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Abstract: Object recognition algorithms and datasets based on point cloud data have been mainly
designed for autonomous vehicles. When applied to the construction industry, they face challenges
due to the origin of point cloud data from large earthwork sites, resulting in high volumes of data
and density. This research prioritized the development of 3D point cloud datasets specifically for
heavy construction equipment, including dump trucks, rollers, graders, excavators, and dozers;
all of which are extensively used in earthwork sites. The aim was to enhance the efficiency and
productivity of machine learning (ML) and deep learning (DL) research that relies on 3D point
cloud data in the construction industry. Notably, unlike conventional approaches to acquiring
point cloud data using UAVs (Unmanned Aerial Vehicles) and UGVs (Unmanned Ground Vehi-
cles), the datasets for the five types of heavy construction equipment established in this research
were generated using 3D-scanned diecast models of heavy construction equipment to create point
cloud data.

Keywords: 3D point cloud data; heavy construction equipment; large-scale benchmark dataset; 3D
laser scanning; classification; segmentation

1. Introduction
1.1. Research Background and Objectives

According to a 2017 labor productivity analysis report on the construction indus-
try, over the last 12 years the annual growth rate of global labor productivity in the
manufacturing sector was 3.6%. However, the construction industry has had an aver-
age annual growth rate of 1% [1]. To address this, several efforts were made world-
wide to improve labor productivity in the construction industry [1–4]. Various strate-
gies were proposed in previous research for enhancing construction labor productivity,
including innovations in regulations and increasing transparency, improving construc-
tion capabilities, and adopting new construction materials and digital technologies [1–4].
Furthermore, recent advancements in Industry 4.0 driven by the global development
of Information Technology (IT) tools, have led to active research in construction au-
tomation, utilizing digital technology to increase labor productivity in the construction
industry [5].

Previous construction automation research has primarily focused on hardware ad-
vancements, such as highway road surface crack inspection and sealing equipment [6,7],
bricklaying robots [8], autonomous robotic excavation for dry stone construction [9], and
machine guidance (MG) and machine control (MC) for excavators [10,11]. However, the
rapid development of Building Information Modeling (BIM) and Artificial Intelligence (AI)
technologies has resulted in a significant increase in software-centric construction automa-
tion research [12–19]. Furthermore, the technological progress of AI-equipped autonomous
vehicles and various sensors has paved the way for AI technology applications in construc-
tion, particularly object recognition research [20]. Simultaneously, the availability of data
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collection equipment such as Unmanned Aerial Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs) equipped with a variety of sensors—including 2D image cameras, depth
cameras, and 2D and 3D LiDAR—has made it easier to obtain terrain data in construction
sites. The availability of such technologies allows the application of object recognition
technology in construction [21,22]. The combined development of technologies such as
AI and data collection sensors and equipment has provided a solid foundation for active
research into utilizing AI in construction.

To date, AI research in the construction industry has primarily centered around com-
puter vision technology, including 2D images and videos. This research has focused on
construction safety and process monitoring, as well as concrete damage measurement and
assessment [23]. Recent research has focused on object detection and tracking, utilizing
images and videos for evaluating the use of safety gear, including helmets and safety
belts [24]; for monitoring construction workers, the general public, and forklifts [25]; recog-
nizing cracks in concrete structures such as roads, buildings, and bridges; and assessing
potential hazards [26]. While 2D image-based object detection research shows excellent
accuracy and speed, it faces challenges when capturing images in environments where
2D cameras are susceptible to changing lighting conditions, particularly in areas without
direct sunlight [15]. Consequently, there has been a growing trend in the construction
industry to utilize 3D Lidar sensors to overcome the limitations of data collection sen-
sors. This is because 3D Lidar sensors are known for their ability to collect data without
being affected by lighting conditions, making them suitable for construction environ-
ments exposed to varying conditions [15]. Furthermore, data collected in construction
sites, especially data obtained with 2D cameras and videos, may lack Z-coordinate values
due to the sensor’s characteristics, introducing errors in Z-values. In contrast, 3D Lidar
sensors collect 3D point cloud data, including accurate measurements of X, Y, and Z coordi-
nates. This in turn makes them more suitable for the construction industry, which requires
accuracy [27].

