x, y) · k2(x, y) is also a valid kernel function.

3. Exponential: If k(x, y) is a valid kernel function, then exp(k(x, y)) is also a valid kernel
function.

4. Function: If k(x, y) is a valid kernel and f : X → R, then g(x, y) = f (x)k(x, y) f (y) is
also a valid kernel.

2.3. Acquisition Functions

So far, the GP framework within which BO operates has been defined. This of course
does not constitute a complete optimization algorithm since an iterative solution update
rule is yet to be defined. This is where acquisition functions come into play. The main idea
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is for BO to utilize the posterior GP to determine a new point of high expected value and
make an additional valuable observation on that point. Subsequently, the posterior GP
is conditioned against the new information, and the procedure is repeated until there is
enough confidence that the algorithm has converged to the global optimum.

BO is specifically tailored to problems where data acquisition is considered compu-
tationally intractable. Therefore, BO’s goal is to find good sequential acquisition policies
which converge to the optimum in as few objective function evaluations as possible. These
policies inherently include the exploration–exploitation trade-off. In BO, exploration is
related to looking for the next iteration estimate in areas of the solution space where the
variance is high, while exploitation is related to searching areas where the current maximum
is located and trying to find even better solutions.

Given a posterior distribution based on n observed function values, the goal is to find
the most valuable point xn+1 for receiving the next objective function calculation. The
proposed solution is founded on the concept of the value of information [61]. Let us assume
that a hypothetical new observation at x has an objective function value of y. The value of
making this observation is denoted by v(x, y; f (x1:n)). By integrating y out of the picture
by using the point predictive distribution of the posterior GP, we can define the expected
value of observing x (Equation (10)).

v(x; f (x1:n)) = Ey|x; f (x1:n)
[v(x, y; f (x1:n))] (10)

As a result, the data acquisition policy is defined by solving the optimization problem
xn+1 = arg maxx v(x; f (x1:n)), i.e., the next trial point should be the one exhibiting the maxi-
mum expected value. A natural stopping criterion for such a policy is to stop when the maxi-
mum expected value of the current iteration is smaller than a threshold v(xn+1; f (x1:n)) < ϵ.
There are many choices for the value function but the following three in particular are the
most commonly utilized ones:

1. Probability of improvement (PI) : PI (Equation (11)) picks the point that is most likely
to yield an improvement over the current maximum ŷn[62].

v(x; f (x1:n)) = PI(x) = P[ f (x) ≥ ŷn] = Φ

(
ŷn −mn(x)

σn

)
(11)

This is considered to be an exploitation-oriented policy.
2. Expected improvement (EI): EI (Equation (12)) involves computing how much im-

provement we expect, especially over a highly uncertain domain [63]. It picks the
point with the highest expectation of difference between predicted function value and
current maximum.

v(x; f (x1:n)) = EI(x) = E[max(0, y− ŷn)] =

= σn(x)φ

(
mn(x)− ŷn

σn(x)

)
+ (mn(x)− ŷn)Φ

(
mn(x)− ŷn

σn(x)

) (12)

where φ and Φ are the normal density and cumulative distribution.
3. Upper confidence bound (UCB): UCB (Equation (13)) is one of the simplest acquisi-

tion functions, with a tunable parameter (λ) designed to favor either exploration or
exploitation.

v(x; f (x1:n)) = UCB(x) = µ(x) + λσ(x) (13)

3. Problem Description
3.1. Reservoir System

In this study, the sequestration potential of a deep and highly permeable synthetic
aquifer (Figure 2) is investigated. The aquifer exhibits an inclined profile, with a pronounced
steepness near the crest resembling an anticline, expanding horizontally across a wide
area, and comprises four sedimentary layers, each one with varying average permeability
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values. There is no apparent faulting or fracturing in the formation, and it is assumed
to be sealed tightly by shales. The aquifer’s salinity is about 65,000 ppm. Furthermore,
it maintains a temperature profile consistent with typical thermal gradient expectations
at the reservoir depth. The characteristics of the aquifer can be seen in Table 1. Due to
its high permeability, the pressure distribution within the aquifer adheres to the pressure
gradient, remaining isotropic on the x-y plane. The aquifer is considered to be slightly
overpressurized, prompting the simultaneous production of brine during CCS operations
to postpone reaching the pressure upper safety limit indicated by the technical and safety
policies in place as 9000 psi. The significance of this approach is underscored by the zero-
flow conditions at the aquifer’s sides, as dictated by no-flow boundary conditions in the
simulation model [64].

Figure 2. Depth value per cell in the aquifer. The z-axis is scaled by a factor of 5 for visualization
purposes. The tool used is ResInsight, which is an open-source cross-platform 3D visualization, curve
plotting, and post-processing tool for reservoir models and simulations.

Table 1. Aquifer characteristics.

