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Abstract: Transition metal dichalcogenides are widely studied for their photocatalytic ability due
to the adjustable bandgap, high carrier mobility and possibility of foreign-element doping. In this
work, multilayer molybdenum diselenide (MoSe2) was decorated with ultra-fine Pt nanoparticles
through the mild hydrothermal method. MoSe2-Pt nanocomposites were synthesized and showed
good structural and chemical stabilities. The incorporation of Pt nanoparticles provides plenty of
active sites for MoSe2. The dominant Pt particle sizes are 1.8 nm, 1.8 nm, and 1.9 nm for the three
synthesized samples, respectively. The mean crystal sizes of Pt (111) were calculated from X-ray
diffraction patterns and we found that they were in accordance with the particle sizes. Both the
particle sizes and mean crystal sizes are related to the synthesis conditions. X-ray photoelectron
spectroscopy (XPS) characterizations revealed the formation of Se–Pt bonding. The relative contents
of Pt–Se bonding were also calculated from XPS results, and they show the same trends as the optical
absorption properties. Combining the XPS and optical absorption results, the effects of Se–Pt bonding
during the photo-related process could be further confirmed. By degrading methylene blue (MB)
under visible light, the synthesized nanocomposites proved promising for application in real-case
degradation of organic pollutants. The sample synthesized with a moderate content of MoSe2

exhibited the best photodegradation efficiency, which could be explained by the maximum Pt-Se
contents. Based on the experimental findings, we proposed a possible photodegradation mechanism.

Keywords: MoSe2; photodegradation; photocatalyst; two-dimensional materials

1. Introduction

Photodegradation of organic pollutants in natural water has been studied for several
decades [1,2]. By employing sunlight and semiconducting materials, redox reactions could
be taking place to degrade and remove those dissolved pollutants, especially organic
dyes [3] such as methylene blue, methyl orange, bisphenol A (BPA), etc. It provides a green
and sustainable route for natural water purification. Among so many semiconducting
candidates, transition metal dichalcogenides (TMDs) are known for their suitable bandgaps
for visible light absorption and utilization [4,5]. As layered two-dimensional materials,
TMDs are formed by covalence bonds in layers and van der Waals forces between layers [6].
Such a layered structure also brings an adjustable bandgap which can be easily manipulated
by controlling the layer numbers [7]. They usually have active edge sites due to various
types of defects but a relatively inert basal surface [8,9]. Thanks to their host ability for
incorporating dopants, especially noble metal nanoparticles, the light–matter interaction as
well as the photocatalytic performance could be improved. In this case, members of the
TMD group are currently featured as photocatalysts for hydrogen evolution and organic-
pollutant decomposition in water [10]. It is believed that the TMDs would hopefully provide
a solution towards current fossil fuel deficiency and natural water pollution problems.

As a typical member of the TMD family, molybdenum diselenide (MoSe2) has sim-
ilar atomic arrangements to molybdenum disulfide (MoS2) [11], and has been widely
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investigated for applications such as transistors, gas sensors, photodetectors and photocat-
alysts [12,13]. For example, n-MoSe2 transistors perform well in detecting the streptavidin
molecule, due to the controllable high reverse current [14]. As for photocatalytic ability,
researchers proposed the hydrothermal synthesis method to prepare MoSe2 for hydro-
gen evolution reactions and organic dye degradations [15]. MoSe2 is stacked into layers
of Se-Mo-Se sandwich planes through the van der Waals force. The typically tunable
bandgap also exists in MoSe2, making it suitable for light absorption among a wide range
of wavelengths. It should be mentioned that MoSe2 has relatively smaller band gap than
MoS2, which brings more efficient photoexcitation [16]. In the photocatalytic applications,
researchers proposed several routes to improve its total activities. For instance, the typical
core-shell structures are beneficial for strong chemical activities which could be achieved
by incorporating carbon nanotubes, MoS2 nanoflakes, and transition metals, especially
noble metals [17–21]. The optical absorption of MoSe2 has been successfully adjusted by
phase engineering, providing another choice for obtaining efficient photocatalytic perfor-
mance [22]. Moreover, it is also possible to form Z-scheme nanocomposites by introducing
other semiconducting materials [23,24]. Among the above methods, noble-metal doping
is an effective and controllable way. Noble metal nanoparticles could be easily anchored
to MoSe2 edges due to the commonly existing Se defects. However, it usually requires
sophisticated synthesis to activate the inert MoSe2 basal planes [8]. For instance, there
should be a pre-synthesis to prepare MoSe2@mesoporous hollow carbon spheres, and the
following step to obtain the incorporation of Pt nanoparticles [25].