However, despite these advantages, there are currently no representative 3D point
cloud data-based object recognition datasets available for application in construction sites.
Research institutions have been individually creating datasets due to the lack of such
resources. Constructing 3D point cloud data for construction sites requires significantly
more time and computing resources compared to building 2D image datasets. Construction
sites are primarily outdoors and involve large-scale structures such as roads, bridges, and
buildings. As a result, the 3D point cloud data collected in the field tends to be large in
size and high in point density. Consequently, preprocessing tasks such as noise removal
and adjustment pose significant challenges when working with collected 3D point cloud
data. Furthermore, when conducting 3D scanning of heavy construction equipment such
as dump trucks and excavators using equipment such as UAVs and Terrestrial Laser Scan-
ners (TLS) on a construction site, obtaining complete and undistorted point cloud data
of heavy construction equipment can be challenging due to their movements, rotations,
and back-and-forth motions during operation. Data collected in construction sites tar-
geting heavy construction equipment in operation often results in point cloud data that
overlaps, creating data artifacts akin to residual images in photographs. When using
this point cloud data to train ML and DL models, it can potentially degrade the perfor-
mance of the heavy construction equipment prediction model. For these reasons, obtaining
high-quality 3D point cloud-based heavy construction equipment object data is crucial in
enhancing the performance of prediction models in 3D point cloud data-based ML and
DL research.

As discussed, it is clear that for each research institution to build high-performing
machine learning and deep learning models, individually constructing 3D point cloud data
for construction sites requires a significant amount of time and effort. This challenge is
not limited to research in the construction field but is a common experience for research
institutions across various areas that conduct ML and DL research based on 2D images and
3D point cloud data. Consequently, in autonomous driving research, the representative
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dataset known as the KITTI dataset [28] has been developed to facilitate efficient execution
of machine learning and deep learning research, and active research is being conducted
using the KITTI dataset. Therefore, to enhance the productivity and efficiency of 3D
point cloud data-based ML and DL research in the construction industry, this research has
developed the 3D-ConHE (3D Point Clouds of Heavy construction Equipment) dataset,
targeting heavy construction equipment.

1.2. Research Scope and Methods

This research has delineated its scope to encompass the process of creating 3D laser
scans and constructing point cloud datasets for five distinct types of heavy construction
equipment: dump trucks, rollers, graders, excavators, and dozers. The five types of heavy
construction equipment selected in this research are commonly used in earthwork con-
struction sites. Diverse manufacturers and models were utilized for each equipment type,
to ensure a varied collection of point cloud data. In this research, various diecast models
for each construction equipment type were 3D scanned to form a diverse dataset. This
included two models of caterpillar-type graders, five models of caterpillar-type excavators,
three models of dump trucks, five models of caterpillar and wheeled-type dozers, and two
models of rollers.

Furthermore, the research was conducted in a structured sequence, as depicted in
Figure 1: planning dataset construction, generating and collecting point cloud data, pre-
processing point cloud data, and constructing and reviewing the dataset. To establish
the point cloud dataset for heavy construction equipment, the research was initiated
by reviewing prior studies on classification and segmentation datasets in the construc-
tion domain, with a focus on large 3D point cloud-based datasets for object recognition.
Subsequently, the research assessed efficient data collection methods to build the heavy
construction equipment point cloud dataset and evaluated its practicality. This led to
the adoption of diecast models for 3D laser scanning of heavy construction equipment.
The diecast models were selected for their ability to faithfully replicate the movements
of actual heavy construction equipment. This method enabled the research to efficiently
gather 3D point cloud data for heavy construction equipment. The next phase involved
preprocessing the 3D-scanned point cloud data and organizing them into datasets in Mesh
files and PCD files. Additionally, the scales of the scanned data for diecast models with
varying scales were adjusted to match the actual scale of heavy construction equipment
in the point cloud dataset. Lastly, the research categorized and adjusted the point den-
sity of the scanned data for heavy construction equipment into three levels, resulting in
the 3D-ConHE dataset for the five types of heavy construction equipment. The research
concluded with a comprehensive review and modification process for the constructed
3D-ConHE dataset.
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2. Related Works
2.1. Review of Classification and Segmentation Dataset in the Construction Field

Most recently released classification and segmentation datasets for heavy construction
equipment are primarily constructed in 2D images, such as ImageNet [29], the AIM (Ad-
vanced Infrastructure Management group (Lake Ariel, PA, USA)) dataset [30,31], the ACID
(Alberta Construction Image Dataset) [32], and the Microsoft COCO (Common Objects in
Context) dataset [33]. Additionally, research institutions often construct their own data for
conducting research [23,34] by collecting substantial image datasets from various sources,
including online and offline environments such as construction sites. Consequently, in 2D
image-based ML and DL research in the construction industry, there are various methods
to easily acquire the necessary datasets for training and testing.

