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Abstract: Shadows in hyperspectral images lead to reduced spectral intensity and changes in spectral
characteristics, significantly hindering analysis and applications. However, current shadow com-
pensation methods face the issue of nonlinear attenuation at different wavelengths and unnatural
transitions at the shadow boundary. To address these challenges, we propose a two-stage shadow
compensation method based on multi-exposure fusion and edge fusion. Initially, shadow regions
are identified through color space conversion and an adaptive threshold. The first stage utilizes
multi-exposure, generating a series of exposure images through adaptive exposure coefficients that
reflect spatial shadow intensity variations. Fusion weights for exposure images are determined based
on exposure, contrast, and spectral variance. Then, the exposure sequence and fusion weights are
constructed as Laplacian pyramids and Gaussian pyramids, respectively, to obtain a weighted fused
exposure sequence. In the second stage, the previously identified shadow regions are smoothly
reintegrated into the original image using edge fusion based on the p-Laplacian operator. To further
validate the effectiveness and spectral fidelity of our method, we introduce a new hyperspectral
image dataset. Experimental results on the public dataset and proposed dataset demonstrate that our
method surpasses other mainstream shadow compensation methods.

Keywords: hyperspectral images; shadow compensation; exposure fusion; edge fusion; p-Laplacian

1. Introduction

Hyperspectral imaging is a sophisticated imaging technology [1] that collects informa-
tion from hundreds of contiguous spectral bands across the spectrum, including ultraviolet,
visible, and infrared light. Each pixel in hyperspectral images contains complete spectral
information, essentially providing a unique spectral curve for materials present in the
scene [2]. The ability of hyperspectral imaging to provide detailed spectral characteristics
of different materials enables its wide application in fields such as environmental moni-
toring [3], agriculture [4], mineralogy [5], and surveillance [6]. Shadows in hyperspectral
images significantly reduce the spectral intensity of materials and change their spectral
characteristics [7]. The high spatial resolution of hyperspectral images leads to complex
material compositions and a blurred shadow boundary [8]. To address these issues, current
shadow processing methods generally include two stages: accurate shadow detection and
effective shadow compensation.

Hyperspectral shadow detection requires accurate identification of shadow areas.
Fredembach et al. [9] distinguished between shadowed and non-shadowed regions by
analyzing the darkness in visible and near-infrared (NIR) spectra. Richter et al. [10] used
spectral data from NIR and short-wave infrared bands and used covariance matrices and
matched filters for detection to distinguish shadowed from non-shadowed areas. This
approach involves generating a shadow function and identifying core shadow regions
through histogram thresholding. Yet, the limitation of these approaches often lies in the
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incorrect identification of environmental elements [11], such as the confusion between
sunlit dark surfaces and shadows, or mistaking shadowed bright areas for sunlit ones.
Furthermore, due to the gradual reduction of shadow components in the transition areas
between shadowed and non-shadowed surfaces, it is not accurate to simply classify them as
shadowed or non-shadowed. Zhang et al. [12] utilized the Inner–Outer Outline Profile Line
(IOOPL) method, which extends analysis both inward and outward from shadow edges,
aiding in the precise delineation of shadow boundaries, particularly in transitional areas.
Wang et al. [13] effectively handled the transition between shadowed and non-shadowed
areas in high-resolution remote sensing images using a matting method. By minimizing the
energy function that utilizes relationships between local pixels, this method provides the
shadow probability for each pixel, ensuring smooth transitions at shadow edges. However,
even if the shadow edges are meticulously processed pixel by pixel, existing methods still
cannot handle transition areas well [14].