Parameter Value Unit

Average pressure (P) 5000 Psi
Temperature (T) 200 ◦ F

Porosity (ϕ) 0.25
Average depth (D) 10, 180 ft

Average xy permeability (k) 300 mD
Bulk volume (V) 2.4 · 1011 scf

Water in place 1.7 · 109 STB

3.2. BO Framework

To formulate a BO framework, the objective function, its constraints, and the decision
variables have to be defined. The target is to maximize the total amount of CO2 sequestered
in the aquifer after continuous injection for 40 years and concurrent brine production with
constant target rates. This is handled by introducing two types of groups, injectors and
producers, with each group consisting of a number of identical wells.

Constraints are set to the maximum and minimum bottomhole pressure thresholds, as
well as to the maximum afforded breakthrough rate of CO2 recycling. High non-linearity is
introduced to the problem by the effect of the wells’ location on the objective function and
of the dynamic schedule changes occurring when operational constraints are violated. If,
for example, an injector is placed close to a producer, then it is likely that CO2 breakthrough
will occur way sooner than otherwise. Subsequently, the producer will be closed off,
and pressure will build up at a faster rate so that the constraint of maximum bottomhole
pressure for the injector will be reached sooner, resulting in reduced sequestration. The
depth at which each well is situated also plays a huge part in the breakthrough time. Since
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CO2 tends to migrate upwards, CO2 travels faster to a producer situated near the crest.
In contrast, if the producer is situated closer to the reservoir bottom, CO2 breakthrough
is delayed. The theoretical maximum amount of CO2 stored is easily calculated as the
target rate of the injectors over the timespan of injection. However, this maximum may be
unobtainable due to the constraints already mentioned.

The well placement optimization problem can be formulated as shown in Equation (14).

maximize
x

f (x)

subject to gi(x) ≤ 0, i = 1, 2, . . . , m
(14)

where f (x) corresponds to the CO2 mass sequestered, which can be sampled by simulation
runs, and gi(x) ≤ 0 are the scheduling constraints, where x represents the decision variables,
which, in this case, are the coordinates (x, y) of each vertical well. Most commercial
and research reservoir simulators can embed scheduling constraints into their runs, thus
ensuring that the simulation is operationally feasible. This way, the scheduling constraints
are handled by the simulator and thus do not need to be explicitly handled by the optimizer.
There are, however, additional constraints related to the feasibility of the input space,
as discussed in the next subsection. For the optimization process, the python package
Bayesian Optimization [65] was utilized.

3.3. Decision Variables and Constraints

Constraints need to be imposed on the input space to define the feasible region of the
objective function. For a CCS system with N wells, the input space consists of 2N decision
variables and the wells’ location may be written as in Equation (15).

x = (x1, y1, x2, y2, . . . , xN , yN) (15)

The first constraint to be imposed on the input space is that two wells cannot take up
the same cells on the grid, since the simulator issues a simulation error instantly. As such,
the optimizer is instructed to penalize such cases by giving a very negative value for the
objective function when the simulator crashes.

The second and much more troublesome-to-handle constraint is the one regarding
the valid position of each well. Since the aquifer’s shape is not a square box, there are
coordinate values within the grid-enclosing volume that correspond to null (non-existent)
grid cells, as seen in Figure 3. The recommended solution would be to add a severe penalty
term by introducing a large negative objective function value for inputs in the infeasible
area. For a reservoir with an active-to-total-cell ratio of 50%, this ratio corresponds to the
probability of a well being placed within the feasible area. If the location of a single well
were sought, the optimizer would be able to map the infeasible area quite quickly. However,
when N wells have to be placed rather than just one, the probability of selecting all of them
inside the feasible space is only (0.5)N . Clearly, the timeframe for the determination of the
feasible area increases exponentially with the number of wells selected.
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Figure 3. Feasible region for wells on reservoir grid top view.

To overcome this challenge, a mapping from this 2D input space to a 1D space is
employed while maintaining a one-to-one relationship, using a transformation based on
the cell distance from the origin. Subsequently, an ascending-order-sorting operation is
applied to the Euclidean norms of each cell to arrange them. Algorithm 1 of the map can
be seen below.

Algorithm 1: Mapping function f : R2 → R.

Input: Set of 2D cells C = {(x1, y1), (x2, y2), . . . , (xn, yn)}
Output: Mapped one-dimensional values
Calculate Euclidean distance from the origin (0, 0) for each cell and store them in
array D;

Sort array D in ascending order;
Initialize i = 1;
for d in D do

Assign f (xi, yi) = i;
Increment i by 1;

end

This mapping is one to one (1-1) because each point (x, y) ∈ R2 is uniquely associated
with a real number f (x, y) ∈ R. Note that this is not a homeomorphism, as it does not
preserve topological properties such as closeness of points.

This mapping allows for dimensionality reduction from a 2N-dimensional input space
to an N-dimensional one. Furthermore, all values in the new input space represent the
feasible region, so no more constraints on the input region need to be handled. The mapped
values of each cell are shown in Figure 4.
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Figure 4. Mapped value of each cell.