However, finding well-established benchmark 3D point cloud-based heavy construc-
tion equipment datasets for classification and segmentation research remains a challenge.
Therefore, previous research in object recognition for heavy construction equipment, based
on 3D point cloud data, often involved generating the point cloud data for heavy construc-
tion equipment from CAD files or scanning heavy construction equipment using methods
such as TLS or UAV to perform model training and testing [35,36]. Although not specific
to heavy construction equipment, research has been conducted with datasets involving
large-scale bridge components such as piers, slabs, abutments, and girders; and semantic
segmentation research based on 3D point cloud data [37]. Additionally, datasets based
on point cloud data were created for scaffolds in construction sites to facilitate semantic
segmentation research using 3D point cloud data [38]. In addition to research in the con-
struction field that involves 3D scanning of large-scale objects using TLS or UAV, research is
also being conducted on 3D scanning of diecast models such as architectural design models,
cultural heritages, and rendering models of automobile designs, to extract 3D point cloud
data and construct datasets [39,40].

Furthermore, utilizing pseudo-Lidar to execute classification based on 3D point
cloud data of heavy construction equipment [39], or conducting classification research
through the self-constructed 2D image dataset for steel plate surface detection [40] demon-
strates innovative approaches to leveraging specialized datasets for advancing construction
equipment analysis. As discussed above, there are various well-established (benchmark)
datasets available for 2D image-based heavy construction equipment. Conversely, find-
ing representative datasets based on 3D point cloud data for heavy construction equip-
ment, construction materials, workforce, and other related aspects of the construction
industry is not an easy task. The absence of such representative training and testing
datasets for ML and DL in the construction industry affects research efficiency from a
broader perspective within the construction industry [30,32,41,42]. Furthermore, individ-
ual research institutions require significant amounts of time and effort to independently
construct high-quality 3D heavy construction equipment point cloud data for ML and
DL research.

2.2. Review of Large-Scale 3D Point Clouds Datasets for Classification and Segmentation

Currently, the benchmark datasets constructed from 3D point cloud data are primarily
focused on indoor objects. These datasets include ModelNet40 [43], S3DIS (Stanford 3D
Indoor Scene Dataset) [44], and ShapeNet [45], as shown in Table 1. However, more recently,
datasets such as Semantic3D [46], Paris-Lille-3D [47], and Toronto-3D [48]—targeting urban
environments—have been developed, enabling large-scale 3D point cloud data for ML and
DL research. Such large-scale point cloud data classification and segmentation datasets,
in contrast to datasets focused on indoor environments, are constructed by scanning
large-scale urban facilities such as churches, streets, villages, soccer fields, and castles,
using static Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS); these
share similar characteristics with data from 3D-scanned large-scale construction sites
located outdoors.
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Table 1. 3D point clouds-based classification and segmentation benchmark datasets.

Name Year Environment Primary Fields File
Format Objects/Points Number of Classes Application

Technology Data Acquisition Type

ShapeNet 2015 Indoor X, Y, Z, R, G, B .obj

51,300 objects
(ShapeNetCore),

12,000 objects
(ShapeNetSem)

55 (ShapeNetCore),
270 (ShapeNetSem) Classification Conversion of

CAD models

ModelNet 2015 Indoor X, Y, Z, number of
vertices, edges, faces .off

12,311 objects
(ModelNet40),

4899 objects
(ModelNet10)

10 (ModelNet 10),
40 (ModelNet 40) Classification Conversion of

CAD models

S3DIS 2016 Indoor X, Y, Z, R, G, B .h5 695 million points 13 Segmentation Converting CAD files
into mesh files

Semantic3D 2017 Urban X, Y, Z, intensity,
R, G, B, class .txt 4 billion points 8 Segmentation TLS

Paris-Lille-3D 2018 Urban X, Y, Z, intensity, class .ply 143 million points 50 Segmentation MLS

