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Abstract: In this paper, we introduce a novel rate control scheme specifically tailored for live
broadcasting scenarios. Notably, in high-definition live transmissions of sports events and video
game competitions that typically exceed 1080 p resolution and run at frame rates of 60 fps or
higher, the transcoding speed of encoders often becomes a limiting factor, leading to streams with
substantial bitrates but unsatisfactory quality metrics. To enhance the overall Quality of Service
(QoS) without increasing the bitrate, it is essential to improve the quality of Regions of Interest
(ROI).Our proposed solution presents an ROI-based rate reservoir model that ingeniously leverages
Convolutional Neural Networks (CNNs) to predict rate control parameters. This approach aims to
optimize the bitrate allocation within high bitrate live broadcasts, thus enhancing the image quality
within ROIs. Experimental outcomes demonstrate that this algorithm manages to increase the bitrate
by no more than 5%, effectively redistributing the reduced bitrate across the entire Group of Pictures
(GOP). As a result, it ensures a gradual decrease in the quality of Regions of Uninterest (ROU),
thereby maintaining a balanced quality experience throughout the broadcasted content.

Keywords: video coding; rate control; ROI; live broadcast; high bit rate

1. Introduction

With the burgeoning growth of the live video industry, there is an escalating demand
for efficient video encoding that ensures quality of service (QoS). This need is particularly
pronounced in high-resolution and high-frame-rate broadcasts of sports events and elec-
tronic games.It is a well-established fact that human viewers do not uniformly distribute
their attention across the entire visual scene but rather focus on specific areas that are
critical to their perception tasks. These areas, known as Regions of Interest (ROI), play a key
role in influencing perceptual video quality and subsequent viewer analysis, as evidenced
by studies such as [1]. To enhance the perceived video quality at constant bitrates, aligning
with the inherent heuristics of the Human Visual System (HVS), our approach advocates
allocating more bits to Coding Units (CU) within the ROI compared to those in the Region
of Uninterest (ROU). By doing so, we can optimize the coding process to better serve the
viewer’s perceptual priorities while maintaining overall bitrate efficiency [2–6].

There have been several methods proposed for ROI-based video coding. In the work
of [7], an adjustable quality ROI-centric rate control scheme is introduced, which adopts
the same quadratic model implemented in H.264/AVC for calculation purposes. This
algorithm assigns a quantitative parameter (QP) to each area based on user-selected quality
levels and subsequently calculates the QP for every macroblock using the quadratic model
as seen in [8]. The QP values are then adjusted according to an input ROI map and the bit
allocation for each region. Doulamis et al. [9] employed neural networks to detect ROIs
and allocate a higher number of bits to these areas. The rate control mechanism in [10]
utilizes the linear Rate-Quantization (R-Q) model to determine the stream’s bit allocation.
It employs the Viola Jones face detector to identify ROIs and assigns different QPs to both
ROI and Region of Uninterest (ROU), maintaining a constant QP difference between them.
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The research in [11] presents an ROI-based rate control method specifically designed for
High Efficiency Video Coding (HEVC). This approach involves independent processing at
the Coding Unit (CU) level for the two regions and applies a larger QP clipping range while
adhering to the global bitrate constraint. In Ping-Hao Wu et al.’s study [12], a dual encoding
system is utilized where a “basic encoder” encodes low-resolution full views, and a separate
“ROI encoder” focuses on high-resolution regions of interest. The bit allocation for the ROI
encoder is determined based on the distortion metrics obtained from the corresponding
region in the basic encoder. The paper [13] proposes an unequal error protection scheme
for compressed HEVC video bitstreams that prioritizes ROI data. Meanwhile, ref. [14]
optimizes the quantization parameters for both ROI and ROU source videos by minimizing
an objective function, which are then used during the encoding process of the synthesized
video. Ref. [15] discusses the ROI location coding tool adopted in the surveillance profile of
the AVS2 video coding standard, illustrating three distinct coding schemes: direct-coding,
temporal differential-coding, and reconstructed-coding. Ref. [16] realizes a more efficacious
distribution of bitrate within machine learning-based image encoders, attenuating the
quantization factors in the background regions of the images, thus diminishing the overall
level of quantization and consequentially reducing the bitrate assigned to such areas, while
concurrently preserving the quality of the ROI sections that are critical for machine learning
operations. Ref. [17] proposes a Transformer-based variable-rate image compression
system that can achieve variable rate compression with a single model while supporting
ROI functionality, introducing a Prompt Generation Network to condition the Transformer
Autoencoder’s compression process. Lastly, ref. [18] constructs a framework based on
FFmpeg and the X.264 codec, integrating a Yolov7 detection model for ROI extraction from
video frames, which subsequently generates corresponding masks. This setup prioritizes
bitrate allocation to ROI, sacrificing background bitrate allocation in order to maintain
overall bitrate stability.