Hyperspectral shadow compensation is aimed at addressing the spectral attenua-
tion and distortion caused by shadows to restore the spectral characteristics of material
under well-lit conditions. Zhao et al. [15] utilized nonlinear unmixing to solve the non-
linear spectral shifts induced by shadows. They achieved this by extracting spectra from
both shadowed and non-shadowed areas and using a nonlinear model to evaluate pixel
abundance, then reconstructing pixels in shadowed regions. Zhao et al. [16] developed
a network based on the CycleGAN (Cycle-Consistent Generative Adversarial Network),
named SC-CycleGAN, eliminating the need for paired training data and shadow detection.
The network, comprising two generators and two discriminators, learns to map between
shadowed and non-shadowed domains, effectively compensating shadows while preserv-
ing the integrity of non-shadowed areas. Although these methods restore the spectra of
materials, they overlook the spatial details of the surface. Duan et al. [8] compensated for
shadows by adjusting the spectral intensity of the image, thereby maintaining consistency
in spatial and visual details before and after processing. However, a single adjustment pa-
rameter cannot solve the problem of nonlinear spectral attenuation caused by shadows. The
limitations of hyperspectral shadow compensation methods lie in the fact that model-based
methods require assumptions about the interaction between ground objects and spectra.
The generative deep learning methods are not suitable for hyperspectral data with high
spatial resolution, which cannot maintain spatial details well [17,18]. Moreover, current
methods cannot effectively address the issue of nonlinear spectral attenuation caused by
shadows, and lack consideration for the transition regions at the edges of shadows.

In this work, we propose an adaptive shadow compensation method in hyperspectral
images via multi-exposure fusion and edge fusion. Shadow detection is performed by
obtaining shadow feature maps through color space conversion and applying adaptive
threshold segmentation to identify shadow regions. In the first stage of shadow compen-
sation, due to the spatial changes in shadow intensity, we adaptively compute exposure
coefficients by contrasting spectral reflectance under shadowed and non-shadowed condi-
tions. Fusion weights are derived from single-channel exposure, contrast, and inter-channel
spectral variances, while the inter-channel spectral variances can effectively reduce the
nonlinear attenuation caused by shadows. These weights facilitate the merging of Lapla-
cian and Gaussian pyramids, which are constructed from exposure sequences and fusion
weights, respectively. In the second stage, smooth transitions between shadowed and
non-shadowed areas are achieved by using edge fusion based on the p-Laplacian operator.
Specifically, the p-Laplacian operator is obtained by calculating the gradient of the image,
and pixel-wise fusion is performed based on the confidence of edge pixels. It resolves the
edge spectral distortions caused by variations in shadow components at the boundary.
Additionally, we introduce a hyperspectral image dataset to evaluate spectral fidelity after
shadow compensation and validate our method using the new dataset. In summary, the
primary contributions of this work can be concluded as follows:

1. We introduce a shadow compensation method for hyperspectral images utilizing
multi-exposure fusion. This method adaptively computes exposure coefficients and
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effectively merges exposure sequences by employing spectral variance as the fusion
weight, thus mitigating nonlinear attenuation in shadow regions.

2. We propose an edge fusion method using the p-Laplacian operator to achieve smooth
transitions and seamless merging between shadowed and non-shadowed areas.

3. To address the issue that existing datasets cannot evaluate spectral fidelity after
shadow compensation, we develop a hyperspectral image dataset with a uniform
background to validate different methods using spectral similarity metrics.

4. Experimental results from both the public and proposed dataset demonstrate that our
method can effectively compensate shadows, improving classification performance in
hyperspectral images.

2. Related Work

In recent decades, shadow detection and compensation techniques in hyperspectral
images have been widely researched. Shadow detection methods are categorized into
property-based, model-based, and machine-learning methods. Shadow compensation
mainly employs methods based on physical models and deep learning methods.