Herein, we report a feasible and straightforward synthetic method to introduce Pt
nanoparticles onto MoSe2. The Pt nanoparticles are well formed and their sizes are con-
trolled within 2.3 nm, which could be called ultra-fine Pt nanoparticles. The synthesized
MoSe2-Pt nanocomposites exhibit great structural and chemical stabilities. The introduced
Pt nanoparticles provide plenty of active sites for light absorption and photocatalysis.
We performed the photodegradation of MB under visible light irradiation. It has been
found that the synthesized materials could decompose MB efficiently compared to pristine
MoSe2. Such improved photocatalytic performance has been explained by the enhanced
light absorption and photoelectron transportation. Using X-ray photoelectron spectroscopy
(XPS), the chemical bonding between Se and Pt was confirmed. It explains not only the
great stabilities of the compounds but also the efficient channels for charge transfer dur-
ing photocatalytic reactions. The Pt–Se bonding also contributes to the enhanced visible
light absorption. Considering the excellent photocatalytic properties of the MoSe2-Pt
nanocompounds, we believe that the reported synthetic method might be suitable for
further investigation and mass production.

2. Materials and Methods
2.1. Materials and Sample Preparations

The materials were purchased from Sigma-Aldrich (St. Louis, MA, USA) with analyti-
cal grade, and deionized water was produced at our own lab. The MoSe2-Pt samples were
synthesized with the following steps: (a) multilayer MoSe2 nanopowders were dispersed
into deionized water with various ratios. The concentration of MoSe2 suspension was
0.1 mg/mL, 0.2 mg/mL and 0.3 mg/mL, respectively. (b) In order to obtain Pt nanoparti-
cles with an extremely small size, K2PtCl4 and trisodium citrate were used as precursors
to obtain Pt nanoparticles [26,27]. K2PtCl4 and trisodium citrate were added into the
MoSe2 suspension by mechanically stirring. (3) The mixed solution was set under an
ultrasonic bath at 50 ◦C for 150 min or 200 min. (4) Pt0 can be reduced from PtCl42−, and Pt
nanoparticles would finally grow onto MoSe2 nanoflakes. After synthesis, three samples
with different mass ratios were obtained, as shown in Table 1. These samples are labelled
according to their contents, which were M1Pt, M2Pt and M3Pt, respectively.



Appl. Sci. 2024, 14, 3592 3 of 9

Table 1. The synthetic details of the samples.

Samples MoSe2 K2PtCl4 Conditions

M1Pt 0.1 mg/mL × 10 mL 41.5 mg 50 ◦C, 150 min

M2Pt 0.2 mg/mL × 10 mL 41.5 mg 50 ◦C, 150 min

M3Pt 0.3 mg/mL × 10 mL 41.5 mg 50 ◦C, 200 min

2.2. Characterizations

The sample morphologies were studied through a transmission electron microscope
(TEM, JEOL 2200FS (JEOL, Tokyo, Japan)). The crystal structures of MoSe2 and the syn-
thesized complexes were measured through X-ray diffraction (XRD, Bruker (Billerica, MA,
USA)). Cu Kα emission (λ = 1.5406 Å) was employed as the X-ray source. The optical
properties were measured through a Lambda 950 UV-Vis spectrophotometer (Spectralab
Scientific Inc., Markham, ON, Canada) with BaSO4 as reference. The synthesized powder
was dissolved in deionized water for UV–vis absorption tests. The chemical states were an-
alyzed by Thermo Fisher (Waltham, MA, USA) K-Alpha X-ray photoelectron spectroscopy.