3.4. Permutation Invariance Of Input Space

As mentioned earlier, the simulator splits wells into two groups, injectors and produc-
ers, managing them collectively under group control policies. Targets and constraints are
set for each group, with an embedded optimizer in the simulator responsible for adjusting
schedule parameters for individual wells within each group. Essentially, a group comprises
wells of the same type, distinguished solely by their location on the grid. On the other
hand, the wells’ locations serve as input variables in the BO framework, ordered in a vector.
Therefore, the simulator handles the wells’ positions as two sets of unordered objects,
partitioned on the respective group, while BO treats them as a vector. Consequently, for
the simulator, the input space is invariant under permutations for well positions within a
group, whereas for BO, it is not.

Let us consider a scenario following the mapping described in Algorithm 1. If variables
m and n represent the positions of injectors and producers, respectively, the input space’s
invariance implies that a sampled input exerts the same effect on the simulator, thus also
on the objective function, across m! · n! vectors, generated by all of the permutations of the
inputs within the same group.

To illustrate this concept, let us consider a simple case with two wells of the same
type placed on a 3× 3 Cartesian grid (refer to Figure 5). In this scenario, the top-left cell is
denoted as [1,1]. Moving right from [1,1] brings us to [1,2], while moving downwards from
[1,1] leads to [2,1]. This structure mirrors the conventions of matrix elements, facilitating
a straightforward understanding of the grid’s layout. The coordinates for the left sample
are x = ( f ([2, 1]), f ([3, 2])), and for the right sample, x = ( f ([3, 2]), f ([2, 1])), where f is
the mapping defined by Algorithm 1. Despite the differing configurations, the simulator
produces identical outputs for both samples, since they belong to the same group, and the
simulator handles them as a set, regardless of their order. Each sample has its counterpart, or
“doppelganger”. As the number of wells increases, the number of potential configurations
grows exponentially, since for N wells, each unordered configuration can result from N!
different orderings. This example highlights the fundamental principle of group control
and the resultant invariance in the input space, offering insights into the system’s behavior
regardless of the specific arrangement of wells.
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Well 1

Well 2

Well 2

Well 1

Figure 5. Both ordered configurations produce the same output.

3.5. Modified Kernel Function

The observation of permutation invariance is crucial to better acknowledging the
principal idea introduced in this work. Since the black-box function of the BO framework
(i.e., the simulator) considers the inputs to be sets, it would be extremely beneficial for this
to also be incorporated in the BO framework. By sampling an input vector, information is
obtained not only regarding what its objective function value is but also regarding all input
vectors that are derived from same-group permutations of its elements. For instance, in the
N-dimensional input space, where N = n + m, and n and m correspond to the dimensions
of the groups, a single sample would give information about n! · m! vectors. It is now
obvious that incorporating this information in BO would greatly benefit its efficiency.

To incorporate this in BO, we need to recall that BO builds a surrogate objective
function that is mostly influenced by samples and the covariance matrix which is derived
from a kernel function. Modifying the kernel function is a clear pathway for improving
the efficiency of BO. The kernel function calculates the covariance between points of the
input space and acts as a measure of how similar the surrogate objective function’s values
are based on the distance between inputs. The Matérn kernel utilized in this work is a
stationary kernel, i.e., invariant to translations where the covariance of two input vectors is
only dependent on their relative position k(x, y) = k(||x− y||). Inputs have high covariance
when their distance approaches zero, whereas it decreases as they move further apart.

The modified input space generated by the mapping of Algorithm 1 is useful for
generating inputs inside the feasible region, but the caveat is that it is not homogeneous.
Points that are close in the modified input space might be very far apart when translated to
the original input space. The lack of preservation of this closeness property in the modified
input space can be expressed as follows:

If ||c1 − c2|| ≤ ||c1 − c3||

it does not necessarily imply that || f (c1)− f (c2)|| ≤ || f (c1)− f (c3)||.

where ci are cells coordinates and f is the mapping from Algorithm 1. In other words, the
mapping function is not an increasing function of the well distance. It follows that if the
kernel function utilizes the distances of the mapped input space directly, there will likely be
a discrepancy between the calculated covariance and the actual covariance between inputs
when this translates to the original input space.

To overcome this problem, the kernel function was modified so that covariance is
calculated based on the inverse mapping of the input space, i.e., from the N-dimensional
input space to the 2N-dimensional one which now represents the actual distance between
two cells (̨x, y) = k(|| f−1(x)− f−1(y)||), where f−1(x) = ( f−1(x1), f−1(x2), . . . f−1(x11)).
By utilizing this technique, the kernel function now considers the actual distance between
two cells.

The last issue to be addressed is the permutation invariance. Since each input vector is
invariant under m! · n! permutations, to calculate the representative covariance between
two inputs, the permutation ordering that minimizes the distance of the one input to the
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other needs to be applied. This is a key modification that transforms BO from considering
inputs as vectors to now view them as sets. By permuting, it is now able to minimize the
distance between sets rather than vectors.