2.1. Shadow Detection

Property-based methods do not require any prior knowledge and directly extract
features that can recognize shadows from image data. Arévalo et al. [19] utilized a region-
growing process in specific color space and assessed pixel saturation, intensity, and edge
gradients to detect shadows. Tian et al. [20] developed a shadow detection method using the
Tricolor Attenuation Model (TAM) for single outdoor images. The method employs Planck’s
blackbody irradiance theory to estimate the spectral power distributions of daylight and
skylight, allowing shadows to be detected without prior knowledge. Huang et al. [21]
introduced a model that identifies shadows based on their high hue values compared to
those of non-shadowed areas. This method utilizes a thresholding strategy within the hue,
saturation, and intensity (HSI) color space to accurately differentiate shadowed regions
from their surroundings. Similarly, Tsai et al. [22] and Zhang et al. [12] provided a simple
and effective approach for extracting shadow features by utilizing shadow attributes in
invariant color spaces.

Model-based methods depend on prior knowledge, such as atmospheric lighting
conditions and radiation, to simulate the physical interactions between light and the Earth’s
surface and atmosphere. Tolt et al. [23] used a four-step shadow detection process, which
included using the Digital Surface Model (DSM) for initial shadow estimation, training
a supervised classifier to identify shadow regions, using the support vector machine
(SVM) for shadow detection, and refining the classification results through post-processing.
Li et al. [24] introduced a shadow detection approach that merges photogrammetry with
image analysis, using shadow simulation via DSM and sun position, alongside ray tracing
and histogram-based segmentation to accurately identify shadows.

Machine learning includes unsupervised learning to discover data patterns and super-
vised learning using labeled samples for prediction. Martel-Brisson et al. [25] developed a
dynamic shadow detection method using Gaussian Mixture Models (GMM) for identifica-
tion. This method utilizes color space conversion for shadow differentiation and minimizes
segmentation errors and false positives. Wu et al. [26] used a Bayesian framework to extract
shadows from a single image. By using Poisson’s equation and Bayesian optimization, this
method accurately distinguishes between shadowed and non-shadowed regions.

In summary, the features extracted by property-based methods are insufficient to
characterize shadows. Model-based methods require assumptions about the interaction
between light and matter, combined with prior knowledge [27] to identify shadows, which
does not apply to complex scenes [11,28]. Machine learning-based methods require a large
amount of data, while hyperspectral data collection is difficult, and labeled data are limited.
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2.2. Shadow Compensation

Physical models-based shadow compensation methods rely on radiometric measure-
ments and geometric information. These methods compensate for the spectral quality
of shadows by analyzing the basic principle of shadow formation. Liu et al. [29] used
spectral decomposition to compensate for shadows. This method optimizes the linear
mixture model to better distinguish and compensate for shadow regions. Zhang et al. [30]
proposed a method to compensate for shadows in hyperspectral images through nonlin-
ear spectral decomposition, which distinguishes between non-shadowed and shadowed
endmembers and uses weighted non-shadowed spectra to compensate for shadow spectra.
Yamazaki et al. [31] developed a shadow correction method that adjusts radiance values
based on variations in sunlight strength and wavelength. This method calculates the ra-
diance ratio between non-shadowed and shadowed areas, applying linear regression to
compensate for the radiance of shadowed pixels across different spectral bands. Finlayson
et al. [32] introduced a method for shadow compensation, progressing from a 1-D illumi-
nant invariant representation to a full-color 3-D image. This process includes shadow edge
recognition and repair, effectively compensating for shadows while preserving texture details.

Deep learning methods extract shadow features from large datasets, and the trained
model effectively preserves the spectral features of materials. Windrim et al. [17] developed
a method to generate shadow-invariant hyperspectral image features using deep learning
and physics-based illumination modeling, eliminating the need for labeled data or extra
sensors. Zhao et al. [16] introduced an unsupervised method for shadow compensation in
hyperspectral images, effectively transforming shadowed regions to non-shadowed areas
without the need for paired samples or prior shadow detection.

Most of the existing hyperspectral shadow compensation methods are based on
physical models [33]. This is because deep learning-based methods require a large amount
of training data [34,35], and hyperspectral datasets are generally collected in a single
pass, without shadow-free reference data, making them difficult to train. The methods of
Friman et al. [36] and Uezato et al. [37] inspire us to compensate for shadow spectra while
maintaining the original ground material details when constructing physical models.

