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Abstract: Neurodegenerative diseases (NDDs) are marked by progressive degeneration of neurons
within the central nervous system. A notable rise in the prevalence of NDDs has been noticed in
the recent past. There is an undeniable requirement for the discovery of innovative therapies aimed
at treating NDDs, as current medications predominantly address symptoms rather than provide
cures. Approved therapies often experience a decline in therapeutic efficacy over time and are
associated with significant side effects. The current investigation explores the potential of spilanthol,
the major bioactive compound isolated from Acmella paniculata, in attenuating NDDs through a
multi-faceted approach combining in silico, and in vitro methodologies. In silico pharmacokinetic
and toxicity screening of spilanthol indicated favorable characteristics for oral delivery, blood–brain
barrier permeability, and minimal toxicity. Network pharmacology predicts that spilanthol attenuates
neuroinflammation in NDDs by suppressing the toll-like receptor signaling pathway. Molecular
docking and dynamics simulations demonstrate robust binding affinities between spilanthol and key
proteins in the TLR4 pathway. In vitro experiments conducted using BV-2 microglial cells demonstrate
the potential of spilanthol to reduce the production of proinflammatory cytokines and mediators
such as NO, TNF-α, and IL-6 induced by lipopolysaccharide. The cumulative findings of the present
study indicate that spilanthol mitigates neurodegeneration by alleviating neuroinflammation.

Keywords: spilanthol; microglia; neurodegenerative diseases; network pharmacology; molecular
dynamic simulation
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1. Introduction

Neurodegenerative diseases (NDDs) and multifactorial deliberation diseases caused
by structural and functional neuronal anomalies in the central nervous system (CNS).
NDDs are typified by persistent degeneration of neurons in the CNS, which may lead to
physical disabilities and psychobehavioral manifestations including ataxia and demen-
tia [1]. Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis
(ALS), frontotemporal dementia, and Huntington’s disease (HD) are examples of classic
NDDs. Although partially attributable to the expansion of life, a discernible increase in the
prevalence of NDDs has been noticed during the past ten years [2,3]. Importantly, many of
the presently approved drug regimens alleviate symptoms but neither cure nor prevent
the propagation of neurodegenerative diseases [4]. Additionally, the prognosis is poor for
most NDDs due to the lack of effective therapies. Moreover, the complications of current
therapies and the deterioration of the therapeutic efficacy over time have further increased
the demand for discovering safe and efficacious treatment modalities for NDDs.

Although there are key pathophysiological differences, microglial activation and
chronic neuroinflammation are pathological hallmarks in most NDDs [5,6]. Pathogenesis
of AD is not restricted to the neuronal compartment and is strongly related to the innate
immune response triggered by microglia. The identification of amyloid-β (Aβ) species by
pattern recognition receptors (PRRs) on microglia enhances the expression of cytokines and
mediators that are responsible for neuroinflammation, including nitric oxide (NO), tumor
necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), through activation of nuclear factor-
κB (NF-κB) via toll-like receptor (TLR) signaling pathways. The chronic overabundant
production of pro-inflammatory cytokines further enhances neuronal damage and induces
the upregulation of β-secretase, which is responsible for the production of pathogenic Aβ

species [7]. In Parkinsonism, chronic release of proinflammatory cytokines from activated
microglia is considered a key contributor to the deterioration of dopaminergic neurons
in the substantia nigra pars compacta [8]. Therefore, proinflammatory cytokines released
from activated microglia have a crucial involvement in the initiation and perpetuation of
neurodegeneration and attenuation of chronic neuroinflammation, and proinflammatory
cytokine expression is considered to produce a therapeutic benefit in NDDs [9,10].

Phytochemicals have captured significant interest as neuroprotective agents. The
therapeutic efficacy of phytochemicals is mainly attributed to their antioxidant, anti-
inflammatory, and anticholinesterase activities [2]. Acmella paniculata (Wall ex DC.) R.
K. Jansen, from the plant family Asteraceae, is a versatile medicinal plant with a plethora
of ethnopharmacological applications. A. paniculata is known to possess a variety of
bioactivities including local anesthetic, antimicrobial, antiulcer, antipyretic, antioxidant,
anti-inflammatory, insecticidal, anticancer, and larvicidal activity [11–13]. Floral inflo-
rescence of A. paniculata is a rich source of N-alkylamides, and the fresh floral inflo-
rescence has been widely used in many traditional medical systems to alleviate pain
and inflammation and to induce local anesthesia. Spilanthol [(2E,6Z,8E)-N-Isobutyldeca-
2,6,8-trienamide] is one of the most prominent biologically active N-alkylamides in the
inflorescence of A. paniculate [14]. Spilanthol is renowned for its bioactivities, including anti-
fungal, anti-inflammatory, anti-nociceptive, local anesthetic, and aphrodisiac activity [15].
Although a few studies have been conducted to evaluate the anti-neuroinflammatory effec-
tiveness of spilanthol, the specific mechanism through which it confers neuroprotection
remains unclear.