The primary aim of rate control in video compression is to attain the lowest possible
quality distortion within a predefined bit rate constraint. In this context, rate control
commonly integrates Rate-Distortion Optimization (RDO) as a key strategy. To arrive at the
most optimized coding mode decision for each Coding Unit (CU), a Lagrange multiplier λ is
employed as per Equation (1). This multiplier links the distortion metric D (which is directly
related to the Quantization Parameter, QP) with the number of bits R (also associated with
QP). By doing so, it facilitates the evaluation of all feasible coding modes and selects the
one that minimizes the overall cost function. Thus, rate control fundamentally ensures an
effective trade-off between visual quality and bitrate efficiency.

cost = D + λ × R (1)

All the previously developed rate control (RC) algorithms in HEVC have not ade-
quately considered the varying importance of different regions within a video frame. In
response, we propose a novel rate control scheme tailored for high bit rate live streaming
systems that separately addresses Regions of Interest (ROI) and Regions of Uninterest
(ROU). Given that the reference software HM’s encoding speed is insufficient to meet
the real-time requirements of live streaming transcoding, our proposed algorithm builds
upon the open-source encoding software x265 . The algorithm introduces three distinctive
features: Firstly, it employs the open-source mm-detection [19] tool to automatically detect
ROI in each video frame and generate an ROI map accordingly. And mm-detection is an ob-
ject detection toolbox that contains a rich set of object detection, instance segmentation, and
panoptic segmentation methods as well as related components and modules. Secondly, we
introduce a reservoir model to predict and supervise the overall bitrate increase, enabling
real-time adjustment of rate control allocation bits for both ROI and ROU regions. Lastly,
we allocate target bitrates to each ROI and ROU region with a focus on maintaining the
stability of the live stream size; recognizing the multitude of factors affecting rate stability,
we propose a Convolutional Neural Network (CNN) model to predict joint rate control
parameters for ROI and ROU.
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The paper is structured as follows: Section 1 presents an overview of the general
rate control problem and existing HEVC solutions. Subsequently, Section 2 elucidates the
details of our proposed rate control approach. The experimental evaluation and results are
discussed in Section 3. Finally, Section 4 offers a thorough discussion of the findings, while
Section 5 concludes the paper with summarizing remarks and future directions.

2. Related Works

The objective of video encoding rate control is to closely approximate a predefined
constant target bit rate while minimizing quality degradation. Central to this task, the
rate control algorithm seeks to determine the most suitable Quantization Parameter (QP)
for each video segment under the condition that the encoded bitrate Rv(QP) does not
exceed the maximum allowed limit, denoted by Rmax. This constraint is crucial because
quantization inherently compresses video signals at reduced bitrates, with Rmax being the
fixed upper bound on the total number of bits, and Rv(QP) representing the actual number
of encoded bits in the live stream.

In the context of video coding, rate control typically integrates Rate-Distortion Opti-
mization (RDO), as described in Equation (1). Given the QP assigned by the rate control
process, RDO strives to minimize the cost function within each Coding Unit (CU), thereby
reducing the overall cost of the encoded video.

To address these challenges, an explicit Rate-Distortion model is required to correlate
the average bitrate with the QP value. A variety of studies have been conducted to develop
such models that associate perceived video quality with bitrate. Various rate models
have emerged, ranging from simple linear expressions to more intricate mathematical
formulations. For instance, the reference software for HEVC encoding in [20] employs a
linear model for bit rate estimation. In contrast, the quadratic model is often represented
as follows:

R = C1 × MAD/QP + C1 × MAD/QP2 (2)

where C1 and C2 are the model parameters, has been adopted in VM8 for MPEG4 [21],
H.264/AVC [22] and also for HEVC [23].

These models play a pivotal role in achieving the delicate balance between video
quality and bitrate constraints in video encoding applications.