3. Method
3.1. Overall Architecture

The proposed adaptive shadow compensation method involving multi-exposure fu-
sion and edge fusion in hyperspectral images, shown in Figure 1, consists of shadow
detection and two-stage shadow compensation. The process of shadow detection is de-
picted in Figure 1a. First, the RGB channels from the hyperspectral image are extracted.
Next, a conversion to the HSI color space is carried out, followed by utilizing differences
in hue and intensity values to obtain a shadow feature map. Finally, the shadow mask
is adaptively obtained using the Otsu threshold segmentation method. The process for
spectral compensation of shadow areas using the multi-exposure fusion method is de-
picted in Figure 1b, which utilizes the shadow detection results combined with spectral
intensity to identify the direction of shadow component attenuation, which contributes
to determining the coefficients to obtain an exposure sequence. For each exposure image,
the fusion weight is composed of the exposure, contrast, and spectral variance. Fusion
weights are constructed into the Gaussian pyramid to perform weighted averaging on the
Laplacian pyramid of exposure images, and this is combined with using shadow detection
results to obtain the shadow-compensated image. The process of the edge fusion method is
depicted in Figure 1c. The shadow edge mask is generated based on the detection result. By
iteratively applying Laplacian filters, edge pixels are continuously selected for processing.
The obtained edge pixels are processed according to their priority, which is composed of
confidence and data items, where the data item refers to the edge feature map obtained
by applying the p-Laplace operator to the original image. To process each pixel, we select
the best-matching pixel from a fixed-size patch centered on that pixel to perform spectral
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correction on that pixel. After processing each pixel in the shadow edge mask, the final
shadow compensation image is obtained.

R Channel: 29

G Channel: 17

B Channel:  8

Color Space Conversion

Hue Intensity

Shadow Feature

Otsu

Shadow Mask

(a) Flowchart of shadow detection using color space conversion and Otsu threshold segmentation.

Hyperspectral Image

Shadow Mask

Exposure Sequence

Laplacian
Pyramid

Generation

Fusion
Weights

Gaussian
Pyramid

Generation

Exposure Contrast Spectral Variance

Exposure k
Exposure 2

Exposure 1

Exposure Fusion Output

: Pixel-wise Multiplication
: Pixel-wise Addition

Laplacian Pyramid Inversion

Shadow Attenuation
Direction

(b) Flowchart for adaptive multi-exposure fusion based on spectral reflectance differences.
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(c) Flowchart for shadow edge fusion based on the p-Laplacian operator.

Figure 1. Overall flowchart of shadow detection and compensation in hyperspectral image.
(a) Shadow detection. (b) Shadow compensation stage one: multi-exposure fusion. (c) Shadow
compensation stage two: edge fusion.
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3.2. Shadow Detection

Previous research [22] has demonstrated that shadowed regions in hyperspectral
images often have characteristics distinct from non-shadowed areas, such as reduced
intensity and increased hue values. In this work, we utilize the RGB channels selected
from the original hyperspectral image and apply an existing color space transformation
method [38] for shadow region identification. This process involves the extraction of RGB
channels and converses into the HSI color space. Subsequently, a shadow feature map
is generated

F(x, y) =
H(x, y)
I(x, y)

(1)

where F(x, y) represents the shadow feature for pixel (x, y) in the HSI color space. H(x, y)
and I(x, y) represent the hue and intensity values for the pixel. Subsequently, a binary
detection map is derived by applying a threshold to the feature image

A(x, y) =

{
1, if F(x, y) > threshold
0, Otherwise

(2)

where the threshold is computed by Otsu’s algorithm [39]. Due to isolated pixels caused by
threshold segmentation, image morphology methods are utilized to process these pixels,
resulting in the final shadow detection map A.