The advancement of computer-aided drug discovery tools has markedly improved nat-
ural product-related drug discovery, effectively reducing the historically high attrition rates.
Therefore, structure-based virtual screening (SBVS) tools including molecular docking
and molecular dynamic (MD) simulation, together with in silico absorption, distribution,
metabolism, excretion, and toxicity (ADMET) screening and network pharmacology analy-
sis, have been frequently utilized by both academia and industry to accelerate the drug
discovery process. Network pharmacology, a holistic approach, leverages the integration
of systems biology, pharmacology, bioinformatics, and network analysis to predict the
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interactions of compounds with multiple biochemical pathways involved in a specific dis-
ease condition [16]. Accordingly, network pharmacology analysis allows the opportunity
to comprehensively understand the mechanism of action of a therapeutic candidate and
provides the opportunity to repurpose existing bioactive compounds for novel therapeutic
applications [17]. Molecular docking and MD simulation studies have become major el-
ements in the SBVS [18]. Molecular docking analysis elucidates the binding interactions
between drug candidates and biological targets, offering valuable insights into their bind-
ing affinity, intermolecular interactions, and optimal binding orientations [19]. Moreover,
protein-based drug targets possess dynamic structures and are frequently susceptible to
conformational changes. Hence, MD simulation studies are necessary for the investigation
of the time-dependent dynamic interactions between therapeutic candidates and respec-
tive targets, as they allow the investigation of time-dependent dynamic interactions. A
combination of both molecular docking and MD simulation approaches provides a more
holistic view of biomolecular interaction [20]. In addition to efficacy, for a compound
to be considered a viable therapeutic candidate, it should also demonstrate a favorable
pharmacokinetic and toxicity profile. Therefore, we conducted a comprehensive assessment
of the pharmacokinetics and toxicity of spilanthol through in silico ADMET screening tools.
Subsequently, we employed network pharmacology to assess the potential of spilanthol in
attenuating NDDs. Thereafter, we utilized molecular docking and MD simulation studies
to examine the biomolecular interactions of spilanthol with key target proteins identified
through the network pharmacology results. Finally, the in silico findings were validated
using a lipopolysaccharides (LPS)-induced BV-2 microglia cell model.

2. Results and Discussion
2.1. In Silico ADMET Prediction

Early determination of the ADMET properties of a therapeutic candidate is crucial, as
they significantly reduce the attrition rates in drug discovery. Conventional approaches
in the determination of ADMET parameters are often time-consuming, expensive, and
involve ethical concerns [21]. Hence, computer-aided ADMET prediction has captured
significant popularity owing to its feasibility and reliability. In the current study, we
utilized the pkCSM web tool and the SwissADME web tool to determine pharmacokinetic
descriptors and drug-likeness, respectively. In terms of pharmacokinetics, spilanthol has
gained a favorable result in various pharmacokinetic descriptors. Importantly, spilanthol
has demonstrated substantial blood–brain barrier (BBB) permeability, favoring its potential
therapeutic application in NDDs. Additionally, spilanthol has accounted for high intestinal
absorption, thereby favoring oral administration (Supplementary Table S1).

Drug-likeness entails a qualitative assessment aimed at evaluating the likelihood of a
compound to serve as an oral drug through scrutiny of its structural and physicochemical
attributes. Lipinski’s rule of five is a widespread guideline to evaluate drug-likeness com-
pounds, and it consists of five descriptors including molecular weight (MW) ≤ 500 g/mol,
Log p ≤ 5 (n-octanol/water distribution coefficient), nHA≤ 10 (number of hydrogen bond
acceptors), and nHD ≤ 5 (number of hydrogen bond donors) [22]. Interestingly, spilanthol
exhibited promising drug-likeness with zero violation in the descriptors coming under
Lipinski’s rule. Additionally, spilanthol did not violate any descriptors of the Ghose, Veber,
Egan, and Muegge rules, which are also frequently utilized to evaluate the drug-likeness of
compounds. Notably, spilanthol exhibited substantial oral bioavailability indicated by an
Abbot bioavailability score of 0.55, predicting the probability of spilanthol achieving at least
10% oral bioavailability in rats (Supplementary Table S2 and Supplementary Figure S1) [23].
Protox-II is a widespread web server used to predict the rodent oral toxicity of compounds,
and we leveraged Protox-II to evaluate the toxicity of spilanthol. Interestingly, spilanthol
demonstrated relatively low toxicity with predicted LD50: 4378 mg/kg, and it was classi-
fied under predicted toxicity class 5 with both average similarity and average accuracy of
100%, indicating the safe therapeutic applicability of spilanthol (Supplementary Table S3).
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Despite the extensive ethnopharmacological uses of spilanthol-rich herbal extracts and
herbal preparations, a very limited number of safety studies have been conducted regarding
the safety and toxicity of spilanthol. Stein et al. evaluated the impact of ethanolic extracts of
A. oleracea flowers and leaves, as well as pure spilanthol in male Wistar rats. Intraperitoneal
administration of crude extracts (10–100 mg/kg) and spilanthol (6.2 mg/kg) have not
induced nephrotoxicity and hepatotoxicity [24]. Similarly, intraperitoneal treatment of
A. oleracea floral extract for 7 days up to 500 mg/kg has not produced significant toxic
outcomes [25]. Chronic toxicity evaluation in male Wistar mice using 100 mg/kg/day
of A. oleracea floral extract orally for 60 days showed no signs of toxicity [26]. However,
oral and immersion treatment with spilanthol and spilanthol-rich extracts has induced
identifiable toxicity characterized by histopathological changes in vital organs in zebrafish
models [27]. Similarly, substantial maternal toxicity and teratogenicity have been observed
in zebrafish preclinical models upon treatment with spilanthol and spilanthol-rich crude
extracts. Additionally, few metabolites of spilanthol with mutagenic potential have been
identified during in silico evaluations [28,29]. Despite the available literature, due to the
unavailability of human safety data as well as dose escalation studies regarding toxicity, it
is not rational to definitively conclude the safety of spilanthol. Moreover, it is essential to
evaluate the safety of spilanthol by comprehensively targeting vital physiological systems
using in vivo models before considering spilanthol for clinical use.