To solve this, a matrix D is generated, with each value dij representing the distance of
the ith well in x from the jth well in y, as given by Equation (16).

D = dij = {|| f−1(xi)− f−1(yj)||} (16)

Since the goal is to find the permutation that minimizes the distance between wells
in the two samples, the problem can be expressed as finding the permutation of rows (or
columns) that minimizes the trace of matrix D, shown in Table 2, which has complexity
O(N!). Since permutation invariance only affects injectors and producers separately, the
problem can be reduced to the two counterparts, i.e., finding the right ordering of the
injectors which has complexity O(m!) and finding the right ordering of the producers with
complexity O(n!). This is a very well-known problem in the literature called the assignment
problem. Algorithm A1 (Appendix A), known as the Hungarian method [66], or Munkres
algorithm [67], is commonly utilized to reduce its complexity to the order of O(N3), or in
our case, O(m3) + O(n3), saving valuable computational time. Algorithm 2, describing the
full Kernel modification, is shown below.

Table 2. Distance matrix D .

y1 y2 · · · yn
x1 d11 d12 · · · d1n
x2 d21 d22 · · · d2n
...

...
...

. . .
...

xn dn1 dn2 · · · dnn

Algorithm 2: Covariance calculation.
Input: Modified input space
Output: Modified kernel function
Function GenerateDistanceMatrix(Modified input space):

Calculate the inverse mapping f−1 for each sample in the modified input space
using the 1-1 dictionary values produced from Algorithm 1;

Initialize an empty distance matrix;
for each pair of samples xi and yj do

Define f−1(xi) and f−1(yj) as the inverse mappings of xi and yj

respectively;
Calculate the Euclidean distance dij using the inverse mapping:

dij = || f−1(xi)− f−1(yj)||;
Store dij in the distance matrix;

end
return Distance matrix;

Function HungarianMethod(Distance matrix):
Use the Hungarian method A1 to find the optimal permutation ordering that
minimizes the trace of the distance matrix;

return Optimal permutation ordering;
Function ModifiedKernel(Distance matrix, Optimal permutation ordering):

Calculate the modified kernel function using the optimal permutation
ordering;

return Modified kernel function;
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The modified kernel function is represented by a functional form, k(x, y) = k(minm ||
f−1(x)− f−1(Pmy)||), where Pm denotes the permutation matrix. This functional form
introduces significant non-linearity, due to the involvement of inverse mapping f−1 and
permutation matrix Pm. This non-linearity poses challenges in directly establishing a proof
of satisfaction of Mercer’s conditions, which typically rely on simpler, more linear forms of
kernel functions. However, despite the inherent complexity introduced by the functional
form, extensive sampling efforts across a large number of input samples consistently yield a
positive semidefinite covariance matrix. This empirical observation is crucial, as it provides
compelling evidence supporting the validity of the modified kernel function. To elaborate,
the positive semi-definite covariance matrix implies that the resulting kernel function
preserves important properties required for Mercer’s conditions, such as symmetry and
non-negativity. The positive semi-definite nature of the covariance matrix indicates that any
linear combination of kernel evaluations over the sampled inputs remains non-negative,
thus aligning with the requirements of Mercer’s theorem. Furthermore, although direct
analytical proof may be challenging due to the non-linearity of the modified kernel, the
empirical validation through covariance matrix analysis corroborates the functional form’s
adherence to Mercer’s conditions. This empirical evidence, coupled with the observed
positive semi-definite covariance matrix, lends strong support to the validity of the modified
kernel function despite its inherent non-linearity.

Importantly, due to the permutation invariance inherent in the function, it can be
construed as a kernel function operating between sets rather than individual vectors.
Algorithm 3 delineates the primary workflow of the Bayesian Optimization (BO) framework
employed in this study.

Algorithm 3: Bayesian Optimization framework.
Input: Objective function f , initial set of samples X, maximum iterations N
Output: Optimal solution x∗

Use Algorithm 1 (Mapping Function f : R2 → R) to map the 2D cells to
one-dimensional values;

Initialize the set of samples X with initial samples;
Initialize the covariance matrix K using the modified kernel function;
for i from 1 to N do

Use Algorithm 2 (Covariance calculation) to compute the modified kernel
function;

Update the surrogate model with the modified input space and kernel
function;

Select the next sample point using an acquisition function;
Evaluate the objective function at the selected sample point;
Update the set of samples X with the new sample point and corresponding
function value;

Update the covariance matrix K with conditioning based on the new sample
point;

end
return Optimal solution x∗ based on the observed samples and their function
values;