3.3. Shadow Compensation
3.3.1. Multi-Exposure Fusion

Based on the shadow detection result, the shadowed and non-shadowed areas can be
represented as Rs and Rns, respectively. By calculating the average spectral values of the
two areas, we obtain the ratio of spectral reflectance ρ, which serves as a basic parameter for
exposure, representing the average spectral reflectance difference between non-shadowed
and shadowed areas. Due to the gradual decrease in shadow components at the edges of
the shadowed area, when generating exposure sequences, different exposure coefficients
are adaptively generated by considering the spatial differences of shadow components. By
performing k times erosion operations on Rs, the average spectrum of each changed region
is represented as τi, i = 1, ..., k, and thus we obtain exposure reference image γ

γ =
ρ

τi
, i = 1, ..., k (3)

The final exposure sequence is created by multiplying elements in the exposure base
map γ with corresponding pixels in the original hyperspectral image I. The exposure
sequence at stage k is represented as

Ik = γk · I (4)

After obtaining the exposure sequence Ik, the shadowed areas can be compensated by
weighting these sequences. The weights are composed of the exposure, contrast, and spec-
tral variance of each exposure sequence. The exposure Ek(x, y) is calculated by applying a
Gaussian function to each spectral band

Ek(x, y) = exp

(
− (Ik(x, y)−µ0)

2

2σ2
0

)
(5)

where (x, y) denotes the pixel location, µ0 is 0.5, and σ0 is 0.2. The contrast Ck(x, y) can
be expressed as the absolute value of the output by applying a Laplacian filter to each
spectral band

Ck(x, y) = |LFk(x, y)| (6)
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where LFk(x, y) is the result of applying the Laplacian filter to the image Ik at the pixel
coordinates (x, y). Spectral variance Vk(x, y) is used to quantify the spectral intensity
variation of each pixel

Vk(x, y) =

√
1
n

n

∑
i=1

(Ik,bi
(x, y)−µ)2 (7)

where Ik,bi
(x, y) represents the value at pixel coordinates (x, y) for the i-th band, and n is

the total number of bands considered. Considering the correlation between bands, we
assign higher weights to bands with large variations in the spectral dimension based on
spectral variance. The final calculation formula for the weights is

Wk = Ck · Ek · Vk. (8)

After normalization, Ŵk is obtained

Ŵk(x, y) = [
k

∑
k′=1

Wk′(x, y)]−1Wk(x, y) (9)

Inspired by the work of Mertens et al. [40], we utilize an algorithm that combines
two key components: the Laplacian pyramid, which is constructed based on the exposure
sequence Ik and the Gaussian pyramid, which is constructed based on the weight map Ŵk.
By integrating these elements, we generate a weighted average exposure image within the
framework of a Laplacian pyramid. The formula is

L{IExposure(x, y)}l =
k

∑
k′=1

G{Ŵk′(x, y)}l · L{Ik′(x, y)}l (10)

Applying the inverse Laplacian transform to L{IExposure} yields the shadow-compen
sated image IExposure. Based on the binary shadow detection map A obtained in Section 3.2,
we replace the shadow-compensated areas into the original image I

IOutput1 = A · IExposure + (1−A) · I (11)

3.3.2. Edge Fusion

Directly replacing the compensated shadow areas with the original image can lead
to visible seams at the boundary. Additionally, due to the attenuation of the shadow
component at the edges, the binary shadow detection map cannot fully encompass areas
with fewer shadow components. To address this issue, we propose an edge fusion method
based on the p-Laplacian operator, ensuring a smooth transition between shadowed and
non-shadowed areas and maintaining consistency in spectral characteristics.