2.3. Photodegradation Measurements

The photocatalytic properties of the synthesized MoSe2-Pt catalysts were studied by
degrading Methylene blue (MB). During each photocatalytic reaction, 50 mg of the catalyst
was put in 50 mL of MB solution (10 mg/L). Reactions were carried out under a 300 W Xe
lamp. We used a cutoff filter (#84-689, TECHSPEC, Co., Ltd., Gauteng, South Africa) to
block the light under the wavelength of 400 nm. Before degradation tests, MB solutions
with catalysts inside were stirred under a dark environment for half an hour to dispose
of the adsorption/desorption effects. During photocatalytic degradations, 2 mL of the
solution was taken every 30 min and was centrifuged to remove the MoSe2-Pt powder.
Visible-light absorption spectra ranging from 400 nm to 800 nm were measured through
a Lambda 950 UV-Vis spectrophotometer. During measurements, the absorption peak
of MB was set at 664 nm and the concentration of residual MB could be determined by
the integration of the MB absorption peaks. The photocatalytic reactions were therefore
presented by time-course decrease in MB concertation.

3. Results and Discussion
3.1. MoSe2-Pt Morphologies and Crystal Structures

After synthesis, a drop of the solution containing MoSe2-Pt was placed onto a holey
carbon grid and dried in air. Then the samples were observed under TEM. The morpholo-
gies of MoSe2 flakes among the three samples were similar in shape and size. Therefore, we
chose sample M1Pt as an example whose morphologies are shown in Figure 1. In Figure 1a,
MoSe2 nanoflakes are of a round shape with a typical size of 40 nm. There are tiny Pt dots
on the edge of the MoSe2. The Pt dots are clearer in the zoomed-in image in Figure 1b. Due
to the mild synthetic conditions and low concentration of K2PtCl4 in solution 1, PtCl42−

was reduced to ultrafine particles. There are more Pt nanoparticles formed on the edge
sites compared to the surfaces of the MoSe2 because the edge sites are more reactive than
the basal planes [28]. Although very small in size, the Pt particles were well crystallized in
(111) phase with a lattice spacing of 2.29 Å, as shown in Figure 1c. Such crystalline structure
is compatible with the MoSe2 (100) facet. It suggests the Pt particles are well grown on
MoSe2. Figure 1d–f show the distribution of Pt nanoparticles for the samples of M1Pt,
M2Pt, and M3Pt, respectively. It can be seen that the samples of M1Pt and M2Pt have the
same dominant Pt size of 1.8 nm, while M3Pt has a slightly larger Pt size of 1.9 nm.
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were marked with diamonds and stars, respectively. The MoSe2 (100), (103), (105), (110) 
and (200) planes were identified from both samples, which was in good agreement with 
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Figure 1. Morphologies of MoSe2-Pt samples. (a) TEM image of MoSe2-Pt; (b) zoomed-in image of the
squared region in (a); (c) HR-TEM image shows the crystal structure of Pt; (d–f) Pt size distributions
of the samples of M1Pt, M2Pt, and M3Pt, respectively.