Toronto-3D 2020 Urban
X, Y, Z, R, G, B,

intensity, GPS time,
scan angle rank, label

.ply 78 million points 8 Segmentation MLS

Semantic KITTI 2019 Urban X, Y, Z, intensity, label .bin 23,201 objects 28 Segmentation MLS

3D-ConHE
(ours) 2023 Indoor X, Y, Z,

.stl
.ply
.pcd

4683 objects - Classification,
segmentation

Portable
scanner
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In addition to the aforementioned datasets, recent developments in large-scale 3D
point cloud datasets include the HLS (Helmet Laser Scanning) dataset and the MCD (Multi-
Campus Dataset) [49]. The HLS dataset has been constructed by installing multisensors
on helmets and applying Simultaneous Localization and Mapping (SLAM) technology
in real time to build large-scale 3D datasets targeting forest areas, underground facili-
ties, and infrastructure facilities [49]. Furthermore, the MCD dataset represents the lat-
est in large-scale 3D point cloud datasets, generating and providing three-dimensional
point cloud data for semantic segmentation of various campuses by applying SLAM
technology [50].

Among these large-scale 3D point clouds datasets, the Semantic3D dataset was the
pioneer and it has since been actively employed in classification and semantic segmen-
tation research (Table 1). The Semantic3D dataset consists of eight class labels and over
4 billion points, making it ideal for high-performance large-scale 3D point clouds se-
mantic segmentation tasks. In contrast, SemanticKITTI [46] was acquired for semantic
segmentation research on autonomous vehicles equipped with devices such as Velodyne
HDL-64E LiDAR sensors and Inertial Measurement Unit (IMU) to gather data from ob-
jects on the road. While both Semantic3D and SemanticKITTI datasets are collected for
outdoor environments, their data collection methods differ, resulting in variations in
the information they provide. SemanticKITTI includes IMU information because it uses
the Mobile Laser Scanning (MLS) approach to construct data by employing LiDAR and
IMU mounted on the roofs of vehicles, as opposed to the static TLS method adopted
by Semantic3D.

Additionally, the HLS dataset includes infrastructure and heritage datasets, but like
the SemanticKITTI dataset, it contains IMU information, offering different data compared
to datasets provided by static Terrestrial Laser Scanning (TLS). These characteristics are also
evident in the MCD (Multi-Campus Dataset), which was developed for use in autonomous
navigation of vehicles and robots [49,50].

Consequently, the dataset characteristics can affect the suitability of different object
recognition algorithms and influence research outcomes. In developing the 3D-ConHE
dataset, this research considered these dataset attributes. In Table 1, a literature review of
the static large-scale 3D point cloud datasets from this study is summarized, with only
the information on the representative SemanticKITTI dataset added for the autonomous
vehicle field.

3. Development of 3D-ConHE Dataset
3.1. 3D Point Cloud Data Generation and Collection

It is not easy to collect a large 3D point cloud dataset to scan real heavy construction
equipment working on earthworks and utilize it for ML and DL. In order to solve this
problem, this research established the 3D-ConHE dataset using a heavy construction
equipment diecast model with the same design and mechanical characteristics as the heavy
construction equipment operated at the actual construction site. Therefore, this research
procured diecast models representing five distinct types of heavy construction equipment
in preparation for 3D scanning. These diecast models replicate their real counterparts in
terms of design, mechanical features, and motion joints. However, each model comes in
different scales, as detailed in Table 2, necessitating scale adjustments in post-processing
after the 3D scanning procedure to match the real-life dimensions.

Each construction heavy equipment diecast model chosen for this research has multiple
motion joints (Figure 2). The selected five model types feature motion joints that enable
movements in up, down, left, and right directions, offering a range of motions. However,
for the reason of simplicity, this research streamlined the range of motion joints to MAX
and MIN to account for the movements of construction heavy equipment during on-site
operations. For example, Figure 2a depicts an excavator with four motion joints. Motion
Joint 1 in Figure 2a represents the joint connecting the bucket and the arm. Motion Joint
2 pertains to the joint between the arm and the boom. Similarly, Motion Joint 3 denotes
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the joint between the boom and the body, with no consideration for the bucket cylinder,
arm cylinder, and boom cylinders. Finally, Motion Joint 4 corresponds to the joint section
where the swing motor and swing bearing are installed. Additionally, rollers in Figure 2b,c
were identified by the articulation joint as Motion Joint 1, although they were scanned
separately due to differing scanning directions for Motion Joint 1. And the dump truck
was scanned at varying heights for Motion Joint 1 in Figure 2d. Furthermore, graders in
Figure 2e,f had different numbers of motion joints, each distinctively classified. Lastly,
dozers in Figure 2g–i were separately scanned as they came in three different forms with
varying numbers of motion joints and movement directions.