As previously mentioned, each rate control model is tailored for video encoding
systems operating under specific conditions. However, the core objective of all these
methods is to allocate an optimal number of bits and determine the quantization parameters
for every coding unit. The encoder’s rate controller operates across three principal levels:
Group of Pictures (GOP), frame, and Coding Unit (CU) [12]:

i. GOP Level: At this level, input parameters include the target bit rate, sequence frame
rate, GOP size, and virtual buffer occupancy. The rate control algorithm calculates the
average number of bits per GOP.

ii. Frame Level: This stage involves considering the average bit allocation per frame,
where a fixed target bit amount is set for the current frame. Bit allocation takes into
account the hierarchical structure of the frames, followed by the application of the
R − λ model to compute the frame-level QP.

iii. CU Level: The process unfolds in three stages. Firstly, the required bit allocation for
each CU is calculated based on the frame budget and the Mean Absolute Difference
(MAD) of that CU. Secondly, using the established frame budget, the R − λ model
is employed to calculate a λ value within a fixed QP range for each CU. Finally,
Rate-Distortion Optimization (RDO) is performed to find the optimal mode decision,
which refers back to the given QP.

In summary, the rate control mechanism at these different levels ensures a systematic
and adaptive approach to bitrate management while maintaining optimal video quality
throughout the encoding process.
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3. Proposed Approach

Our proposed method is grounded on the R-λcu model tailored for HEVC. Building
upon the GOP rate control strategy, our scheme introduces a joint optimization and control
mechanism at both frame level and Coding Unit (CU) level, thereby enhancing the sub-
jective quality of Regions of Interest (ROI) while maintaining overall bitrate stability. The
relationship between R and λ described earlier is leveraged to compute the Quantization
Parameter (QP) for each frame and individual CU within an image. This approach has
demonstrated superior performance compared to traditional quadratic models [7,8]. In this
section, we delve into the details of our proposed methodology, with a particular focus on
the two steps in the ROI rate control process: Firstly, utilizing known information coupled
with a Convolutional Neural Network (CNN) model to infer the λcu values for both ROI
and Region of Uninterest (ROU); Secondly, discussing methods for gathering training data
to effectively train the CNN model.

3.1. Region λ Infer

Before implementing ROI-based rate control, we establish a dedicated ROI rate reser-
voir R, which serves to track the bitrate consumption in both the ROI and ROU regions. As
depicted in Figure 1, this ROI reservoir operates independently of the reservoir used by
the original codec’s rate control mechanism. In our algorithm, as more bits are allocated to
the ROI area, causing an increase in bit rate ∆Ri, the water level in the ROI reservoir rises
correspondingly. Conversely, when fewer bits (−∆Ru) are consumed in the ROU region,
the water level in the ROI reservoir decreases.

The video encoding process commences with the first step of utilizing mm-detection
for object detection to identify and gather information on the ROI regions. The second
step involves allocating GOP bits according to conventional rate control methods, ensuring
consistency with prior processes. The third stage entails acquiring encoded QP and RDO
information for each frame and using the subsequent model to calculate the rate control
parameters for both ROI and ROU regions.

The initial λcu values for each block within a frame can be derived from the r-λ rate
control framework outlined above. However, to refine the rate allocation specifically
for ROI and ROU, we need to adjust these base values and derive the final adjustment
parameters λroi and λrou for the respective regions. This tailored approach ensures that
the bitrate is optimally distributed between areas of interest and non-interest, enhancing
overall perceptual quality while maintaining bitrate stability.

Figure 1. ROI Reservoir Model.

When the reservoir has not yet reached its overflow threshold Rover, adjustments
to λrou alone are sufficient to ensure that the overall bitrate growth remains within an
acceptable limit. When the reservoir’s water level is low, the increment of λrou should
be appropriately reduced to guarantee a steady bitrate consumption from the reservoir;
conversely, when the water level rises high, the increment in λrou should increase pro-
portionally to accelerate the continuous outflow of the coding rate from the reservoir. If
the reservoir surpasses the overflow value Rover, the adjustment to λroi should decrease,
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thereby reducing the inflow of code rate into the reservoir and helping it maintain a level
below the overflow threshold.

The intensity of lambda adjustment for ROI (λroi) and ROU (λrou) is contingent upon
the state of the ROI reservoir. A smaller λ value indicates a higher likelihood of dividing the
CU into smaller blocks, which, in turn, leads to a smaller calculated quantization parameter
and thus increased bitrate consumption in the corresponding region.

