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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative condition. It causes cognitive
impairment and memory loss in individuals. Healthcare professionals face challenges in detecting AD
in its initial stages. In this study, the author proposed a novel integrated approach, combining LeViT,
EfficientNet B7, and Dartbooster XGBoost (DXB) models to detect AD using magnetic resonance
imaging (MRI). The proposed model leverages the strength of improved LeViT and EfficientNet B7
models in extracting high-level features capturing complex patterns associated with AD. A feature
fusion technique was employed to select crucial features. The author fine-tuned the DXB using the
Bayesian optimization hyperband (BOHB) algorithm to predict AD using the extracted features.
Two public datasets were used in this study. The proposed model was trained using the Open
Access Series of Imaging Studies (OASIS) Alzheimer’s dataset containing 86,390 MRI images. The
Alzheimer’s dataset was used to evaluate the generalization capability of the proposed model. The
proposed model obtained an average generalization accuracy of 99.8% with limited computational
power. The findings highlighted the exceptional performance of the proposed model in predicting
the multiple types of AD. The recommended integrated feature extraction approach has supported
the proposed model to outperform the state-of-the-art AD detection models. The proposed model
can assist healthcare professionals in offering customized treatment for individuals with AD. The
effectiveness of the proposed model can be improved by generalizing it to diverse datasets.

Keywords: feature extraction; deep learning; transformer; LeViT; hyperparameter tuning; model
optimization; neuroimaging; neurodegenerative diseases

1. Introduction

According to the World Health Organization, the total number of individuals aged 60
and older is expected to double by 2050, reaching approximately 2.1 billion people, 22%
of the global population [1]. Alzheimer’s disease (AD) is a neurodegenerative condition
that primarily affects the elderly population [2]. However, it may manifest in younger
individuals. It is the primary cause of dementia. Mild cognitive impairment may occur
in the initial stages of AD [2]; this is a transitional stage from normal functioning to AD
in which an individual has moderate cognitive abnormalities [3]. The individuals may
experience difficulties in performing their routine tasks [4]. They may face challenges
in remembering recent events, names, and conversations. In addition, they may exhibit
agitation and aggression. With an anticipated increase in AD cases, the disease has become
one of the significant global concerns of the modern era. Despite massive efforts to find
a cure, AD is still a non-preventable and irreversible form of dementia that impairs an
individual’s daily life [5]. It is complicated and progressive, necessitating early discovery,
diagnosis, therapy, and family support [6]. As the condition progresses, AD patients
increasingly rely on their caretakers and require assistance with routine activities.

The primary etiology of AD remains unclear. However, genetics, environment, and
lifestyle may contribute to AD [6]. Medical treatment and assistance can place a financial
burden on individuals with AD and their families. Globally, governments, healthcare
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organizations, and research institutes are focusing on the development of practical ap-
proaches to address the challenges associated with AD [6]. Researchers investigate AD’s
backgrounds, risk factors, prevention, and therapy to identify successful strategies to re-
duce its progression. Most cases of dementia are based on neurodegeneration caused by
AD. Increasing evidence from neuropathological and neuroimaging studies shows that
mixed etiologies cause many dementia cases, especially in people over 80 years [7]. There
has been more variation in the findings regarding the prevalence of dementia and AD
in populations older than 90 years compared to younger populations [7]. Healthy aging,
dementia care, and caregiver assistance are being applied to improve AD patients’ quality
of life [8].