Table 2. List of 3D scanned heavy construction equipment diecast models.

Types of
Equipment

Classification in
Figure 2

Diecast Model
Product Number Scale Number of

Motion Joints
Number of Scan

Files

Excavator (a)

Doosan DX225LCA 1:40 4 108

Doosan DX380LC-9C 1:50 4 108

Doosan DH220 1:50 4 108

Komatsu PC210LC-10 1:50 4 108

Hyundai R215-9 1:40 4 108

Roller
(b) Caterpillar Cat 85630 1:64 1 5

(c) Huina 1715 1:50 1 3

Dump Truck (d)

Huina 1718 1:50 1 3

Hyundai Xcient 1:32 1 3

Hyundai HD370 1:32 1 3

Grader
(e) Caterpillar Cat 12M3 1:87 2 18

(f) Caterpillar Cat 120M 1:50 4 54

Dozer

(g) Caterpillar Cat D8R 1:50 3 8

(h) Caterpillar Cat D7E 1:50 2 4

(i)
Caterpillar Cat 924H 1:50 3 8

Caterpillar Cat D11T 1:50 3 8

(j) Caterpillar Cat 854G 1:50 3 12

Total 669

Subsequently, the diecast model of a excavator, as depicted in Figure 2, was scanned
by combining the movements of its motion joints, as showcased in Figure 3. Specifi-
cally, this research sequentially combined the motions of the model’s motion joints during
scanning to create data matching the movements of heavy construction equipment on
construction sites. Figure 3 presents examples of the scanning methods employed by
this research. Figure 3a1–a3 represent the combination of movements of Motion Joints
1 to 3, while keeping Motion Joint 4 stationary. Figure 3a4–a6 illustrate scans at 0◦, 45◦,
90◦, and 135◦ when the excavator’s Motion Joint 4 completes a 360◦ rotation. Moreover,
as the four angles (0◦, 45◦, 90◦, 135◦) chosen for the excavator’s Motion Joint 4 over-
lap with 180◦, 225◦, 270◦, and 315◦, no additional scans were conducted outside these
four angles.

As depicted in Table 3, the number of scans for each model was calculated, consid-
ering the motion joints of the models and the joint combination characteristics described
earlier. As a result, the 3D scanning process was carried out and streamlined into a total
of 669 movements, as detailed in Table 3. Specifically, the number of scans for excavators
was notably higher compared to other diecast models due to the greater number of motion
joints in excavators.
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In this research, the SHINING 3D EinScan-SP 3D laser (Hangzhou, China) scanner
was used to scan diecast models (Figure 4). The indoor portable laser scanner employed
in this research consists of a 3D laser scanner, a stand, and a turntable; as illustrated in
Figure 4. This 3D scanner has an accuracy within 0.05 mm, and it can scan objects up to a
maximum size of 1200 mm (width) × 1200 mm (depth) × 1200 mm (height). The scanning
process involved placing a diecast model on the turntable and rotating it horizontally
by 40◦ for each scan. The 3D scanner in this research conducted one scan for each 40◦

horizontal rotation, with the scan data saved as ASC files. Subsequently, the scan data
generated by rotating the diecast model 360◦ was merged to create mesh data in STL format.
This scanning method led to the creation of 669 STL files for the five heavy construction
equipment models.
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Table 3. Heavy construction equipment diecast models’ motion joint movement directions and the
number of scans.