To tackle the issue of transitions at the shadow boundary, we use a preprocessing step,
which applies a Gaussian blur to the shadow mask A:

Ablurred = Gσ ∗ A (12)

where Gσ represents a Gaussian filter with a standard deviation of σ, and ∗ denotes the
convolution operation. The input image IInput for the edge fusion method is

IInput = Ablurred · IExposure + (1−Ablurred) · I (13)

The p-Laplacian operator is constructed based on the first-order gradient Ux, Uy and
second-order gradient Uxx, Uxy, Uyx, Uyy of the image.

Uzz =
U2

y · Uxx−2 · Ux · Uy · Uxy + U2
x · Uyy

U2
x + U2

y
(14)
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Unn =
U2

x · Uxx + 2 · Ux · Uy · Uxy + U2
y · Uyy

U2
x + U2

y
(15)

The p-Laplacian operator is expressed as follows

PLop = (
√

U2
x + U2

y)
−0.5 · (Uzz + 0.5 · Unn) (16)

For the input image IInput, the p-Laplacian operator PLop is applied channel-wise,
resulting in the edge feature map. Areas with high values of the edge feature map indicate
rapid changes in spectral values, probably representing regions in which the shadow
boundary is not coherently fused. To identify areas requiring edge fusion, we perform
dilation and erosion operations on the shadow mask A to obtain pixel regions Ap that cover
shadow edges. Subsequently, we execute fusion operations in this area.

First, we need to initialize the confidence of pixels, setting the confidence of pixels
to be processed to 1 and the confidence of pixels that do not require processing to 0. The
initial expression of the confidence term Con f is

Con f (x, y) =

{
1, if (x, y) ∈ Ap

0, Otherwise
(17)

The fusion operation needs to start from the outer edge pixels and gradually progress
towards the center of the area. By applying a 3 × 3 Laplacian filter to Ap, some pixels near
the edge are identified. By comparing the priorities of these pixels, they are selected for
fusion in sequence. The priority of pixels is composed of data item D and confidence item
Con f , where data item D is the value of the corresponding pixel in the edge feature map
generated by the p-Laplacian operator. The expression is as follows

Priority(x, y) = Con f (x, y) · D(x, y) (18)

After identifying the pixel with the highest priority, the best matching pixel is chosen
from a 9 × 9 patch centered around it, based on the input image IInput. This optimal match
takes into account spectral differences and the spatial distance for replacing the pixel with
the highest priority. After updating the pixel, the confidence term Con f and data term D
must also be updated, and the pixel is no longer considered a candidate pixel. To update
the confidence Con f of a given pixel (px, py), we take a patch of 9× 9 centered on this pixel.
We calculate the average confidence of certain pixels in this patch as the new confidence for
(px, py). The pixels used for calculation only include pixels that do not require processing
or have already been processed. The formula is as follows

Con f (px, py) =
∑(x,y)∈Patch(px ,py)

Con f (x, y)

Np
(19)

where Patch(px ,py) represents the set of pixels within a 9× 9 patch centered on pixel (px, py)
that do not require processing or have already been processed, and Np denotes the number
of pixels within this set. The update strategy for the data item D is to directly use the data
item at the matching pixel location.

The iterative process sequentially marks the pixels in the Ap region, producing the
edge fusion result IOutput2. The procedure of the edge fusion algorithm is provided in
pseudocode Algorithm 1.
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Algorithm 1 Edge fusion algorithm

Require: Hyperspectral image IInput, Area to be processed Ap.
Ensure: Edge fusion image IOutput2.

1: Compute IInput gradients Ux, Uy, Uxx, Uxy, Uyx, Uyy.
2: Compute p-Laplacian Operator:
3: Compute Uzz and Unn using gradients, as shown in Equations (14) and (15).
4: Compute PLop from Uzz and Unn, as shown in Equation (16).
5: Initialize Confidence (Con f ) and Data (D) Terms:
6: Set Con f to 1 in Ap and 0 elsewhere, as shown in Equation (17).
7: Set D as the output of applying PLop to IInput.
8: Edge Fusion Process:
9: while Ap contains pixels to process do

10: Identify boundary pixels of Ap by applying a 3 × 3 Laplacian filter.
11: while Boundary pixels unprocessed do
12: Select the highest-priority pixel using Con f and D, as shown in Equation (18).
13: Select the best-matching pixel within a 9 × 9 patch centered around the highest

priority pixel.
14: Update Ap, Con f , D, IInput.
15: end while
16: end while
17: Assign processed IInput to IOutput2.
18: Output: IOutput2.