Cognitive tests and assessments investigate memory, attention, language, reason-
ing, and problem-solving [8]. The Mini–Mental State Examination, Montreal Cognitive
Assessment, and AD Assessment Scale–Cognitive Subscale are frequently used for AD
detection [8]. Cognitive function may be assessed in greater detail with neuropsychological
tests [9]. These tests demonstrate cognitive strengths and limitations and may distinguish
AD from distinct dementias [10]. Lumbar puncture may collect cerebrospinal fluid from
the lower back [11–14]. Elevated beta-amyloid and tau proteins in cerebrospinal fluid may
indicate AD pathology. In a few instances, genetic testing may be utilized to diagnose AD,
particularly among individuals with a family history of AD [15]. An in-depth neuropsycho-
logical evaluation is a crucial diagnostic component in the diagnosis of dementia [16]. It
analyzes magnetic resonance imaging (MRI) scans for signs of regional brain atrophy and
determines the AD biomarkers using the cerebrospinal fluid biomarker profile. It evaluates
individuals’ memory, attention, language, and emotional performance. Healthcare practi-
tioners’ subjective interpretation of cognitive and neuropsychological testing can result in
diagnostic discrepancies [16–18].

Several imaging modalities may reveal the brain’s structure and function, highlighting
abnormalities associated with AD [18]. The diagnosis of AD relies on a wide variety of
biomarkers, including genetic and biological data and neuroimaging techniques, MRI,
amyloid positron emission tomography (PET), and diffusion tensor imaging [19–21]. The
brain structural changes, including hippocampal shrinkage and other AD-related changes
in addition to malignancies and strokes, can be identified using MRI [22]. These changes can
be used to determine brain abnormalities associated with mild cognitive impairment, which
may indicate AD. PET imaging can identify AD’s beta-amyloid plaques and tau protein
tangles in the brain. PET scans utilizing florbetapir, flutemetamol, or florbetaben may
confirm AD [23]. Chin-Yun Kuo et al. (2023) [24] discussed the significance of integrating
neuropsychological assessment with neuroimaging in order to identify AD in its initial
stages. Researchers can obtain valuable information on brain anatomical components from
high-resolution MRI images. In addition, MRI images have been made available through
public open access databases. These datasets are frequently updated, and researchers can
utilize them to develop automated AD detection.

DL models can improve early detection, understand disease pathology, integrate
image features, leverage large-scale datasets, and advance personalized medicine for indi-
viduals with AD [25]. These models can capture complex and high-dimensional patterns in
medical imaging data, including MRI and PET, assisting in diagnosing and understanding
AD [26]. By identifying biomarkers and subtypes of AD, DL-based models may enable indi-
vidualized treatments [26]. DL algorithms can learn complex representations from massive
data, providing improved precision and generalizable AD detection models [27–31]. Islam
and Zhang (2017) [32] employed a multi-class classification model to detect AD. Hussain
et al. (2020) [33] introduced a binary classification to distinguish individuals with and
without AD using MRI data. Murugan et al. (2021) [34] proposed a DL model to predict
AD and dementia. Raees and Thomas (2021) [35] used a Support Vector Machine and Deep
Neural Network to detect AD using MRI. Mamun et al. (2022) [36] used a DL model for
AD detection. Helaly et al. (2022) [37] proposed a DL model to predict AD in the early
stages. Liu et al. (2022) [38] employed a three-dimensional deep convolutional neural
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network (CNN) to differentiate individuals with mild AD from those without AD. El-Latif
et al. (2023) [39] pre-processed the MRI scans and improved the CNN model’s capability in
identifying AD. However, the existing AD detection models demand high-performance
graphical or tensor processing units and large-scale computing infrastructure for training
and inference. An effective fine-tuning algorithm is required to find the optimal hyperpa-
rameters for optimal outcomes. Hyperparameter selection requires substantial testing and
manual adjustment, which is time-consuming and computationally expensive. Overfitting
or poor generalization may result from inadequate data for deep learning models.

Furthermore, researchers and practitioners with restricted computing resources may
encounter challenges in model implementation. Existing AD detection approaches using
MRI require human interpretation or essential feature extraction, limiting diagnosis accu-
racy and reliability. There is a demand for advanced and automated techniques to detect
subtle disease-specific AD patterns. Transformer-based architectures and CNNs have pro-
duced promising results in medical image processing. The integration of transformers and
CNNs can extract local and global spatial information from complex images. Combining
these architectures may strengthen AD detection feature extraction frameworks. These
features have motivated the author to build a hybrid transformer and CNN-based AD
detection model. The contributions of the study are as follows:

A feature fusion-driven LeViT–EfficientNet B7-based feature extraction model to
extract the crucial features of AD.