In Figure 2, the XRD spectra show the crystal structure of the three samples of MoSe2-
Pt nanocomposites and pristine MoSe2 nanopowder. The crystal planes of MoSe2 and Pt
were marked with diamonds and stars, respectively. The MoSe2 (100), (103), (105), (110)
and (200) planes were identified from both samples, which was in good agreement with
previous reports [29]. Compared to the pristine MoSe2, Figure 2 shows that MoSe2 is stable
and keeps its crystal structure after synthesis.
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Figure 2. XRD spectra of the synthesized MoSe2-Pt nanocomposite and MoSe2 nanopowder.
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Pt (111) and (200) planes were identified in the synthesized MoSe2-Pt samples. The Pt
(111) lattice spacings are shown in Table 2. We can see that Pt (111) peak positions were
slightly varied among the three samples. The lattice spacings are calculated as 0.2285,
0.2291, and 0.2274 nm, respectively. Moreover, the mean crystal sizes (D (111) in Table 2)
were also calculated through Scherrer’s equation [30]. They are very close for the M1Pt
and M2Pt samples, while slightly larger for the M2Pt sample. It should be noted that the
calculated mean crystal sizes are not the particle sizes which could be directly measured
under TEM; however, the D (111) values show the same trends with the particle sizes
shown in Figure 1d–f.

Table 2. Pt (111) lattice spacings and mean crystal sizes.

Samples 2θ/◦ FWHM/◦ d (111)/nm D (111)/nm

M1Pt 39.40 12.4217 0.2285 0.6793

M2Pt 39.30 12.4017 0.2291 0.6802

M3Pt 39.60 12.0752 0.2274 0.6992

3.2. Chemical States, Mechanism of Efficient Photocatalytic Reactions

The chemical electronic states of the MoSe2-Pt samples were evaluated through XPS.
The high-resolution XPS spectra of Pt 4f and Se 3d are shown in Figure 3. In Figure 3a–c,
there are two Pt species which were identified by fitting the original Pt 4f spectra. Pt0

peaks are the reduced Pt nanoparticles in metal form, and Pt-Se peaks are attributed to
the Pt–Se bonding. The binding energies of these Pt peaks are slightly shifted among the
three samples which may be caused by partial electron transfer between MoSe2 and Pt [31].
In Figure 3d–f, two main contents are found in the Se 3d spectra, which are the Se-Mo
peaks and Se-Pt peaks. Such results are typical for MoSe2 and PtSe2 characteristics [32],
and further confirm the formation of Se–Pt bonding. Therefore, it is obvious that chemical
bonding of Pt–Se formed after the synthesis. Such chemical bonding can provide an
effective pathway for charge transportation during photocatalytic reactions [9]. The Se-Mo
3d5/2 peaks at 54.56 eV are barely shifted among the three samples, suggesting that MoSe2
takes a dominant content compared to the Se-Pt species.

Based on the XPS results, it is noticed that the relative contents of Pt-Se varies among
the samples, which may have influence on electron transportation. The relative contents
of Pt-Se can be calculated from Pt 4f spectra, which are 34.78%, 40.02%, and 19.79%,
respectively. It suggests that too much MoSe2 involved in the synthesis (the M3Pt sample)
may limit the formation of Pt–Se bonding.

In this case, there may be two ways that the photocatalytic abilities could be affected.
Firstly, Pt–Se bonding provides an efficient pathway for charge transfer, so more contents
of Pt-Se would be beneficial to the photocatalytic reactions. Secondly, the existence of
Pt nanoparticles (Pt0) can be confirmed by TEM results in Figure 1. Such ultra-fine Pt
nanoparticles offer active sites for photocatalytic reactions where degradation could take
place [33]. Introducing noble metal nanoparticles on edge sites of MoSe2 is a typical method
for enhancing the photocatalytic properties.