The target quality enhancement factor for ROI is denoted as Kroi, which is user-defined.
For a given frame, the coding complexity of the ROI area is represented by Croi, computed
as the sum of absolute transform coefficients (SATD) following motion compensation
during the lookahead process.

We conduct downsampling filtering on the current frame’s image, resulting in a
reduced-resolution image at half the original dimensions. Upon this lower-resolution
image, we execute predictions with half-pixel accuracy and subsequently subtract the
outcome from the original full-resolution image to yield the residual signal. Thereafter,
we subject residual to the Hadamard transformation and compute the aggregate sum of
absolute values, thereby obtaining the SATD. The sum of SATDs for all pixels within the
ROI and the ROU region is Croi and Crou, respectively.

Croi = ∑ SATDroi (3)

Crou = ∑ SATDrou (4)

The size of the ROI is measured by the number of pixels in the region, Proi. Corre-
spondingly, the coding complexity of the ROU is Crou, and its size is represented by Prou.
Additionally, the base quantization parameter for the entire frame is QPf rame.

By utilizing λroi and λrou with the pre-configured coding table, we can determine the
quantization parameters QProi and QProu for the ROI and ROU regions, respectively. To
estimate the increased bitrate allocation for the ROI area, the calculation method proceeds
as follows:

∆Ri = Ri − R′
i = α × Croi/QProi − α × Croi/QPf rame (5)

∆Ru = Ru − R′
u = α × Crou/QProu − α × Crou/QPf rame (6)

where α is the rate Proportional coefficient. The terms ∆Ri and ∆Ru signify intermediate
quantities that capture the incremental changes in bitrate attributed specifically to the ROI
and ROU, respectively.

As depicted in Figure 2, we employ a shallow 4-layer neural network, which takes into
account the real-time constraints in live streaming scenarios where each frame has specific
encoding speed requirements. This network is configured with 8 input variables: R f rame−1,
Rover, Croi, Crou, Proi, Prou, Kroi, and QP of the previous frame QPf rame−1. The architecture
includes a first hidden layer with 52 intermediate feature nodes, followed by a second
hidden layer consisting of 36 intermediate feature nodes, culminating in two output nodes
that represent the predicted values for λroi and λrou for the upcoming frame.

The complete encoding and rate control flowchart is shown in Figure 3. In the prepara-
tory analysis and encoding stages, systematically acquire data on the positional information
of the ROI and ROU, their associated encoding complexities, the employed quantization
parameters across encoded frames, along with the actual bit count per frame. Feed these
empirical measurements into the reservoir model to dynamically update its bit rate and
buffer occupancy status, serving as inputs to the CNN model. Ultimately, the CNN model
predicts and outputs the rate control parameters λroi and λrou that correspond to and
differentiate between ROI and ROU. By utilizing this neural network model, we calculate
the adjusted λ parameters for the respective regions and proceed to apply these values
in the coding process. This approach ensures that our rate control algorithm efficiently
balances bitrate allocation between ROI and ROU while meeting the stringent latency and
performance demands inherent in live video streaming environments.
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Figure 2. Fully Connected Inference Networks.

Figure 3. CNN-based ROI rate control.

After one frame encoding is completed, the reservoir R updating formula is

R f rame = R f rame−1 + ∆Ri + ∆Ru (7)

R f rame = R f rame−1 + α × Croi/QProi + α × Crou/QProu − α × (Croi + Crou)/QPf rame (8)

3.2. Model Training Data Generation

To train the proposed neural network, a meticulous dataset collection process is
executed in several stages, as depicted in Figure 4:

Step 1 Firstly, we establish a Quantization Parameter (QP) range of [QPmin, QPmax], which
encompasses the QP values suitable for all videos undergoing live streaming en-
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coding. In the case of HEVC, when subjective quality is not a primary concern, this
range can be directly set to [0,51].

Step 2 Next, utilizing mm-detection, we pre-detect and store ROI maps from the training
video dataset. The detection includes identifying objects of interest such as faces,
human bodies, and common scene elements.

Step 3 For each individual QPi within the set range, we initially encode the video to acquire
λroi data across all ROI regions. Following this, we fix the λroi values in the ROI
areas and re-encode the video with varying QPs (QPj) ranging from QPmin to QPmax.
This allows us to collect λrou data for ROU regions. Concurrently, we gather all
relevant input variables for the CNN, including R f rame−1, Rover, average λcu in
ROI and ROU, Croi, Crou, Proi, Prou, and the previous frame’s QPf rame. The output
information from the CNN consists of λroi and λrou. Here, Kroi is defined as the
difference between the initial encoding QP (QPi) and the subsequent loop QP (QPj).