An enhanced Dartbooster XGBoost (DXB)-based AD detection model using a Bayesian
optimization hyperband (BOHB) optimization algorithm.

The structure of the proposed study is organized as follows: The proposed methodol-
ogy for detecting AD using MRI images is described in Section 2. Section 3 outlines the
findings of the performance validation. The study’s contribution is discussed in Section 4.
Lastly, Section 5 concludes the study by outlining the limitations and future direction.

2. Materials and Methods

The author introduced an integrated approach that combines a vision transformer
(ViT), CNN, and gradient-boosting model. A ViT can capture global spatial relationships
and long-range interdependence in images [40]. To identify AD anomalies in MRI scans,
determining the spatial context of brain regions is crucial. Based on task relevance, a ViT
utilizes self-attention mechanisms to rank image patches. The model’s interpretability
enables researchers and clinicians to observe its regions of interest, allowing them to
comprehend AD detection characteristics. A pre-trained ViT model can be fine-tuned on
smaller MRI datasets for AD detection [40]. LeVit [40] is a ViT based on a hybrid neural
network [37]. Using a transfer learning approach, a feature extraction can be developed to
extract crucial AD patterns in order to improve AD detection generalization. LeViT can
be seamlessly integrated with CNN to a diverse set of features. CNN can recognize edges,
textures, shapes, and structures in MRI images using multiple layers of convolutional and
pooling processes. It can identify AD-related regional anomalies in MRI images using
attention mechanisms and spatial pooling. EfficientNet B7 is a state-of-the-art CNN model
with a compound scaling technique [41]. It is widely used for extracting features from
medical images. The capability of LeViT and EfficientNet B7 in extracting the intricate
patterns has motivated the author to employ a hybrid feature extraction approach. In
addition, the author employed a DXB, which is a gradient-boosting model, to identify the
type of AD using the extracted features. Figure 1 reveals the proposed methodology for
identifying AD using MRI images.
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Figure 1. The Proposed AD Detection Methodology.

2.1. Dataset Acquisition

Open Access Series of Imaging Studies (OASIS) Alzheimer’s dataset contains a cross-
sectional collection of T1-weighted MRI scans of 416 subjects aged 18 to 96. The subjects
include males and females. The dataset provides cognitive scores and the diagnosis status
of individuals. OASIS Alzheimer’s dataset is freely accessible through the repository [42].
Alzheimer’s dataset consists of 5000 T1-weighted MRI images [43]. The images were
categorized based on the disease severity. The characteristics of the datasets are presented
in Table 1.

Table 1. Dataset Characteristics.

Classes OASIS Alzheimer’s Dataset Alzheimer’s Dataset

Mild 5002 896

Moderate 488 64

Normal 67,200 3200

Very mild 13,700 2240

The datasets were highly imbalanced. EfficientNet B7 and LeViT models may require
considerable data augmentation to boost robustness and minimize overfitting. Qi et al. [44]
proposed a data augmentation technique for brain MRI images. They applied generative
adversarial networks to generate the synthetic images. Thus, the author employed the
data augmentation technique [44] to overcome the limitation. In addition, traditional
data augmentation techniques, including rotation, translation, scaling, flipping, gamma
correction, shearing, and histogram equalization, were used in this study.