2.2. Network Pharmacology Analysis

The current study employs network pharmacology analysis to predict the anti-neurode-
generative efficacy of spilanthol. Network pharmacology is a multidisciplinary approach
that merges the fields of pharmacology and systems biology, aiming to investigate the
complex interactions between bioactive compounds and multiple targets implicated in
complex pathophysiologies [16]. The SMILES notation of spilanthol retrieved from the
PubChem database was used for structure-based target fishing. The chemical structure of
spilanthol is shown in Figure 1A. Plausible targets of the spilanthol were determined using
SwissTargetPrediction, SEA SearchServer, and Super-PRED 3.0. As shown in Figure 1B,
spilanthol accounted for 236 potential targets. Moreover, 2094 targets linked with NDDs
were obtained from three databases: GeneCard, DisGeNET, and OMIM.

The common targets of spilanthol and NDDs are identified from the intersection of
a Venn diagram (Figure 1B). The STRING database was employed for the assessment of
protein–protein interactions (PPI), revealing intricate relationships among the involved
target proteins. Moreover, there were 690 edges and 90 nodes in the network (Figure 1C).
To determine the top 10 interacting proteins, the PPI network was also investigated further
for Maximal Clique Centrality (MCC) using the CytoHubba. TLR4, NF-κB1, PTGS2, MMP9,
PPARG, MAPK3, HIF1A, GSK3B, STAT1, and MTOR are among the top 10 interacting pro-
teins (Figure 1D). The anti-neurodegenerative effectiveness of spilanthol could potentially
be achieved by the modulation of these targets. To gain insight into the pathways mediated
by spilanthol in neurodegenerative disorders, GO and KEGG pathway enrichment studies
were subsequently executed. A sum of 1732 biological processes, 124 cellular components,
and 182 molecular functions were enriched in the GO enrichment analysis. Moreover,
159 pathways were significantly enriched in the KEGG enrichment analysis. Figure 2
summarizes the most significantly enriched KEGG pathways and GO terms.

Cellular response to chemical stress was significantly enriched under the biological
processes (Figure 2A). This biological process plays a major role in neuroinflammation and
subsequently neurodegeneration, indicating the potential of the spilanthol to attenuate neu-
roinflammation in NDDs [30]. To gather insight into the plausible pathways of spilanthol in
the attenuating NDDs, the probable targets were analyzed for KEGG pathway enrichment
analysis. The TLR signaling pathway emerged as the most significantly enriched pathway.
Meanwhile, the AD pathway was among the top 5 significant pathways (Figure 2D).
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Figure 1. Network pharmacology analysis for prediction of the underlying mechanism of spi-
lanthol in the attenuation of neurodegenerative diseases. (A) Chemical structure of spilanthol,
MW = 221.339 g/mol. (B) Intersection between spilanthol target genes and differentially expressed
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indicating a lower score. SP, spilanthol; NDDs, Neurodegenerative diseases.