Step 4 We repeat Step 3 for every possible QP value within the entire range for every video
in our dataset to generate an exhaustive set of training data.

Data preparation and cleaning play a pivotal role. To ensure data integrity, we segment
the training videos into scenes containing only one intra frame per video; multiple intra
frames are strictly avoided as they could potentially contaminate the data. Furthermore,
any collected training videos where the QP values for ROI or ROU exceed their respective
limits are discarded.

Ultimately, after rigorous preprocessing, 42,000 valid videos with diverse content—such
as video games, sports events, shows, news broadcasts, movies, and TV dramas—are
utilized as training samples. Our model achieved a commendable test set accuracy of 92%.
We refined the model structure by incorporating Huber Loss as a regression constraint
during the input phase. Additionally, we applied pair-wise ranking loss to further constrain
the λroi and λrou values with respect to the QP upper and lower bounds.

Figure 4. Model Training Data Generationg.

We also experimented with integrating features like video resolution and frame rate
as inputs, but empirical results indicated that these had no significant impact on predic-
tion accuracy.

3.3. Fast Object Detection

To meet the real-time constraints of object detection in live streaming and ensure
each frame is encoded within the time limit, we leverage reference frame relationships to
propagate and track detected objects.

In our approach, as depicted in Figure 5, a target area is initially detected using mm-
detection in a preceding frame. If there exists a corresponding area with modifications in
the subsequent frame, these Coding Units (CUs) are concatenated to produce a new region,
which serves as the targeted detection outcome for that particular frame. Concurrently, to
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accommodate potential new targets entering the scene in later time frames, a fresh round
of detection is executed on the entire screen every n frames.

Given the low latency requirements of live streaming scenarios where videos are
typically encoded as a Group of Pictures (GOP) per encoding cycle, empirical validation
has shown that setting n equal to 8 achieves the optimal balance between detection quality
and speed, effectively boosting the algorithm’s efficiency by a factor of 8. This strategy
ensures both timely detections and seamless video encoding without compromising visual
fidelity or stream stability.

Figure 5. Reference Frame Relationship for Target Tracking.

4. Results

In the encoding of live videos, we have integrated our proposed rate control scheme
into the open-source commercial HEVC encoder x265 [24], employing the low-delay-B
configuration. For ROI detection, the coordinates are obtained using the mm-detection
toolkit for face and common object detection [19]. We evaluate our method on test sequences
recommended by the HEVC standard committee, encompassing CLASS-B, CLASS-C,
CLASS-D, and CLASS-E sets.

Our ROI reservoir rate control algorithm is compared with a conventional algorithm
that lacks ROI coding, where λ is directly modified in the ROI region.

For a detailed comparison, consider the 1080 p video stream from the BasketballDrive
sequence in Class-B at a frame rate of 50 fps with a bitrate of approximately 1500 kbps.
In Table 1, the first row serves as an anchor, showcasing the performance of a rate control
algorithm based on R-lambda. The second row represents the commonly employed method
of directly adjusting QPoffset for the ROI region, setting QPoffset to −6.

Our results demonstrate that while this approach significantly improves PSNR and SSIM
metrics in the ROI area, it leads to a 60% increase in bit rate. This substantial addition of bitrate
during live streaming can cause increased stutter rates during transmission and playback,
negatively impacting the viewer’s experience. The subsequent three rows of the table show
the outcomes when progressively enhancing the parameter Kroi for the ROI region. As Kroi
increases, objective quality metrics within the ROI region improve correspondingly.

Concurrently, the ROI reservoir algorithm reduces bits allocated to the ROU region
to balance the overall bitrate, which consequently leads to a decrease in the objective
metrics of the ROU region. Notably, throughout the process of tuning the ROI enhancement
coefficient, the overall file bitrate increases by less than 5%, thereby satisfying the bitrate
fluctuation requirements for video coding in live broadcast scenarios.

Table 1. BasketballDrive@1920x1080@50 fps, 1.5 Mbps, ROI metrics.