2.2. EfficientNet B7-Based Feature Extraction

EfficientNet B7 excels in image categorization [41]. It captures complex MRI character-
istics and patterns for AD diagnosis using the depth, width, and resolution scaling features.
It can handle massive amounts of MRI data with less computation cost. By revealing
MRI image representations, EfficientNet B7’s hierarchical structure can facilitate model
interpretation. Clinicians and researchers may use these representations to understand
AD’s unique characteristics and provide personalized treatment. EfficientNet B7 may
struggle to gain long-range relationships and contextual information in MRI images. This
shortcoming may impair the model’s detection of AD symptoms. In order to improve the
efficiency of the EfficientNet B7 model, the author employed an attention mechanism and
mixed-precision training. Figure 2 highlights the recommended feature extraction model.

Using the EfficientNet B7 backbone, a feature extraction model was constructed.
An attention mechanism was introduced to capture the long-range dependencies and
contextual information. Residual connections were incorporated to overcome the vanishing
gradients during the training phase.
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Furthermore, the author employed mixed-precision training to accelerate the training
and reduce memory consumption. Activation functions, gradients, and accumulation
were performed in a single precision format to prevent numerical underflow or overflow
challenges. In addition, a loss scaling factor was dynamically integrated into the loss
function to address vanishing gradients.

2.3. LeViT-Based Feature Extraction

LeViT offers a powerful platform to handle a wide range of medical image processing
tasks, including classification, object detection, and segmentation [40]. It demands fewer
parameters compared to traditional CNN models. The self-attention mechanism can learn
interpretable representations of the MRI images. The global context modeling technique
captures holistic information associated with the MRI images. The patch extractor trans-
forms the image shape from 224 × 224 × 3 into 250 × 14 × 14. A shrinking attention
block is used to reduce the size of the activation maps. These features have motivated the
author to employ LeViT to extract AD patterns from the MRI images. However, LeViT
faces challenges in capturing fine-grained local details, affecting the ability to locate the
smaller objects. To overcome this limitation and improve the performance of LeViT-based
feature extraction, the author integrated spatial transformer networks (STNs) [45] with
LeViT architecture. Initially, an STN is built to perform spatial transformation on the MRI
images and extract features based on the region of interest. A feature extraction model
is constructed using the LeViT backbone. The extracted features are passed through the
LeViT in order to capture high-level representations of the spatially transformed features.
Figure 3 highlights the enhanced LeViT model for the feature extraction.
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A fully connected layer with the Softmax function is used to classify the features
based on the severity. Equations (1) and (2) show the computational forms of STN and
LeViT models.

F = STN(C, I) (1)

where F is the image feature, STN() is the spatial transformer network function, C is the
input channel, and I is the image.

F = LeViT(C, Cl, F) (2)

where F is the image feature, C is the input channel, Cl is the AD classes, and LeViT() is the
function for implementing the LeViT model.

After fusing the features, the author normalized the features using feature-wise nor-
malization to prevent numerical instability. Finally, a fully connected layer with the Softmax
function was used to generate the outcome. The outcomes were stored as a vector.

2.4. Feature Fusion Layer

The author combined a fusion layer with LeViT to fuse the features using an element-
wise addition approach. A dimension-matching process was used to identify the features
with different dimensions. A reshape function was applied to reshape the feature maps
into unique dimensions. Subsequently, element-wise addition combines the elements of
EfficientNet B7 and LeViT. Equation (3) shows the mathematical form of feature fusion.

∑n
i=1 f f used = ∑n

i=1 fE f f icientNet B7+∑n
i=1 fLeViT (3)

where n is the number of features, f f used is the fused features, fE f f icientNet B7 is the Efficient-
Net B7 features, and fLeViT is the LeViT features.
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2.5. Dartbooster XGBoost-Based AD Detection

DXB is an enhanced version of the traditional XGBoost algorithm [46]. It focuses on
dropout regularization to prevent overfitting by randomly dropping units during training.
Compared to the existing gradient-boosting algorithms, DXB achieves a considerable
outcome with limited computational power. In this study, the author employed a DXB
model to predict the AD type using the extracted features. However, DXB may face
challenges maintaining exploration–exploitation trade-offs in high-dimensional search
space. In addition, it may struggle to scale to complex models due to the increased
computational requirements. To overcome these limitations, the author employed the
BOHB algorithm to fine-tune the model. The hyperband algorithm follows a strategy
to allocate computational resources to unique hyperparameter optimization. Bayesian
optimization uses a probabilistic surrogate function to control the performance of the DXB
hyperparameters. During the training phase, a resource budget (hyperparameters) was
initialized. A Gaussian process was updated with the observed performance data. Multiple
rounds of optimization were performed until computational resources were exhausted.
Equations (4) and (5) show the mathematical forms of the BOHB and DXB hyperparameter
tuning processes.