Chronic neuroinflammation and microglial activation are pathological hallmarks in
the majority of NDDs. A TLR4 signaling pathway is a predominant pathway involved
in microglial activation and neuroinflammation. As illustrated in Figure 3, spilanthol
shows interactions with multiple targets in the TLR4 signaling pathway. Microglia, which
play a crucial role in immune responses within the central nervous system (CNS), contain
toll-like receptor 4 (TLR-4) as a major pattern-recognition receptor. Activation of TLR4
promotes the polarization of microglia toward the M1 phenotype which is associated with
the pro-inflammatory response. M1 phenotype releases pro-inflammatory cytokines and
chemokines including IL-1, IL-6, IL-12, TNF-α, and NO. The activation of TLR4 triggers
microglial downstream signaling via TLR adapters, namely MyD88 and TRIF. Among
these, the MyD88-dependent pathway is crucial for the polarization of microglia to M1
phenotype [31]. MyD88 functions as a bridge to employ and activate downstream signal-
ing molecules. MyD88 induces autophosphorylation of interleukin-1 receptor-associated
kinases (IRAK4). The phosphorylated IRAK4 then induces tumor necrosis factor receptor-
associated factor 6 (TRAF6) to encounter self-ubiquitination and conjugate ubiquitin chains
onto TAK1. Activated TAK1 is responsible for the activation of the IKK complex via phos-
phorylation. Upon activation, the IKK complex phosphorylates the NF-κB inhibitor IκBα,
leading to NF-κB activation [32,33]. The translocation of NF-κB induces the transcription of
proinflammatory genes and ultimately induces the release of proinflammatory cytokines,
chemokines, and enzymes involved in inflammation. As indicated in Figure 3, spilanthol
interacts with multiple proteins in the TLR-4 pathway, including TLR4, IRAK4, IKK-α, and
NF-κB, in favor of attenuating NDDs.
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Suppression of the TLR4 pathway has been proven to produce favorable outcomes
against many NDDs, including AD, PD, ALS, MS, and HD [34,35]. Interestingly, sup-
pression of TLR4 signaling in AD has been proven to improve cognitive dysfunction in
streptozotocin-induced murine models of AD [36]. Similarly, inhibition of TLR4-induced
microglial polarization through the administration of TLR4-specific inhibitor TAK-242
has significantly improved neurological function, reduced the level of M1 microglia, and
inhibited neuronal apoptosis [37]. Although, TLR4 signaling produces a protective effect
in acute phases of PD, by inducing the clearance of α-synuclein, chronic activation of the
TLR4 signaling pathway was found to exacerbate neurodegeneration by inducing chronic
neuroinflammation, and suppression of TLR4 signaling was found to alleviate the features
of α-synucleinopathies, excessive inflammation, and progress of neurodegeneration [38].
Importantly, compounds capable of suppressing TLR4/NF-κB signaling have significantly
reduced the loss of dopaminergic neurons and have improved locomotor impairments in
LPS-induced murine models of Parkinson’s disease [39,40]. As per the findings of previous
studies, suppression of TLR signaling has produced therapeutic benefits in NDDs and,
interestingly, spilanthol has interacted with multiple proteins in the TLR pathway in favor
of attenuating neurodegenerative diseases.
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Considering the AD pathway, spilanthol demonstrated substantial potential to mod-
ulate with multiple pathophysiological pathways by interacting with 27 target proteins
involved in AD pathophysiology, including NMDAR, CASP8, BACE, JNK, and mTOR,
in addition to targets in the inflammatory pathway (Supplementary Figure S2) [41,42].
Considering the complex pathophysiology and potential of spilanthol to interact with
multiple targets involved in different pathological pathways, future studies are warranted
to comprehensively evaluate the potential of spilanthol in attenuating AD focusing on
different pathways by evaluating different biomarkers [43,44].

2.3. Molecular Docking and Molecular Dynamics Simulation Analysis

To elucidate the biomolecular interactions between spilanthol and pivotal proteins
involved in the TLR4 signaling pathway, molecular docking and MD simulations were
undertaken. The Protein Data Bank (PDB) serves as a vital source, containing three-
dimensional structural data on numerous biologically important macromolecules, including
proteins and ligands. This extensive resource serves as a cornerstone for researchers
seeking profound insights into molecular biology. In our study, we focused on specific
macromolecular constituents involved in the TLR pathway. Accordingly, three-dimensional
structural representations of the target proteins were retrieved from the PDB. Subsequently,
we conducted docking experiments and assessed the interaction energy using the GOLD
program. The relevant PDB identifiers together with the GOLD fitness score for spilanthol
and specific inhibitors are tabulated (Table 1).
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Table 1. GOLD fitness scores for spilanthol and specific inhibitors of pivotal proteins in the TLR4
signaling pathway.

Protein PDB ID Inhibitor
GOLD Fitness Score

Inhibitor Spilanthol

TLR-4 2Z65 CID6912404 141.86 58.29
NF-κB 1 1SVC CID5280961 49.29 49.73
IRAK4 6BFN CID 44449334 81.29 59.38
IKKα 5EBZ CID16048085 57.99 59.70
MD2 2E56 CID11005 58.78 58.64
iNOS 1DD7 CID16116169 93.52 73.91

COX-2 5IKR CID5090 66.46 62.13
MyD88 2JS7 ST2825 61.55 44.96

Interestingly, spilanthol demonstrated moderate binding affinity to multiple targets,
and notably, spilanthol exhibited a substantial affinity for the active sites of IKKα and NF-
kB1 proteins, as indicated by GOLD fitness scores of 59.70 and 49.73, respectively. Through
analysis of the superimposed three-dimensional interactions, we observed that spilanthol
fit favorably within the active site that is comparable to the inhibitors CID16048085 and
CID5280961 (Figure 4A).

To delve deeper into the matter, MD simulation of the protein–ligand association
complexes was conducted for 100 ns. MD simulations of the complexes formed between
spilanthol-IKKα and NF-kB1 proteins were all located within the active sites. We calculated
the root-mean-square displacement (RMSD) throughout the simulation by tracking the
geometric coordinates of all atoms in the complex (Supplementary Figure S3). In the
IKKα-CID16048085 and IKKα-spilanthol, the RMSD values exhibited an initial increase
to approximately 4.00–4.50 Å, persisting until the end of the simulation. In the same way
as IKKα-spilanthol, the RMSD values rose to 5.00–5.50 Å throughout the entire 100 ns
simulation. In the case of NF-kB1-CID5280961 and NF-kB1-spilanthol complex, the RMSD
values initially increased, followed by a subsequent rise to 6.00–6.50 Å throughout the
entire 100 ns simulation. Given that the active site of NF-kB1 resides within the loop region,
the RMSD values of genistein and spilanthol displayed some fluctuations; however, during
the final 20 ns, the RMSD values remained stable until the completion of the simulation.