Type Number of
Motion Joints

1⃝ Movement
Direction of

Motion Joint 1

2⃝ Movement
Direction of

Motion Joint 2

3⃝ Movement
Direction of

Motion Joint 3

4⃝ Movement
Direction of

Motion Joint 4

Number of
Scans 1

Excavator 4
Vertical:

MAX, MID,
MIN

Vertical:
MAX, MID,

MIN

Vertical:
MAX, MID,

MIN

Horizontal
Rotation:

0◦, 45◦, 90◦, 135◦
540

Roller

1

Horizontal:
LEFT, LEFT
MID, MID,

RIGHT MID
RIGHT

- - - 5

1
Horizontal:
LEFT, MID,

RIGHT
3

Dump Truck 1
Vertical:

MAX, MID,
MIN

- - - 9

Grader

2
Horizontal:
LEFT, MID,

RIGHT

Vertical:
MAX, MIN - - 18

4
Horizontal:
LEFT, MID,

RIGHT

Vertical:
MAX, MIN

Horizontal:
LEFT, MID,

RIGHT

Horizontal:
LEFT, MID,

RIGHT
54

Dozer

3 Vertical:
MAX, MIN

Vertical:
MAX, MIN

Vertical:
MAX, MIN - 24

2 Vertical:
MAX, MIN

Vertical:
MAX, MIN - - 4

3
Horizontal:
LEFT, MID,

RIGHT

Vertical:
MAX, MIN

Vertical:
MAX, MIN - 12

Total 669
1 Number of Scans = {Number of Heavy construction Equipment × 1⃝ × 2⃝ × 3⃝ × 4⃝}.
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3.2. Preprocessing of 3D Point Cloud Data

In the preprocessing phase, the scanned ASC files were converted to STL and PCD file
formats. Point cloud density calculations and adjustments, as well as removal of the ground
plane from the PCD files, were performed; as shown in Figure 5. Open3D library [51]
was used for file conversion and point density adjustment in this preprocessing stage, and
Cloudcompare 2.6.3 [Windows 64bits] [52] was used for scale adjustments and ground
plane removal.
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• Converting Files: To generate PCD files from the ASC files produced during the
scanning process, the ASC files for each piece of equipment were merged to create
mesh files in STL format. These mesh files were further processed to obtain the final
PCD files through PLY files. The 3D scanner’s software ( EinScan SE/SP Software
Version 3.1.3.0) facilitated the conversion of ASC, STL, and PLY files. Open3D was
then used to convert PLY files into PCD files. This conversion process yielded a total
of 669 mesh-converted PLY files and 669 PCD files; all consistent with the scale of the
diecast models of heavy construction equipment.

• Adjusting Scale: The diecast models of heavy construction equipment used for 3D
scanning were scaled down to between 1:32 and 1:87, compared to their real-size
counterparts. To facilitate the use of these differently scaled models in this research,
a scale adjustment process was executed using the Cloudcompare software. This
ensured that the scanned data created in this research matched the actual scale of
heavy construction equipment used on-site.

• Removing Ground Plane: After the scale adjustment, the ground planes in the PCD
files of the diecast models of heavy construction equipment were removed using the
Cloudcompare software. This phase was taken into account, considering that the point
cloud data of a ground plane is not captured in actual data collected using UAV and
UGV equipment. The aim was to make the data more closely resemble on-site data
obtained through scanning, thus enhancing the accuracy of ML and DL object detection
models. This operation led to a reduction in the size of the 3D-ConHE dataset.

• Adjusting Point Density: This research examined the point cloud data of heavy con-
struction equipment collected by UAV to adjust the point cloud data’s point density.
Typically, the point cloud data of heavy construction equipment captured by UAV, as
displayed in Figure 6, features significantly lower point density compared to data gen-
erated from scanning diecast models. This discrepancy arises from the equipment’s
characteristics and the data capture method. In Figure 6, the data were acquired
using a DJI PHANTOM 4 RTK (Shenzhen, China), equipped with a 20-megapixel
camera, flying at an altitude of 100 m. Figure 6a shows the extracted point cloud
data from heavy construction equipment on a construction site captured by the UAV,
while Figure 6b displays data generated from scanning heavy construction equipment
diecast models indoors. When comparing the point density between Figure 6a,b, the
lower point density in Figure 6a is likely attributed to the drone capturing data from
an altitude of 100 m above the ground. Furthermore, a drone capturing data at a
100 m altitude can be affected by wind, causing it to fluctuate in altitude, sometimes
ranging between 80 and 120 m above the ground. The unreliability of this on-site
data collection method results in the point cloud data captured by UAVs having lower
point densities than data generated from static scanning of diecast models indoors.
Consequently, this research employed point density values at a UAV data capture



Appl. Sci. 2024, 14, 3599 11 of 15

height of 100 m as reference values for diecast models (Figure 6d). Additionally, data
captured at altitudes of 80 and 120 m were taken into account to adjust the point
density of diecast models, as depicted in Figure 6d,e; introducing a variance of +20%
and −20%.
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Figure 6. Comparison of UAV heavy construction equipment point cloud data and diecast model
scan data.