BOHB = argmax
a∈A∝ (a) (4)

O = BOHB(DXB( f ), A) (5)

where A is the number of hyperparameters, ∝ (a) is the acquisition function that controls
the selection of hyperparameters, f is the feature, BOHB() is the Bayesian optimization and
hyperband function, DXB() is the Dartbooster XGBoost function, and O is the outcomes.

Furthermore, the author included SHapley Additive exPlanations (SHAP) values in
the DXB model to improve the model’s interpretability. The integration of SHAP values
can assist healthcare professionals in gaining deeper insights into the model’s prediction.

2.6. Performance Validation

The author validates the proposed model’s performance using widely applied eval-
uation metrics. Accuracy represents the overall correctness of the proposed model’s
predictions. Specificity indicates the model’s ability to detect negative instances. Sensitivity
measures the model’s capability of detecting positive classes. Precision indicates the pro-
posed model’s capability to prevent false positives, whereas recall represents the model’s
ability to identify positive instances. Cohen’s Kappa is used to assess the reliability and
consistency of the model’s findings. In addition, the area under the receiver–operating
characteristics curve (AUROC) and the area under the precision–recall curve (AUPRC) are
used to evaluate the effectiveness of the proposed AD detection model.

3. Results

The performance evaluation of the proposed model was conducted using Windows
11 Pro, Intel i9-12900k, 16 GB RAM, NVIDIA RTX 4090, and Python 3.8.0. The libraries,
including Pytorch 1.9, TensorFlow 2.11.0, Theano 1.0.5, and Keras 2.12.0, were used for
model development. The OASIS Alzheimer’s dataset was divided into a train set (70%),
a validation set (15%), and a test set (15%). Alzheimer’s dataset (20%) was used to gen-
eralize the proposed AD detection model. Table 2 reveals the experimental settings for
implementing the proposed AD detection model.

The performance of the proposed AD detection during the training and validation
phase is highlighted in Figure 4a,b. Compared to the training phase, there was a signifi-
cant improvement in the validation phase. The recommended early-stopping strategies
and regularization techniques have improved the model performance by monitoring the
validation loss. The model has attained an optimal performance at the 77th epoch.
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Table 2. Experimental Settings.

Model Parameters Values

LeViT

Image Size 224 × 224 × 3

Decay Factor 0.1 every 10 epochs

Initial Learning Rate 0.001

Batches 43

Epochs 75

Loss Function Cross-Entropy

Optimizer Adam

Fusion Layer Element-wise addition

EfficientNet B7

Image 224 × 224 × 3

Optimizer Adam

Loss Function Cross-Entropy

Validation Loss Monitor Early Stopping

Regularization Dropout, L1, and L2

Convolutional Layers 5

Activation Function Softmax

DXB

Learning Rate (η, [0, 1])

Minimum Split Loss (γ, [0, ∞])

Maximum Tree Depth ([0, ∞])

Optimizer BOHB
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The findings of the performance validation using dataset 1 are outlined in Table 3.
The recommended LeViT–EfficientNet B7 feature extraction has improved the prediction
accuracy of the proposed model. In addition, the data augmentation has supported the
model in identifying the critical patterns associated with AD.