The binding affinity values of the protein–ligand complexes were determined using
the SIE method, with data extracted from the analysis of 1000 snapshots obtained dur-
ing the final 20 ns of the simulations (Table 2). The average binding free energy values
(∆Gbind) for different complexes involving IKKα and various ligands are as follows: IKKα-
CID5280961 and IKKα-spilanthol exhibit values of−3.81± 1.74 and−6.65± 0.37 kcal/mol,
respectively. Similarly, for NF-kB1 complexes, the values for NF-kB1-CID16048085 and
NF-kB1-spilanthol are −3.05 ± 0.62 and −5.06 ± 1.79 kcal/mol, respectively. The SIE
method exposes a remarkable and robust binding affinity between spilanthol and both
IKKα and NF-kB1. This affinity is notably stronger than that observed with their inhibitors.
The map of protein–ligand interactions shows the frequency of interactions over the last
20 ns, as determined by the average structure. (Figure 4B) Molecular docking and dynamics
collectively demonstrate the inherent capability of spilanthol to bind with NF-kB1 and
IKKα, thereby reinforcing the findings of the network pharmacology analysis.
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Table 2. Binding free energies (kcal/mol), including SD, of IKKα and NF-kB1, complexed with
reference ligand and spilanthol and evaluated using the SIE method (n = 100, avg, average; and SD,
standard deviation).

IKKα NF-kB1

Component
(avg ± SD) CID16048085 Spilanthol CID5280961 Spilanthol

∆EvdW −8.64 ± 16.31 −34.48 ± 2.62 −1.24 ± 4.94 −19.80 ± 16.24

∆Ec −1.37 ± 3.20 −2.87 ± 2.67 −0.44 ± 1.75 −1.20 ± 1.43

γ∆MSA 2.82 ± 5.50 7.63 ± 2.15 0.37 ± 1.49 3.54 ± 3.03

∆GR −1.57 ± 2.96 −6.15 ± 0.37 −0.20 ± 0.78 −3.27 ± 2.68

C −2.89

α 0.104758
a∆Gbind −3.81 ± 1.74 −6.65 ± 0.33 −3.05 ± 0.62 −5.06 ± 1.79

a binding free energy (∆Gbind) computed by ∆EvdW and ∆Ec, which are the van der Waals interaction and
Coulomb interaction, respectively. γ∆MSA relates to the change of the molecular surface area induced by potent
ligand binding. ∆GR indicates the change of the reaction energy upon binding and is calculated by solving the
Poisson equation with the boundary element method.

2.4. Assessment of Cytotoxicity of Spilanthol in BV-2 Microglial Cells

In silico findings suggest that spilanthol attenuates neurodegeneration mainly by
attenuating neuroinflammation via suppression of the TLR4 signaling pathway. Subse-
quently, we conducted in vitro studies to validate the in silico findings. The BV-2 cell line
was employed for in vitro evaluation, as microglia predominantly contribute to the chronic
inflammation linked with neurodegenerative diseases [5,6]. Initially, the maximum non-
cytotoxic concentration of spilanthol was determined, as non-cytotoxic concentrations had
to be employed to evaluate the anti-neuroinflammatory efficacy. The cytotoxicity profile of
spilanthol on BV-2 cells was assessed using the MTT assay, revealing that concentrations of
spilanthol up to 100 µM did not exhibit a significant impact on the viability of BV-2 cells
(Figure 5). Hence, 100 µM was determined as the maximum non-cytotoxic concentration.
Spilanthol concentrations ranging from 25 to 100 µM were used in subsequent experiments
to evaluate its anti-inflammatory properties while eliminating the confounding factors
of cytotoxicity.
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2.5. Evaluation of the Anti-Neuroinflammatory Efficacy of Spilanthol