4. Case Study

To properly solve the multi-phase compressible fluid flow problem, reservoir simu-
lation is utilized through OPM’s open-source Flow software v2023.10 [16] (https://opm-
project.org/?page_id=19, (accessed on 17 April 2024)). The aquifer is detailed in Section
3.1, while the BO framework is delineated in Sections 3.2–3.5. Specifically, m = 3 injectors
and n = 8 producers are selected. The injector selection is based on the chosen target rates,
aligning with commonly utilized practices in CCS projects [68,69]. Conversely, the decision

https://opm-project.org/?page_id=19
https://opm-project.org/?page_id=19
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to increase the number of producers is motivated by the requirement for pressure mainte-
nance, particularly in a closed system. This assumption is pragmatic, as it is anticipated
that most producers function as lateral extensions of a few multi-segment horizontal wells.
A safety upper limit for pressure buildup is set to 9000 psi, while a lower limit of 3000 psi
is set to mitigate the need for costly pumping procedures.

4.1. Exploration–Exploitation Trade-Off

The first phase of testing the BO algorithm involves the utilization of all three candi-
date acquisition functions introduced in Section 2.3, shown in Equations (11)–(13). Each
function is utilized twice, once with explorative hyperparameters values and once with ex-
ploitative ones. In total, six BO models are generated, with each one being trained through
50 iterations, by an equivalent amount of simulation runs conducted for each model to
refine the surrogate objective function. Details of the selected schedule are outlined in
Table 3.

Table 3. Schedule targets and constraints.

Parameter Value

(Target) Injection rate (CO2) 110 MMscf/day
(Target) Production rate (water) 50 Mstb/day
(Constraint) Max production rate (CO2) 5 MMscf/day
(Constraint) Max bottomhole pressure 9000 psi
(Constraint) Min bottomhole pressure 3000 psi

Duration ≈ 40 years
Theoretical maximum sequestration volume (CO2) 1.58 Tscf

In the table above, “M” denotes 1000, “MM” denotes 106, and “T” corresponds to 1012

while “stb” and “scf” represent units of volume, i.e., stock tank barrel and standard cubic
feet, respectively, measured under surface conditions. The theoretical maximum volume
shown in Table 3 was calculated by multiplying the target injection rate with the duration
of the simulation and represents the target value for the optimizer to reach. However, it is
crucial to note that this value may not be feasible without violating the imposed constraints;
therefore, it may not be achievable under any set of well configurations. Mass-wise, the
target injection CO2 rates correspond to 2.3 MMtn/yr and the maximum sequestration
volume to 90 MMtn.

At first, the performance of all six models is compared in terms of maximum storage
value attained by timestep, as seen in Figure 6.

Figure 6. Maximum obtained CO2 storage value vs. iteration number.
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The first component of the series names signifies the hyperparameter value selection
guiding the model towards either exploration (XPR) or exploitation (XPT), while the second
component indicates the acquisition function employed (see Equations (11)–(13)). It is
notable that all models approach a storage result close to the theoretical maximum already
by iteration 15. Certain models (XPT EI, XPT PI, and XPR PI) are fortunate to nearly achieve
their optimum value early on, possibly due to a lucky initial guess. This suggests that the
targeted objectives of the schedule are relatively easy to maintain throughout the simulation.
In contrast to other exploitative models, XPT UCB attains an optimal value by the third
iteration. Both XPT EI and XPT UCB demonstrate their ability to refine their predictions in
later iterations. However, XPT PI peaks at the 10th iteration but fails to reach the 1.5 · 109

mark, likely because PI inherently leans towards exploitation. In contrast, XPR PI continues
to exhibit improvements even after 20 iterations. Notably, both XPR UCB and XPR EI
consistently find enhancements throughout the iterations, owing to their explorative nature
as well as initially exploring sub-optimal regions.

Since the results produced for the max value seem to be heavily reliant on the initial
estimation, the distribution of the storage results that each model generated at every
iteration is investigated, as illustrated in Figure 7, to offer valuable insights into the impact
of the strategy on model performance. Notably, exploratory strategies (illustrated in the
right-hand-side plots) demonstrate a higher susceptibility to unfavorable outputs, which
arises from their emphasis on exploring uncharted territories within the input space. This
trend is clearly evidenced by the elongated tail of the distribution estimation line (kde)
and the behavior of the 20th percentile line (dashed green) of the distribution, indicating
that these strategies occasionally obtain sub-optimal outcomes. Conversely, exploitative
strategies, as indicated by the 80th percentile line (dashed blue), tend to sample inputs
that enable them to remain in proximity to the maximum value. However, an exception
emerges with XPT PI, which appears to have become stuck in a local optimum, failing
to fully capitalize on potential improvements. This divergence underscores the nuanced
interplay between exploitation and exploration strategies and their respective impacts on
model behavior and performance.

Figure 7. Histograms and probability density estimation of storage values.