Figure 5 presents the findings of a comparative analysis of the existing transformer
and CNN backbones. The proposed model has outperformed the existing models by
obtaining an optimal generalization accuracy of 99.8%. The recommended fine-tuning
processes assisted the proposed model in addressing the overfitting, vanishing gradient,
and amplification effects. Figure 6 highlights the computational loss of the AD detection
models. The proposed model produced a minimal loss compared to the existing models.



Appl. Sci. 2024, 14, 3879 9 of 15

Table 3. Outcomes of Performance Validation.

Classes Accuracy Specificity Kappa Precision Recall F1-Score

Mild 99.8 99.9 97.5 99.3 99.5 99.4

Moderate 99.9 99.8 96.8 98.6 99.4 99.0

Normal 99.6 100 97.3 99.3 99.5 99.4

Very mild 99.8 99.8 97.9 99.5 99.6 99.5
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Table 4 presented that the proposed model required a few parameters and FLOPs to
deliver a remarkable outcome compared to the existing backbones. The findings indicated
that the model can be implemented in a resource-constrained healthcare environment. The
BOHB algorithm has supported the proposed model in maintaining a trade-off between
high generalization accuracy and limited computational resources.
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Table 4. Computational Configurations.

Model Parameters
(in Millions (m))

FLOPs
(in Millions (m))

Testing Time
(Seconds)

Proposed Model 27 42 1.02

EfficientNet B7 39 53 2.15

SqueezeNet V1.1 46 59 1.23

MobileNet V3 47 61 2.08

SWIN Transformer 52 59 1.36

LeViT 37 45 1.56

Table 5 highlights the findings of the reliability and consistency analysis. The proposed
model has achieved excellent AUROC and AUPRC, indicating high discrimination in dis-
tinguishing the multiple classes of AD. High AUROC and AUPRC highlight the reliability
of the proposed AD detection model. The proposed model achieved an exceptional SD
and CI, indicating a reliable and consistent outcome. In addition, a smaller SD shows that
the model’s performance is consistent across diverse data points. Clinicians can benefit
from the model and reduce unnecessary medical interventions. The recommended feature
extraction approach has produced highly discriminative features by capturing subtle pat-
terns associated with AD. The suggested BOHB-based hyperparameter tuning has selected
appropriate DXB parameters to prevent overfitting and enhance the model’s robustness.

Table 5. Reliability and Consistency Analysis.

Model AUROC AUPRC SD CI

Proposed Model 0.99 0.97 0.0004 [95.8–96.8]

EfficientNet B7 0.91 0.93 0.0005 [95.1–97.5]

SqueezeNet V1.1 0.89 0.91 0.0007 [94.8–95.9]

MobileNet V3 0.85 0.86 0.0011 [96.1–97.7]

SWIN Transformer 0.91 0.90 0.0006 [95.7–96.9]

LeViT 0.92 0.91 0.0007 [96.1–96.9]

Table 6 presents the performance of the AD detection models. The utilization of
improved LeViT enhances the proposed model’s ability to detect long-range dependencies
and spatial relationships associated with AD. The scaling coefficient of the EfficientNet
B7 model enables the model to handle inherent complexities and variations in the MRI
image resolutions.

Table 6. Findings of Comparative Analysis.

Model Accuracy Specificity Sensitivity AUROC AUPRC

Proposed Model 99.8 99.8 99.4 0.99 0.97

Raees & Thomas (2021) [35] 90.1 88.7 87.6 0.84 0.81

Mamun et al. (2022) [36] 97.8 95.8 96.1 0.91 0.90

Helaly et al. (2022) [37] 97.1 92.4 91.5 0.90 0.91

El-Latif et al. (2023) [39] 95.9 91.5 92.3 0.91 0.88

Liu et al. (2022) [38] 86.1 78.1 80.2 0.85 0.83
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4. Discussions

In this study, the author introduced an EfficientNet B7 and LeViT-based feature fusion
technique for extracting key features from MRI images. The EfficientNet B7 model was
improved by integrating the attention mechanism. In addition, the author trained the
EfficientNet B7 model using mixed-precision training to reduce the computational cost. A
fine-tuned DXB model was used to detect AD using the extracted features. The model was
trained and tested using the OASIS Alzheimer’s dataset. A data augmentation technique
was employed in order to provide adequate training to the model to learn intricate patterns
of AD. The author generalized the model using the Alzheimer’s dataset.