Chronic neuroinflammation is a pathogenic hallmark in NDDs and affects neuronal
plasticity, impairs memory, induces secondary neurotoxicity, and sustains neurodegenera-
tion [45]. Microglia in the CNS are predominantly responsible for sustained neuroinflam-
mation. LPS is a well-known endotoxin produced by gram-negative bacteria that elicits a
strong inflammatory response in microglia via the TLR4/NF-κB signaling pathway [46].
Therefore, the potential of spilanthol to attenuate neuroinflammation was assessed in
LPS-induced BV-2 cells by measuring NO, TNF-α, and IL-6 concentration in the culture
supernatant. Briefly, the cells were pretreated with spilanthol (25, 50, and 100 µM) for 2 h,
followed by induction with LPS (1 µg/mL) for 22 h. The NO expression in the cell culture
supernatant was then measured using the Griess reaction. The results demonstrated that
the LPS-induced cells accounted for significantly high NO levels (13.58 ± 0.99 µM) in com-
parison with the untreated cells (1.07 ± 1.13 µM). Pretreatment with spilanthol produced a
concentration-dependent decline in NO levels. In comparison with the LPS-only group,
treatment with spilanthol at 100 and 50 µM significantly decreased the concentrations of ni-
trite in the cell culture supernatants by 38.59% (8.43± 1.39 µM) and 31.3% (9.33 ± 1.22 µM),
respectively. however, treatment with spilanthol alone had no significant effects on NO
production in BV-2 cells (Figure 6B). In addition, treatment with spilanthol exhibited no
noticeable effect on cell viability (Figure 6A), indicating that the reduction of NO expression
is not due to the decrease in cell viability or proliferation.
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Figure 6. Anti-neuroinflammatory efficacy of spilanthol on LPS-treated BV-2 cells. (A) Impact of
the treatment on cell viability. (B) Impact of spilanthol on NO release. Influence of spilanthol on
proinflammatory cytokine expression: (C) TNF-α and (D) IL-6 levels. Data show the mean ± SD
values of three independent experiments. ### p < 0.001 compared with the control group, * p < 0.05,
** p < 0.01, and *** p < 0.001 compared with the LPS-control group, ANOVA followed by Tukey’s post
hoc test.
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ELISA was utilized to assess the potential of spilanthol to attenuate the release of proin-
flammatory cytokines, specifically TNF-α and IL-6, in LPS-induced BV-2 cells. The treat-
ment of BV-2 cells with LPS has demonstrated significantly high levels of both TNF-α and
IL-6, attaining concentrations of 399.5 ± 5.07 and 467.5 ± 60.58 pg/mL, respectively, com-
pared with the control (34.36 ± 4.48 and 66.87 ± 6.11 pg/mL, respectively) (Figure 6C,D).
However, treatment with spilanthol induced a concentration-dependent reduction in the
LPS-induced production of TNF-α and IL-6, and the inhibition was statistically significant
for the treatments using 50 µM and 100 µM. Treatment with spilanthol at 100 and 50 µM
significantly reduces the release of TNF-α by 33.64% (265.1 ± 28.23 pg/mL) and 18.42%
(325.9 ± 35.52 pg/mL), respectively, with respect to the LPS-induced group. Similarly, IL-6
expression was also significantly inhibited by the treatment of spilanthol. At 100 µM, IL-6
expression was reduced by 49.75% (234.9 ± 20.13 pg/mL), and at 50 µM, IL-6 expression
was reduced by 37.82% (290 ± 14.00 pg/mL). Moreover, treatment of spilanthol alone did
not elicit any significant alterations in the levels of proinflammatory cytokines.

Spinozzi and co-workers evaluated the anti-inflammatory effect of spilanthol in BV-2
cells and revealed that treatment of spilanthol at a concentration of 10 µM significantly
inhibits the expression of IL-1β. However, expression of TNF-α, iNOS, and COX-2 is
significantly inhibited at 10 µM concentration [47]. Importantly, the findings of the present
study are in line with the previous study conducted by Wu and co-workers in 2008. They
discovered the potential of spilanthol to suppress the expression of proinflammatory
cytokines in RAW 264.7 murine macrophages at a concentration between 20 and 180 µM
without inducing significant cytotoxicity by downregulating the NF-kB pathway [48].
These findings further validate the potential therapeutic application of spilanthol in NDDs
by attenuating neuroinflammation.

3. Conclusions

In conclusion, the present study comprehensively explores the potential of spilanthol
isolated from A. paniculata in attenuating NDDs through a combination of in silico and
in vitro studies. Our research indicates that spilanthol demonstrates favorable pharma-
cokinetic properties and drug-like characteristics based on in silico ADMET prediction.
Network pharmacology analysis reveals a complex interaction between spilanthol and key
target proteins in the TLR4 signaling pathway involved in NDDs. Additionally, molecular
docking and dynamics simulations demonstrate robust binding affinities between spilan-
thol and key proteins in the TLR4 pathway. Experimental validation using LPS-induced
BV-2 microglial cells demonstrates the ability of spilanthol to reduce the expression of
proinflammatory cytokines and mediators including NO, IL-6, and TNF-α without causing
significant cytotoxicity. However, comprehensive investigations are necessary to assess the
efficacy of spilanthol in in vivo models. Additionally, extensive toxicological studies are
imperative to pave the way for its clinical application.

4. Materials and Methods
4.1. Materials and Chemicals

Silica gel (230–400 mesh ASTM), Silica gel 60 F254 Aluminum TLC plates, and chloroform-
D1 were purchased from Merck KGaA. (Darmstadt, Germany). Sephadex LH-20, Lipolysac-
charide (LPS), Cell culture regents including Fetal Bovine Serum (FBS), Dulbecco’s modified
Eagle’s medium (DMEM), and Trypsin-EDTA were obtained from Invitrogen (Grand Island,
NY, USA). ELISA kits for the qualification of proinflammatory cytokines were purchased
from BioLegend (San Diego, CA, USA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.2. In Silico ADMET Screening

The pkCSM web tool (https://biosig.lab.uq.edu.au/pkcsm/, accessed on 1 January 2024)
and the SwissADME web tool (http://www.swissadme.ch/, accessed on 1 January 2024)
were used to assess the pharmacokinetic descriptors of spilanthol and its drug-likeness,

https://biosig.lab.uq.edu.au/pkcsm/
http://www.swissadme.ch/
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respectively. The Protox-II virtual toxicity lab (https://tox-new.charite.de/protox_II/,
accessed 1 January 2024) was used to evaluate the toxicity of spilanthol.