In this research, using this method, we were able to construct a total of 2007 PCD files
by adapting the point density of 669 PCD files into three variations. Figure 7 provides
examples of the five types of heavy construction equipment with adjusted point densities
from the 2007 PCD files. The point density adjustment process carried out in this research
is anticipated to enhance the versatility of the 3D-ConHE dataset, enabling it to cater to
diverse point density requirements for research purposes.
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3.3. Dataset Construction

Our dataset is presented in Figure 8 and is available in STL, PLY, and PCD formats.
This dataset encompasses 3D scan data for five types of heavy construction equipment:
dump truck, roller, grader, excavator, and dozer; and is accessible in both mesh and PCD file
formats. Mesh files are provided in ‘.stl’ and ‘.ply’ formats, while PCD files are categorized
into three different types of ‘.pcd’ files. Within the 3D-ConHE dataset, there are 669 STL files
with a combined size of 13.6 GB, along with 669 PLY files totaling 31.4 GB. Furthermore, the
‘Before Ground Removal & Before Point Density Adjustment’ PCD files consist of 669 files,
with a collective size of 8.9 GB, while the ‘After Ground Removal & Before Point Density
Adjustment’ PCD files encompass 669 files amounting to 6.79 GB. The ‘After Ground
Removal & After Point Density Adjustment’ PCD files include 2007 files with a total size of
809 MB. It should be noted that the variations in the sizes of PCD files before and after point
density adjustments are attributable to aligning the point cloud density of diecast model
scan data with the data collected from UAV scans. The 3D-ConHE dataset—dedicated to
heavy construction equipment point cloud data—as developed in this research, will be
made publicly available for research purposes. Our benchmarks are available online at:
http://rb.gy/sli2mw/ (accessed on 18 March 2024).
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4. Conclusions

The KITTI dataset, which is a representative dataset for autonomous vehicles, was
introduced in 2012 and has been leading research in areas such as 3D object detection
and 3D tracking for autonomous vehicles. It continues to be actively utilized in various
studies even in recent times [49]. Furthermore, globally, the KITTI dataset significantly
influences the development of datasets for artificial intelligence research [50]. Thus, in the
construction industry as well, the development of datasets based on 3D point cloud data,
similar to the KITTI dataset, is necessary for advancing AI research.

For this reason, our research has developed the 3D-ConHE dataset, focusing on
five types of heavy construction equipment, and made it publicly available to advance
related research. Our dataset enhanced efficiency by scanning diecast models of the
heavy construction equipment. Furthermore, it was scaled to match the actual size of the
equipment used in the field, scanned considering the motion joint movement directions,
and constructed with three different point cloud densities, taking into account the point

http://rb.gy/sli2mw/
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cloud density of the equipment captured by UAV. By considering and incorporating these
various conditions, we were able to increase the utility of our dataset.

This study, notwithstanding the advantages previously described, has certain limita-
tions. Primarily, although the 3D-ConHE dataset was developed, it was not verified and
validated through field experiments. Future research is planned to verify and validate
the dataset developed in this study. Additionally, the 3D-ConHE dataset created in this
research does not encompass the entire range of heavy construction equipment used in the
construction industry but is limited to five types of heavy construction equipment due to
the nature of the research. This limitation in the scope of the dataset represents a constraint
of the current study. Consequently, plans are in place to progressively increase the variety
of heavy construction equipment included in the 3D-ConHE dataset in future studies.

Despite these limitations of the 3D-ConHE dataset, our dataset is anticipated to
be useful for research in areas such as classification, part segmentation, and semantic
segmentation related to heavy construction equipment. Furthermore, it is expected to
serve as a key technology for autonomous driving in the development of unmanned heavy
construction equipment, in conjunction with Machine Guidance (MG) and Machine Control
(MC) systems that are actively implemented in the construction industry. We anticipate
that our 3D-ConHE dataset will be extensively utilized in AI research based on point cloud
data within the construction industry in the future.
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