Table 3 highlights the performance of the proposed AD detection model. The model
produced an outstanding performance by achieving an accuracy of 98.9% and specificity
of 98.7%. Tables 4 and 5 reveal the findings of the comparative analysis using the existing
backbones. Table 6 outlines the findings of the existing AD detection models. The proposed
model has outperformed the existing AD detection models. It required less computational
power to identify AD. The recommended feature fusion technique has supported the
proposed model in delivering an optimal outcome. In addition, the suggested BOHB
optimization has fine-tuned the parameters of the DXB model to make an effective decision
with limited resources. The proposed model demonstrated remarkable performance with
limited computational costs. Models with exceptional AUROC and AUPRC can assist
healthcare professionals in diagnostic interpretation and treatment options.

The proposed AD detection model can empower clinicians to make effective decisions
and offer personalized care to individuals. It holds promise for improving patient outcomes
and advancing the understanding of AD symptoms in the earlier stages. By integrating
computational approaches with clinical practice, this study enhanced AD detection using
MRI images. The proposed model’s accuracy and efficiency have significant clinical impli-
cations. Effective AD detection enables physicians to diagnose, schedule, and track disease
development. Reliable diagnostic techniques and timely intervention can enhance patient
outcomes and quality of life. Moreover, scientific communities may benefit from the study
findings to extend the research in medical imaging analysis and DL methods.

The author trained the proposed model using the OASIS dataset that covers the MRI
images with biomarkers, including an individual’s age, sex, cognitive score, and diagnosis
status. Researchers can gain insights into the underlying AD pathology and build effective
diagnostic and therapeutic strategies. The proposed model allows researchers to identify
critical biomarkers, including brain atrophy, cortical thickness changes, hippocampus
alterations, white matter integrity alterations, and abnormalities in specific brain regions.
Integrating SHAP values facilitates healthcare professionals to identify the significance of
MRI biomarkers (features) associated with AD. The proposed model assigns a positive and
negative SHAP value to each feature. Healthcare professionals can use SHAP values to
understand the importance of features in AD prediction. For instance, a SHAP value of 0.7
related to brain atrophy feature indicates that higher activation in the brain atrophy region
is associated with AD prediction. In contrast, a negative SHAP value is associated with a
decreased likelihood of AD.

Raees and Thomas (2021) [35] employed AlexNet, Visual Geometry Group (VGG)-16,
and ResNet-50 to extract features from MRI images. They used a Support Vector Machine to
predict AD. The pre-trained CNN models may produce biased predictions, leading to false
positives. The limited generalization ability has reduced the model’s performance in the
context of AD prediction. The class imbalances have reduced the Support Vector Machine
model’s capability of detecting AD. In addition, the lack of interpretability may cause chal-
lenges to healthcare professionals in understanding the results. The proposed AD detection
model integrated the SHAP values in order to provide the results with interpretability.
With the recommended feature extraction, it generated an exceptional outcome.

Mamun et al. (2022) [36] employed ResNet-101, DenseNet-121, and VGG-16 models
to detect AD. These models achieved an average accuracy of 97.8%. VGG-16 required
parameters of 138 M to generate the outcome, leading to high computational cost. It is less
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expensive compared to the proposed AD model. ResNet-101 architecture was complex,
resulting in high training time. It required additional computational power due to the
residual connections. DenseNet-121 model required a substantial memory during the
training phase. The dense connectivity pattern has reduced the ability to find AD patterns
compared to the proposed model.