4.3. Network Pharmacology Analysis
4.3.1. Acquisition of the Target Genes of Spilanthol

SMILES notation of spilanthol retrieved from the PubChem database was utilized
for in silico structure-based-target fishing. Target genes of spilanthol were identified
from three target fishing web servers, specifically SwissTargetPrediction (http://www.
swisstargetprediction.ch/, accessed on 20 October 2023), SEA SearchServer (https://sea.
bkslab.org/, accessed on 20 October 2023), and Super-PRED 3.0 (https://prediction.charite.
de/subpages/target_prediction.php, accessed on 20 October 2023). Subsequently, gene
symbols for potential targets were obtained and validated from the UniProt database
(https://www.uniprot.org/, accessed on 20 October 2023). Subsequently, gene symbols
retrieved from the three sources were combined, and duplicate entries were excluded prior
to analysis.

4.3.2. Acquisition of the Target Genes of Neurodegenerative Diseases

Genes related to NDDs were identified from GeneCards (https://www.genecards.org/,
accessed on 19 October 2023) (relevance score≥ 10), OMIM (https://www.omim.org/, accessed
on 19 October 2023), and the DisGeNET database (https://www.disgenet.org/, accessed on
19 October 2023) (fit score ≥ 0.1) using “Neurodegenerative disease” as the keyword. Retrieved
target genes were subsequently validated and standardized using the UniProt database. Finally,
the genes obtained from all sources were compiled, and duplicates were removed before
the analysis.

4.3.3. Construction of Protein–Protein Interaction (PPI) Network

Initially, shared targets between spilanthol and targets related to NDDs were iden-
tified and depicted using Venny 2.1.0, an online tool used to generate Venn diagrams
(https://bioinfogp.cnb.csic.es/tools/venny/, accessed on 19 October 2023). By using
common targets, an interactive network integrating therapeutic targets of spilanthol and
NDD-related targets was established, and the network was visualized using Cytoscape
(version 3.9.1). The top 10 genes exhibiting the most significant degree of interaction were
identified utilizing Cytoscape’s cytoHubba plugin v.0.1.

4.3.4. GO Function Enrichment and KEGG Pathway Analysis

Plausible mechanisms by which spilanthol attenuates neurodegeneration were as-
sessed using the KEGG and GO pathway enrichment analyses using an online bioinformat-
ics data analysis tool (http://www.bioinformatics.com.cn/, accessed on 20 October 2023)
to determine the possible molecular mechanism of spilanthol in NDDs.

4.4. Dynamic Interactions: Insights from Docking and Molecular Dynamics

The process began with acquiring the protein structures of the IKKα and NF-kB1
proteins from the PDB database using the PDB IDs 5EBZ [49] and 1SVC [50], respec-
tively. Visualization and removal of ligands and small molecules were facilitated using
ChimeraX [51]. All ligands were constructed using the GaussView program, and both the
ligands and receptors were saved in mol2 format. Subsequently, the ligand was docked
with the receptor utilizing the GOLD Software (2022.1) [52]. It is important to note that
docking was performed within a defined grid box of 8 × 8 × 8 dimensions, centered on
specific XYZ coordinates for each model. For example, for the IKKα model (PDB ID: 5EBZ),
the coordinates used were 88.11, 65.64, and 0.37. For the NF-kB1 model (PDB ID: 1SVC), the
coordinates were 34.30, 9.39, and 40.52. From the ensemble of docked conformations, those
achieving the highest GOLD fitness score were meticulously selected for further analysis.
Following the docking phase, protonation states of the protein–ligand complexes were
determined at a physiological pH of 7.4 using the PDB2PQR server [53]. Subsequently,
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all-atom Molecular Dynamics (MD) simulations were conducted on IKKα and NF-kB1
proteins, along with their respective inhibitors, CID16048085 and CID5280961. These simu-
lations were carried out within a periodic boundary using AMBER22 [54]. For force field
parameters, the ff19SB force field [55] was applied to the target proteins, encompassing
both bonded and nonbonded interactions. Parameters for the inhibitors (CID16048085 and
CID5280961) and spilanthol were generated using the leap module in conjunction with
the general AMBER force field 2 (GAFF2) [56]. Furthermore, RESP charges for spilanthol
were computed following established standard procedures [57]. To finalize the structural
setup of each system, any missing hydrogen atoms were added using the LeaP module.
Additionally, Na+ ions were introduced to neutralize charges. Subsequently, the newly in-
troduced hydrogen atoms underwent an energy minimization process employing steepest
descents (SD) and conjugate gradient (CG) algorithms. Finally, the entire protein–ligand
complex underwent a complete energy minimization procedure to achieve an optimal state.
The complex was then gradually heated from 10 to 310 K under 1 atm of pressure before ini-
tiating a 100 ns MD simulation. The MD trajectories were derived from the final 20 ns, and
RMSD analysis was performed by CCPTRAJ module for assessment of the stability of the
complex simulations [58]. Additionally, the average structure was computed based on data
from the final 20 ns of simulation using the Chimera version 1.15 program [59]. Following
this, 2D interaction diagrams were generated using the Discovery Studio program.