Algorithm BitRate (kbps) ROI-PSNR (dB) ROI-SSIM ROU-PSNR (dB) ROU-SSIM

R-λ [25] 1526.26 35.01 0.881 34.88 0.881
ROI constant
QPoffset [10] 2472.54 (+62.0%) 36.91 (+1.90) 0.907 (+0.026) 34.80 (−0.08) 0.881(−0.000)

Kroi = 2 1544.58 (+1.2%) 35.71 (+0.70) 0.901 (+0.020) 34.77 (−0.11) 0.875 (−0.006)
Kroi = 4 1552.21 (+1.7%) 37.23 (+2.22) 0.908 (+0.027) 34.48 (−0.40) 0.874 (−0.007)
Kroi = 6 1556.79 (+2.0%) 38.47 (+3.46) 0.926 (+0.045) 34.37 (−0.51) 0.870 (−0.011)

Experimental outcomes demonstrate the superiority of our proposed method in both
objective and subjective evaluations for ROI, as evidenced in Figure 6, and the red box in
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(a) is the ROI area. Our scheme effectively enhances the discernibility of details within
ROI regions, particularly human bodies detected by mm-detection, while maintaining an
acceptable level of visual quality in the ROU areas without any significant degradation.

Comparatively, against the original video, while there is a general uniform increase
in PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) metrics
across all configurations, a subtle improvement in subjective quality is observed with
Kroi = 2. However, a more substantial leap in image subjective quality becomes apparent
when setting Kroi to 4. Although the PSNR and SSIM values for Kroi = 6 surpass those of
Kroi = 4, the subjective quality difference between the ROI regions of these two settings is
not appreciably distinguishable.Simulation results further validate that our custom encoder
can adeptly adjust the subjective visual quality of ROI in relatively incremental steps. The
visual fidelity of the ROI is consistently improved, while ensuring that the overall frame’s
visual quality remains satisfactory and acceptable.

As evidenced in Tables 2 and 3, by employing Kroi = 4 to analyze the variations in
bit rate and performance metrics across different datasets and resolutions. Compared to
the ROI constant QPoffset method, our CNN-based ROI rate control exhibits marginally
superior PSNR and SSIM quality improvements within the ROI regions while incurring
smaller PSNR and SSIM quality degradation within those same ROIs. Most critically, this
CNN-based approach achieves quality gains that would typically require an average 41%
bitrate consumption when using ROI constant QPoffset, but does so with only a 2.8%
bitrate overhead. It is evident that our method can effectively manage bitrate growth while
maintaining stable metric returns for ROI regions. The controlled loss within ROU areas is
evenly distributed throughout each frame.

(a) 1.5 Mbps original R-λ live stream

(b) 1.5 Mbps live stream, Kroi = 2

Figure 6. Cont.
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(c) 1.5 Mbps live stream, Kroi = 4

(d) 1.5 Mbps live stream, Kroi = 6

Figure 6. BasketballDrive_1920 x 1080@50 fps 1.5 Mbps live stream.

As evidenced in Table 4, in a study involving 100 participants rating video quality on a
1-to-5 Likert scale—with 1 representing the lowest perceived quality and 5 the highest—the
use of ROI constant QPoffset strategy as a baseline scenario yields an average enhancement
of 2.5% in the mean subjective score (MOS). The methodology presented herein attains a
superior uplift of 9.1% in the mean subjective scores through the application of R-λ.

The results underscore the efficacy of this scheme in delivering enhanced ROI quality
and consistency. By optimizing the QP (Quantization Parameter) in the ROI area to maintain
a lower value in the proposed solution, we achieve superior perceived quality. Furthermore,
the stability of QP ensures a consistent level of quality within ROI. Notably, this solution
can be successfully implemented even under tight bandwidth constraints in live stream
encoding scenarios.

Most importantly, the integration of a CNN-based ROI rate control model sets our
proposed scheme apart, enabling it to perform superior rate control on the majority of test
sequences. This approach thus represents an innovative and effective means of managing
bitrate allocation for improved visual experience, especially in the regions of interest.

Table 2. ClassB–ClassF ∆BitRate and ∆metrics, ROI constant QPoffset vs. R-λ.

Video Sets ∆BitRate (kbps) ∆ROI-PSNR (dB) ∆ROI-SSIM ∆ROU-PSNR (dB) ∆ROU-SSIM

Class B 47.5% 1.57 0.0471 −0.96 −0.004
Class C 42.9% 2.47 0.0108 −0.59 −0.009
Class D 35.1% 2.26 0.0192 −0.81 −0.012
Class E 38.0% 2.49 0.0508 −0.54 −0.006
Class F 43.9% 2.07 0.0377 −0.52 −0.011

Average 41.5% 2.17 0.0331 −0.68 −0.008
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Table 3. ClassB–ClassF ∆BitRate and ∆metrics, Kroi = 4 vs. R-λ.