Helaly et al. (2022) [37] used VGG-10 to classify the AD classes using MRI images. They
fine-tuned VGG-19’s performance to improve the prediction accuracy. The fixed architec-
ture of the VGG-19 has reduced the model’s performance. The vanishing gradient problem
has affected the model’s learning ability. The depth and complexity enabled the model to
produce results with high computational cost. In addition, VGG-19 demanded substantial
memory to store the intermediate results. In contrast, the proposed AD detection model
has employed mixed-precision training to reduce the computational power. Moreover, the
self-attention mechanism has supported the proposed model’s remarkable outcome.

Liu et al. (2022) [38] used free surfer segmentation to locate AD patterns. They
constructed a gradient-boosting classifier for detecting AD statuses. The processing time
of free surfer segmentation may vary depending on the hardware specification. The
limited spatial resolutions of MRI have reduced the performance of the model. In addition,
augmented samples of 3D MRI were complex, limiting the effectiveness of the AD detection
model. In contrast, the proposed AD model combined LeViT and EfficientNet B7 to improve
prediction accuracy by producing complex AD patterns.

EL-Latif et al. (2023) [39] constructed a shallow CNN model to classify the AD
types. They employed 2D CNN for multi-class classification. The model comprised
seven convolutional layers trained using the weights of the pre-trained model. It required
extensive image pre-processing in order to maintain a considerable performance. The lack
of generalization has reduced the model’s prediction accuracy. The model’s performance
was low compared to the proposed model.

The author encountered challenges in managing and optimizing the feature extraction
processes. The high-dimensional and heterogeneous MRI images caused challenges in
extracting intricate AD patterns. However, the EfficientNet B7 and LeViT backbones
were fine-tuned to overcome the image complexities. The high risk of overfitting due
to integrating LeViT and EfficientNet B7 models was reduced using regularization and
effective data augmentation techniques. The authors applied the mixed-precision training
strategy to minimize the computational costs for the feature extraction.

The proposed AD detection model was generalized on two datasets. A rigorous valida-
tion and generalization test is essential in order to ensure the proposed model’s robustness
and reliability across diverse populations. It can improve the model’s trustworthiness in a
real-time environment. The integration of the proposed model into the clinical workflow
may demand substantial validation, standardization, and flexible user interfaces. The
variations in MRI images may influence the model’s robustness and generalization. Contin-
uous monitoring and updating are essential in order to adapt to technical advancements
and clinical guidelines. AD detection is challenging and requires coordination between
computer scientists, neuroscientists, radiologists, and medical professionals. To enhance
the model’s diagnostic accuracy, multiple data modalities, including PET, genetic infor-
mation, and cerebrospinal fluid biomarkers can be explored. Investigating advanced data
augmentation techniques can enhance the model’s robustness to variations in the image
quality. The proposed AD prediction models can be improved through unique differences
in risk factors, disease progression, and symptom presentation by incorporating language
abilities, societal impact, and cognitive abilities as predictor variables. Researchers and
clinicians can improve AD prediction, diagnosis, and treatment by combining these factors.

5. Conclusions

The study presented a novel approach, integrating the strengths of LeViT, EfficientNet
B7, and the DXB model with the BOHB algorithm to identify different types of AD using
MRI images. The proposed model achieved a remarkable accuracy of 99.8% and specificity
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of 99.8% with limited computational resources. The improved LeViT and EfficientNet B7
with attention mechanisms have produced critical features of AD. The BOHB algorithm
has strengthened the DXB model to deliver a superior generalization capability compared
to the existing models. The findings indicate that the proposed model can be deployed
in healthcare and rehabilitation centers to diagnose AD. The lightweight nature of the
proposed model can reduce the complexities in the model implementation. However, the
author encountered challenges integrating STN with LeViT and fine-tuning the DXB model
using the BOHB algorithm. Integrating multimodal data sources, including PET and genetic
data, can unveil novel biomarkers of AD. In addition, enhancing the model’s interpretability
can foster trust and understanding among clinicians and individuals with AD. Advanced
data augmentation techniques can improve the proposed model’s generalization capability.
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