3.3. Optical Properties of the Catalysts

In order to evaluate the optical performance of the synthesized samples, they were
prepared in aqua solution for UV–visible absorption measurements. Figure 4 shows the
absorption spectra of MoSe2 and the three samples. In the visible wavelength range, there
are obvious absorption peaks at around 475 nm and 710 nm, respectively. Such optical
behavior is typical for multilayer MoSe2 on a nanometer scale [34]. It can be seen that the
pristine MoSe2 has a weak response to visible light, while the MoSe2-Pt samples strongly
absorb the short wavelength of visible light, mainly between 450 and 550 nm. Among the
three synthesized samples, M2Pt shows the best absorption ability for visible light while
M3Pt shows the worst. Moreover, there is slight red-shift between the pristine MoSe2 and
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the catalysts. Such feature enhances the absorption of light in a longer wavelength, making
it suitable for the utilization of the solar spectrum.
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Figure 4. UV–vis absorption spectra of MoSe2 and the synthesized samples.
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3.4. Photodegradation

The aforementioned characterizations provide chemical and optical insights into the
synthesized materials. Their photocatalytic performance is evaluated by MB degradation,
as shown in Figure 5. The time-course photodegradation results are shown in Figure 5a.
Here, C/C0 is used to represent the decrease of MB concentration, where C0 and C are the
original MB concentration and the MB concentration at a certain time, respectively. The
dark process suggests that the synthesized materials show obvious adsorption of MB, while
the pristine MoSe2 can hardly adsorb MB. Such adsorption abilities are usually related to
the photocatalytic process. We can see that pristine MoSe2 can hardly degrade MB and
the samples are all reactive with MB. Within around 60 min, MB is nearly removed by the
samples of M1Pt and M2Pt. However, the M3Pt sample performs slightly less efficiently,
but it can still degrade more than 90% of MB after 120 min. Such photocatalytic results are
in accordance with the optical absorption properties shown in Figure 4. Considering the
catalyst amount used in the degradation process, the above photocatalytic performance
is comparable to other popular photocatalysts, such as Bi2WO6/BiOCl [35]. As a compar-
ison, pristine MoSe2 removes only 5.4% of the MB in 120 min with the same irradiation
condition. It suggests that the introduction of Pt to MoSe2 edges greatly improves the
photocatalytic property.
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Figure 5. The time-course photocatalytic MB degradation under visible light irradiation. (a) Pho-
todegradation of the synthesized samples and pristine MoSe2. (b) Photodegradation kinetics of
ln(C0/C).

The photodegradation kinetics was evaluated by the pseudo-first-order model. With
this model, the pseudo-first-order constant k could be expressed as

k =
ln(C0/C)

t
(1)

The results of ln(C0/C) are shown in Figure 5b. The constants were calculated as 0.0361
min−1, 0.0379 min−1, and 0.0185 min−1 for the three samples, respectively. It is obvious
that the M2Pt sample has the best photocatalytic kinetics. The constant values have the
same trends as the Pt-Se contents. This indicates the correlation between Se–Pt bonding
and photocatalytic performance. On the other hand, k values are not lineally affected by
either the Pt amount used in the synthesis nor the relative contents of Pt–Se bonding. This
may indicate that the surface segregation occurred during synthesis [36].

The possible photocatalytic mechanism can therefore be discussed. During the degra-
dation process, photo-generated electrons from valence bands of MoSe2 reach the con-
duction bands, and finally migrate to the active sites provided by Pt nanoparticles. The
electron-hole pairs participate in redox reactions, where the holes oxidize water to H+ and
·OH. The hydroxyl radicals then react with MB [9]. Meanwhile, the electrons reduce H+
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to ·H. The Pt–Se bonding offers stable and efficient routes for charge transfer during the
whole process.

4. Conclusions

In conclusion, we synthesized MoSe2-Pt complexes with a facile method, where Pt is
reduced to ultra-fine nanoparticles. The synthetic method is simple and straightforward,
making it suitable for mass production. The synthesized samples show a greatly enhanced
photocatalytic performance for degrading the organic pollutant of MB under visible-light
irradiation. Such properties show the excellent ability of visible-light utilization. The
photodegradation mechanism could be explained through XPS analysis. Effective Pt–Se
bonding provides pathways for charge transportation and ultra-fine Pt nanoparticles offer
active sites for photocatalytic reactions. This work may be helpful for further photocatalyst
design and applications in real cases.
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