Finally, to give a measure of the well location change per iteration, in Figure 8, the
L1 norm between the locations in subsequent iterations is depicted as “Vector Distances”
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defined as the trace of matrix D, as shown in Table 2, aiming to offer insights into the
level of exploration across the models. However, since distance alone is not the optimal
metric due to permutation invariance, akin to the modification of the kernel function, the
“Set Distances” value between subsequent runs is calculated, utilizing Algorithm A1 on
D to yield the minimum distance. This approach offers a more accurate depiction of the
exploration dynamics among the models, mitigating the limitations associated with the
traditional distance metric.

Figure 8. “Vector Distances” and “Set Distances” between subsequent inputs for all six investigated models.

The median of the “Vector Distances” series of exploration strategies is clearly higher
than that of exploitation ones, as exploration inherently involves probing a wider range
of input space. However, it is noteworthy that due to the acquisition function not being
directly dependent on the kernel, the Set Distances value between the inputs is considerably
higher in exploitative strategies. This observation suggests that exploitative strategies
ultimately explore the space more efficiently. In essence, while exploration strategies cover
more ground in terms of distance, exploitative strategies manage to navigate the space
effectively, potentially due to their focused search around promising areas guided by the
acquisition function.

4.2. Kernel Comparisons

To further evaluate the performance of the proposed method, a comparison between
the modified kernel against the original Matérn kernel and an approach that randomly
selects well positions is presented. This test is performed on a more strenuous schedule
having a higher target injection rate, increased by more than 50%, as seen in Table 4. The
target injection rate now corresponds to 3.6 MMtn/yr and the maximum sequestration
volume to 142 MMtn.
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Table 4. Schedule targets and constraints.

Parameter Value

(Target) Injection rate (CO2) 170 MMscf/day
(Target) Production rate (water) 77 Mstb/day
(Constraint) Max production rate (CO2) 5 MMscf/day
(Constraint) Max bottomhole pressure 9000 psi
(Constraint) Min bottomhole pressure 3000 psi
Duration ≈40 years
Theoretical maximum sequestration volume (CO2) 2.44 Tscf

This comparison aims to elucidate the impact of the two modifications made to the
kernel described in Section 3 on the final outcome. Specifically, we seek to understand their
influence on the end result, as well as their ability to expedite the optimization process. The
acquisition function utilized is EI with moderate hyperparameter values, striking a balance
between exploration and exploitation. By evaluating these aspects, valuable insights can be
gained into the efficacy and efficiency of the proposed modified kernel in comparison with
both the original kernel and a random selection strategy.

As illustrated in Figure 9, the modified kernel surpasses the two alternatives in terms
of maximum CO2 sequestered. Furthermore, it demonstrates consistent improvement, initi-
ating enhancement as early as at the third timestep and continuing to refine its performance
a total of four times before the 15th timestep. In contrast, the original kernel demonstrates
improvement only twice, and its performance is comparable only to that of the random
process. This stark discrepancy underscores the critical importance of effectively managing
kernel functions. Failure to comprehend and address the nuances of optimization caveats
would have hindered our ability to achieve such promising outcomes.

Figure 9. Maximum CO2 sequestered volume achieved vs. iteration number.

Notably, the original kernel function’s performance is akin to that of a random process.
This outcome is attributable not only to improper distance calculations based on the 1D
modified input space in the covariance but also to the lack of comprehensive information
regarding permutation invariance and the need to manage a considerably larger input
space as a consequence. Figure 10 further supports this argument by demonstrating that
the density distribution of the results of the original kernel and the random optimization
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are very close, as opposed to the modified kernel’s results, where the density function is
clearly skewed towards the optimal value.

Figure 10. Maximum obtained CO2 volume values vs. iteration number.

5. Discussion

To facilitate a broad discussion on the modifications and the results presented so far, a
brief synopsis of what has transpired thus far needs to be presented. The objective of this
work is to apply a BO framework to optimize well placement in a CCS project. Rather than
applying BO in a “out of the shelf” straightforward fashion, several key modifications and
analyses outlined throughout Section 3 were employed, aiming at enhancing optimization
efficiency and effectiveness. Firstly, by utilizing a formation with complex geometry rather
than a simple “sugar box”, the issue of infeasible areas within the input space emerged and
had to be addressed by implementing a transformation technique. This step allowed us to
circumvent infeasible regions that took up the majority of the original input space.

This modification was not tax-free, as it introduced a severe issue to the kernel. The
non-homeomorphic nature of the map implied that kernel closeness of points in the new
modified input space did not translate to the same closeness on the original, thus violating
the need for the kernel function to calculate the covariance properly. To address this,
modifications were further introduced to the Matérn kernel, utilizing inverse mapping to
capture real distances between well positions. By recalculating covariances based on actual
distances, this adapted kernel accurately represented the spatial relationships crucial for
optimal well placement.