Video Sets ∆BitRate (kbps) ∆ROI-PSNR (dB) ∆ROI-SSIM ∆ROU-PSNR (dB) ∆ROU-SSIM

Class B 4.2% 1.43 0.017 −0.32 −0.004
Class C 2.8% 1.52 0.028 −0.45 −0.007
Class D 1.5% 3.25 0.038 −0.71 −0.011
Class E 2.2% 2.92 0.043 −0.53 −0.009
Class F 3.5% 1.87 0.025 −0.78 −0.006

Average 2.8% 2.20 0.030 −0.56 −0.007

Table 4. ClassB–ClassF MOS.

Video Sets R-λ ROI Constant QPoffset ROI Constant QPoffset vs. R–λ(%) Kroi = 4 Kroi = 4 vs. R-λ(%)

Class B 3.60 3.79 5.4% 4.01 11.4%
Class C 2.85 2.90 1.5% 3.09 8.4%
Class D 3.61 3.71 2.7% 3.93 9.0%
Class E 4.22 4.23 0.4% 4.45 5.5%
Class F 3.18 3.26 2.5% 3.54 11.0%

Average 3.49 3.58 2.5% 3.80 9.1%

5. Discussions

The experimental findings reveal that when the ROI enhancement parameter Kroi sur-
passes a certain threshold, an excessive reduction in bitrate can lead to severe degradation
of metrics within the ROU area. This may result in subjective quality issues that cannot be
overlooked, such as pronounced blocking artifacts or texture loss. To address this issue,
it is crucial to set a minimum λmin value for the ROI region and a maximum λmax value
for the ROU region, thereby establishing upper and lower bounds on QP values in the
corresponding areas and ensuring that subjective image quality remains uncompromised.
These parameters, λmin and λmax, can be derived by consulting a predefined λ-QP lookup
table using the corresponding QPmin and QPmax.

In contrast with conventional linear or nonlinear models manually designed, lever-
aging Convolutional Neural Networks (CNNs) for model parameter prediction allows
for a more comprehensive consideration of diverse influencing factors. Traditional man-
ual empirical modeling techniques are prone to overlook high-order features and their
intricate interactions, which can inadvertently introduce inaccuracies into the system. On
the other hand, employing CNN models in encoding’s mode decision-making processes,
especially those involving multiple inputs and outputs, offers a superior alternative. The
intrinsic capability of CNNs to discern complex relationships among these variables makes
them a more reliable choice, effectively reducing potential errors associated with less
advanced methodologies.

In our CNN-based ROI rate control model, the accuracy in predicting the encoding
complexity Croi and Crou for both ROI and ROU constitutes a paramount parameter. Cur-
rently, our prediction relies on estimating this complexity using Sum of Absolute Difference
Transform (SADT) within the current frame. However, future refinements could involve
enhancing the estimation of encoding complexity for ROI and ROU by incorporating
inter-frame prediction using multiple reference frames.

6. Conclusions

In this paper, we propose an ROI-centric rate control algorithm for High Efficiency
Video Coding (HEVC). The innovative algorithm operates akin to a reservoir management
system and synergistically combines it with a Convolutional Neural Network (CNN)-based
parameter prediction network. This integration aims to enhance the quality metric of
Regions of Interest (ROI) while maintaining the overall stability of the video bitrate.This
proposed scheme proves highly effective in scenarios where high-resolution, high-frame-
rate, and high-bitrate live broadcasts are essential. It is versatile across various content types
and delivers superior results. Not only does it ensure improved quality and uniformity
within the ROI regions but also achieves a significantly lower bitrate compared to direct
Quantization Parameter (QP) adjustments in CU as implemented by x265. Thus, it offers
better Quality of Service (QoS) in demanding live broadcast environments.
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In future work, we will enhance the prediction accuracy by employing CNN methods
and conducting temporal analysis through the use of multiple reference frames, aiming to
improve the precision of encoding complexity prediction. Moreover, the selection of coding
modes in the current frame significantly impacts the accuracy of bitrate control; hence, in
subsequent stages, we plan to model and quantify this influence, incorporating it into our
CNN-based bitrate prediction model.
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