4.5. Extraction and Isolation

Acmella paniculata was collected and authenticated by Associate Professor Thatree
Phadungcharoen. Then, fresh floral inflorescence was pulverized, and 828 g was used
for Soxhlet extraction using 95% EtOH at 40–80 ◦C for 26 h. The extract was then filtered
and concentrated by evaporating solvent using a rotatory evaporator at 40 ◦C to obtain
the A. paniculata crude extract (75 g). For the isolation of spilanthol, the crude extract was
initially partitioned between dichloromethane and water. The dichloromethane fraction
was further fractionated using a series of Silica and Sephadex columns. Fractions from
each column were collected and combined according to the TLC patterns. NMR analysis
of the isolated compound was carried out using a Bruker Ascend 400 NMR spectrometer
(Billerica, MA, USA) to obtain 1H-NMR, 13C-NMR, HSQC, and HMBC correlations. The
compound’s identification was conducted by comparing its NMR spectrum with existing
literature data [15,60].

4.6. In Vitro Evaluation
4.6.1. BV-2 Cell Culture

BV-2 cells, an immortalized murine microglia cell line, were obtained from Acce-
Gen Biotechnology located in Fairfield, NJ, USA. The microglial cells were cultured
and maintained in DMEM supplemented with 10% fetal bovine serum and 1% peni-
cillin/streptomycin within a controlled environment of 37 ◦C and 5% CO2 atmosphere in a
humidified incubator.

4.6.2. Evaluation of the Cytotoxicity of Spilanthol

For determination of the maximum non-cytotoxic concentration, BV-2 cells were
seeded at a density of 5 × 104 cells/well in a clear flat-bottomed multiwell cell culture
plate with DMEM complete media (DMEM supplemented with 10% FBS containing 1%
penicillin/streptomycin). Followed by 24 h of incubation, the culture supernatant was
replaced with 200 µL of serum-free DMEM containing varying concentrations of spilanthol
(0–400 µM). At 24 h after the treatments, the supernatants were carefully removed, and
100 µL of MTT solution (0.5 mg/mL in PBS) was added. Then, the multiwell cell culture
plate was left to incubate in darkness for 3 h at 37 ◦C with 5% CO2 in a humidified incubator.
After 3 h of incubation, the supernatant was discarded and 200 µL of DMSO was added,
then the cell culture plate was shaken for 10 min to facilitate the dissolution of formazan
crystals. Finally, the absorbance was measured at 570 nm using a multimode plate reader.
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4.6.3. Anti-Neuroinflammatory Efficacy of Spilanthol

Twenty-four hours before the treatment, BV-2 cells were seeded at a density of
15 × 104 cells/well in 24-well plates with DMEM supplemented with 10% FBS. After an
initial 24-h incubation, the cells were treated with spilanthol at concentrations of 0, 25, 50,
and 100 µM for 2 h. Then followed by the treatment, the cells were treated with LPS at a
final concentration of 1 µg/mL and incubated for 22 h. Finally, cell culture supernatant was
collected to quantity inflammatory mediators and proinflammatory cytokines.

4.6.4. Nitrite Assay

The Griess reaction was utilized to evaluate nitrite concentration in the culture super-
natant. Briefly, 100 µL of supernatant was added to a well of a 96-well plate, followed by
50 µL of 1% sulfanilamide in 5% phosphoric acid and 50 µL of 2.5% N-1-Napthylenediamine
dihydrochloride. After 5 min of incubation in darkness, absorbance was measured at
520 nm using a microplate reader (CLARIOstar®, BMG Labtech, Ortenberg, Germany).
Finally, the nitrite concentration was determined using a sodium nitrite standard curve.

4.6.5. Determination of IL-6 and TNF-α Levels Using ELISA

The impact of the spilanthol on the release of inflammatory cytokine in the LPS-
induced murine microglia was assessed using ELISA. Followed by 24 h of respective
treatment, the cytokine levels of the cell culture supernatant were assessed using com-
mercial ELISA kits, as per the protocol given by the manufacturer. The absorbance was
measured at 450 nm using a multimode plate reader (CLARIOstar®, BMG Labtech, Orten-
berg, Germany). The concentrations of the cytokines were calculated from the respective
calibration curves.

4.7. Statistical Analysis

Results of the cell culture experiments are demonstrated as means ± SD. The data
underwent analysis utilizing one-way analysis of variance (ANOVA), followed by the
Bonferroni post hoc test for multiple comparisons. Statistical significance was attained at
its lowest when the p-value < 0.05.

Supplementary Materials: The following supporting information can be downloaded at:
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Video S2: MD simulation of NFKB-CID5280961 complex; Video S3: MD simulation of IKKα-spilanthol
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TLR4 Toll-like receptor 4
NF-κB Nuclear factor kappa B
IKKα Inhibitory kappa B kinase α

IRAK4 Interleukin-1 receptor-associated kinase 4
MD2 Myeloid differentiation factor 2
MyD88 Myeloid differentiation primary response protein 88
IL-6 Interleukin-6
IL-1 Interleukin-1
TNF-α Tumor necrosis factor-alpha
NO Nitric oxide
iNOS Inducible nitric oxide synthase
COX-2 Cyclooxygenase-2
LPS Lipopolysaccharide
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
DMSO Dimethyl sulfoxide
ELISA Enzyme-linked immunosorbent assay
PPI Protein–protein interactions
MCC Maximal clique centrality
GO Gene ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
DMEM Dulbecco’s modified Eagle’s medium
FBS Fetal bovine serum
PBS Phosphate buffered saline
RMSD Root-mean-square displacement
PDB Protein data bank
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