A significant advancement in the proposed methodology was the integration of our
knowledge of permutation invariance into the kernel function. From a mathematical point
of view, this innovation enabled the kernel to operate on sets rather than conventional
vectors, effectively considering the minimum distances between well positions under
permutations. The resulting kernel showed to be instrumental in improving optimization
outcomes, as demonstrated through rigorous experimentation in Section 4.2, where BO
was run with and without the proposed modifications, with the results being significantly
better in the modified case.

Clearly, the modified kernel exhibited superior performance, highlighting its pivotal
role in driving significant improvements in well placement optimization outcomes. It is
our strong belief that a solid foundation has been laid for future research endeavors aimed
at optimizing the well placement problem with enhanced precision and efficiency. The
proposed method is generalizable to other applications of well placement optimization,
not necessarily restricted to a BO framework as long as wells operate under group control,
making the input space invariant under permutations. These modifications can also find
applications in other learning algorithms characterized by permutation invariant inputs.

In addition to the comparisons presented thus far, it is important to address the optimal
placement identified by the algorithms and consider what insights engineers’ intuition
could offer. Generally, in a closed system, producers and injectors should be positioned as
far apart as possible. For this aquifer, an alternative configuration could involve injecting
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CO2 at the crest and placing the producers around the periphery, which would potentially
enforce the resulting plume to remain relatively stationary and not descend as rapidly. As
depicted in Figure 11, the solution derived by the BO algorithm reflects a blend of both
engineering perspectives and considerations.

Figure 11. Optimal well placement achieved by the proposed algorithm.

Injectors are strategically positioned as far away as possible from the majority of the
producers, situated in the region resembling a fork at the base of the aquifer. Conversely,
most producers are sited on the opposing side of the crest that resembles a “hill”. CO2
naturally migrates upwards, facilitated by a clear pathway to the crest. It is reasonable to
assume that producer P6 is strategically placed along the anticipated path of the plume
for pressure maintenance, given the substantial injection rate from day 1. Producer P4 is
strategically located to ensure a uniformly distributed plume. Considering the gravitational
pressure differential that causes CO2 to migrate towards the crest, the advancement of the
resulting plume’s front would be uneven. However, P4 counteracts this by moderating the
pressure in its vicinity, resulting in even plume migration by the end of the CCS period, as
illustrated in Figure 12.

Figure 12. Even plume front when CO2 reaches the crest.

Finally, the remaining six producers are positioned behind the crest, in accordance
with the second intuition, that is, the deceleration of the CO2 plume once it reaches the
crest, primarily due to density differences between CO2 and the brine. At this juncture,
breakthrough to the producers becomes inevitable, marking the conclusion of the injection
period. It is noteworthy that the simulation ran successfully for approximately 40 years,
during which the injection rate naturally decelerated due to pressure buildup. However, as
depicted in Figure 13, the plume had not yet reached the producers by this point.
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Figure 13. CO2 plume migration at the end of the optimal scenario’s simulation.

Field pressure, depicted in Figure 14, is shown to emphasize that even after 40 years
of continuous development, the aquifer has not yet reached the safety limit pressure.
Pressure gradient varies due to the constraints imposed on production/injection and
breakthrough rates.

Figure 14. Field pressure vs. time.

Overall, BO optimization successfully captured, without any explicit guidance and
in a very limited number of simulation runs, the need for producers and injectors to be
spaced as further apart as possible, while positioning the producers below the crest to
slow down CO2 plume breakthrough. These are the two primary insights crucial for
injection optimization, which an experienced engineer would typically independently
deduce. Configurations deviating from these principles are deemed sub-optimal, leading
to earlier CO2 breakthrough in producers. Consequently, producers are prematurely closed
off, pressure builds up faster, and injection rates decline sooner, resulting in reduced total



Appl. Sci. 2024, 14, 3528 23 of 28

CO2 injection and less effective plume sweep efficiency. This trend is illustrated in Figure 15,
where the optimal case’s injection rate (blue line) is compared to a sub-optimal one (red
line). Despite the optimal case having a notably higher target injection rate, it maintains
this rate for over a decade longer and exhibits a more gradual decline compared with the
sub-optimal scenario. In the latter, injectors are not efficiently spaced with respect to the
producers; therefore, the pressure reaches the safety limit of 9000 psi in less than a decade
of development. The number of producers and injectors, as well as the aquifer system, are
identical in both cases.

Figure 15. Injection rates: optimal case (blue line) vs. sub-optimal case (red line).

Given the engineering-oriented approach of the optimizer’s solution, there is a high
degree of confidence that the proposed solution is indeed optimal. However, it is essential
to acknowledge the complexity introduced by the multi-dimensional nature of the input
space. While the solution obtained represents a significant achievement, it is plausible that
there exist alternative configurations capable of matching or even surpassing this optimal
value. Furthermore, an interesting consideration arises from the spatial proximity of the six
producers. Given their close positioning, there is potential for aggregation into one or two
total producers during the project’s design phase. Consolidating these producers could
streamline operational logistics and potentially optimize resource utilization, contributing
to further efficiency gains. After performing multiple simulations, aggregating the six wells
into one or two and considering the rates of the optimized case, it was seen that the total
volume of sequestered CO2 slightly dropped by 3–7%, which could of course be negated
by the reduced costs of drilling so many wells. However, a complete evaluation of this
trade-off is beyond the scope of this work.