4. Experiment

In this section, we first introduce the datasets used in our experiments, which in-
clude both the dataset we propose and a public dataset, as well as the evaluation metrics
employed. We then describe the experimental details, which encompass the comparison
methods and the proposed method. Subsequently, we design multiple comparative experi-
ments and utilize downstream classification tasks to validate the performance of different
methods using the support vector machine (SVM [41]). Finally, we discuss the limitations of the
proposed method and then provide ideas for future work through experimental verification.

4.1. Dataset
4.1.1. Airport Dataset

The Airport dataset used in this work is a real airport scene. The spatial resolution
of this dataset is 400 × 400 pixels. The data cover a spectral range from 400 to 950 nm,
with each of the 63 bands having a spectral resolution of 2.34 nm. The Airport dataset
is specifically designed for shadow analysis, which facilitates the evaluation of different
shadow compensation methods. Figure 2 shows the false color image of the Airport dataset,
depicting the airplane and its shadows cast on the ground.

Figure 2. The Airport dataset.

This dataset has a uniform background, and to some extent, the spectrum of the same
material can be considered identical at high spatial resolution. Therefore, this dataset allows
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for the calculation of spectral similarity values between shadowed and non-shadowed
areas, evaluating the spectral fidelity of different shadow compensation methods.

4.1.2. Houston Dataset

The Houston dataset offers a real scene located at the University of Houston campus
and its surrounding urban areas, as illustrated in Figure 3. The data were captured using
the ITRES-CASI 1500 sensor on June 23, 2012, from 17:37:10 to 17:39:50 UTC. The spatial
resolution of the image is 349 × 1905 pixels, presenting large areas of shadow due to cloud
cover. The dataset has a spectral range from 380 nm to 1050 nm, providing 144 bands and a
spectral resolution of up to 4.65 nm. The data were taken from an average altitude of about
1676 m, ensuring a spatial resolution of 2.5 m. This dataset was made available by the 2013
Data Fusion Contest, managed by the IEEE Geoscience and Remote Sensing Society (GRSS),
and includes 15 classes of interest.

(a)

(b)

(c)
Figure 3. The Houston dataset. (a) Hyperspectral image. (b) Classification map. (c) Class name.

4.2. Evaluation Metrics
4.2.1. Classification Evaluation

To evaluate the performance of different shadow compensation results on classification
accuracy, the Overall Accuracy (OA), Average Accuracy (AA), and Kappa are used. OA
refers to the ratio of the number of correctly classified samples to the total number of
samples, and it is the most direct performance metric, representing the ability to classify
correctly. AA is the average value of the accuracy of all categories. It accounts for the
classification accuracy of each category, making it fairer for imbalanced data. The Kappa
is a metric that measures classification accuracy, taking into account the possibility of
random classification. Higher values of OA, AA, and Kappa represent better classification
performance in hyperspectral images. By randomly selecting different training samples for
10 repeated experiments, the average values of OA, AA, and Kappa are obtained, providing
a detailed assessment of the classification result after shadow compensation.
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4.2.2. Spectral Similarity

To quantify the spectral fidelity of shadow compensation methods, three metrics are
employed: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Spectral
Angle Mapper (SAM [42]). MAE measures the average absolute deviation between the
compensated and the original image pixel values. RMSE computes the standard deviation
between the compensated image and the original image. SAM assesses spectral similarity
by computing the angle between the spectral vectors of the compensated image and
the original image. For materials in shadowed conditions, we choose the same in non-
shadowed conditions to calculate metrics.