6. Conclusions

In this study, the well placement optimization problem was handled as a Bayesian
Optimization one. To our knowledge, this was the first attempt of applying BO in a well
placement CCS setting. The analysis focused on several key modifications and comparisons
to enhance the efficiency and effectiveness of the optimization process. Firstly, the issue of
the input space’s infeasible area was addressed by introducing a mapping to a modified
input space. This adjustment allowed the algorithm not to be concerned with exploring
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the infeasible regions by itself, a process which would require hundreds of thousands of
iterations. Furthermore, a novel kernel modification was proposed, aiming at achieving
invariance under permutations of the input vectors. This adaptation not only enhanced
the robustness of the optimization process but also ensured that the model’s performance
remained consistent across different permutations, a crucial consideration in real-world
well optimization.

Subsequently, comprehensive analyses were conducted by using various acquisition
functions, including expected improvement (EI), upper confidence bound (UCB), and prob-
ability of improvement (POI). Through comparative graphs, the performance differences
among these functions was illustrated, providing valuable insights into their respective
strengths and limitations in the context of CCS well placement optimization. One of the
primary contributions of this study was the comparative evaluation of the developed
modified kernel against its unmodified counterpart and a random function. The obtained
findings unequivocally demonstrated the substantial impact of the modified kernel on
optimization efficacy.

After extensive testing, we successfully optimized the sequestration of CO2 in a saline
aquifer. The resulting scenario reflects both intuitive engineering principles and compu-
tational efficiency. Our efforts culminated in a comprehensive case study outlining the
optimal sequestration of 115 million tons of CO2 over a four-decade period. This achieve-
ment represents 80% of the theoretically maximum value of 142 million tons, signifying
exceptional efficiency within a closed system. Typically, breakthrough and pressure buildup
pose significant challenges in such processes, often limiting their duration and effectiveness.

In conclusion, this study significantly enriches the ongoing discourse surrounding
Bayesian Optimization and its practical implementation in complex domains like CCS.
Through the introduction of bespoke modifications and comprehensive comparative analy-
ses, a solid foundation for future progress in optimization methodologies has been estab-
lished, tailored specifically to the nuanced challenges of real-world scenarios. Our efforts
pave the way for further refinement and expansion of these techniques, bringing us ever
closer to harnessing the complete capabilities of Bayesian Optimization in addressing the
intricate well placement problem. Moving forward, the exploration of advanced exotic
Bayesian Optimization procedures and frameworks becomes a priority, thereby pushing the
boundaries of optimization capabilities in CCS and related fields. This includes extending
our methodology to accommodate various types of wells, such as horizontal, inclined, and
multi-segment wells, which pose unique challenges due to their non-traditional geometries
and flow characteristics. Additionally, the importance of addressing geological uncertainty
and the complexities of diverse formations is recognized; thus, future research endeavors
will focus on incorporating these factors into the optimization framework. Furthermore, to
enhance the industry relevance and real-life applicability of this research, the integration of
a net present value (NPV) objective function into the optimization model is intended to be
incorporated. This addition will enable the direct optimization of well placement decisions
based on economic considerations, aligning our approach more closely with the priorities
and objectives of stakeholders in the CCS industry. By integrating NPV considerations, we
can ensure that our optimization solutions not only meet technical requirements but also
deliver optimal economic outcomes, thereby facilitating more informed decision making in
real-world CCS projects.
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Appendix A

Algorithm A1: Hungarian method (Munkres algorithm).
Input: Cost matrix costMatrix
Output: Assignment matrix M
Function HungarianMethod(costMatrix):

Initialize a matrix M of the same size as costMatrix with all zeros;
Initialize arrays rowCovered and colCovered of size equal to the number of
rows and columns of costMatrix respectively, filled with False;

while there exists an uncovered zero in costMatrix do
Select an uncovered zero Z in costMatrix;
Star Z and cover its row and column;
while there exists a starred zero in the same row do

Find a starred zero Z′ in the same row as Z;
Cover the column of Z′ and uncover the column of the starred zero in
the same row as Z′;

Star the uncovered zero in the same row as Z′;
Z ← the uncovered zero just starred;

end
if no starred zero is found in the same row then

AugmentPath(Z);
end

end
return M;

Function AugmentPath(Z):
Initialize a stack path and push Z onto it;
while true do

Find a primed zero in the same column as the top element of path, say Z′;
if no primed zero is found then

Break;
end
Push Z′ onto path;
Find a starred zero in the same row as Z′, say Z′′;
Push Z′′ onto path;

end
for each element E in path do

if E is starred then
Unstar E;

end
else

Star E;
end

end
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