4.3. Implementation Details

In this work, four mainstream shadow compensation methods are used for comparison
with the proposed method: MSR [43] (Multi-Scale Retinex), SC-CycleGAN [16] (Shadow
Compensation via Cycle-Consistent Adversarial Networks), MF [8] (Multi-exposure Fusion)
and ISR [44] (Interactive Shadow Removal). The MSR processes images with Gaussian blur
and then calculates the logarithmic difference between the original image and the Gaussian
blurred image to obtain the Retinex image. The MSR is achieved by applying multiple σ
values to a single image, where the σ sequences are [10, 15, and 200] for the Airport dataset
and [15, 80, and 200] for the Houston dataset. The SC-CycleGAN model uses the default
parameters such as the learning rate and batch size. The MF employs the exposure settings
provided in the original publication, where the exposure coefficients for the Airport dataset
and the Houston dataset are [0.8, 1, 1.2] and [0.5, 1, 1.5], respectively. The ISR distinguishes
between shadowed and non-shadowed areas through manual annotation, requiring only
the selection of a portion of pixels from both shadowed and non-shadowed areas during
implementation, without strict regulations.

In our method, after threshold segmentation on the shadow feature map, morphologi-
cal operations are required to address isolated pixels and small pixel regions. Specifically,
this is accomplished through basic operations such as dilation, erosion, and removal of
small connected regions. During the exposure fusion stage, the exposure coefficients are
derived from the degree of attenuation at shadow edges. The stages of shadow attenuation
k for the Airport dataset and the Houston dataset are 3 and 4, respectively. In the edge
fusion stage, the area Ap is obtained by expanding p pixels inward and outward from the
shadow edges, with p being 3 for both the Airport and the Houston dataset.

4.4. Results Discussion

The shadow detection results for the Airport and Houston datasets are shown in
Figure 4. By comparing the shadow detection results with the false-color images, it can be
observed that the shadow detection method is effective in identifying shadowed areas.

(a) (b)

Figure 4. The shadow detection results. (a) Airport dataset. (b) Houston dataset.

The results of different shadow compensation methods based on the Airport dataset
are shown in Figure 5. The MSR globally increases spectral intensity to minimize the
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spectral intensity difference between shadowed and non-shadowed areas, but this com-
pensation causes overexposure, distorts spectral features, and blurs the details of ground
objects. The SC-CycleGAN demonstrates strong spectral compensation in shadowed areas.
However, it is extremely reliant on the distribution of training data, which leads to incorrect
reconstruction of spectra for small sample materials and blurred details. The MF relies
entirely on exposure to compensate for shadowed areas and cannot solve the problem of
nonlinear spectral attenuation. Moreover, due to the gradual reduction of shadow compo-
nents near non-shadowed areas, this method has an unnatural transition at the shadow
boundary. ISR introduces spectral distortion in compensating images, which is caused by
the complexity of material composition in high-resolution scenes. In contrast, our method
exhibits superior performance in both spectral similarity and visual reality. This allows it
to avoid issues such as overexposure, blurred details, and unnatural transitions.

(a) (b) *

(c) (d)

(e) (f)

Figure 5. Spectral reflectance comparison before and after shadow compensation on the Airport
dataset. (a) Original image; (b–f) results from MSR [43], SC-CycleGAN [16], MF [8], ISR [44], and
our method. The red and blue dots represent the selected pixels in the shadowed and non-shadowed
areas, respectively. * The spectral values of MSR are divided by 5 to facilitate alignment with the
coordinate axes of other methods.

Table 1 presents the spectral similarity of different compensation methods on the
Airport dataset using MAE, RMSE, and SAM. The spectral compensation effect of materials
in shadowed areas can only be measured based on the spectra of the same material in non-
shadowed areas. For this purpose, 20, 50, and 100 pixels are randomly selected from the
shadowed and non-shadowed areas to calculate these metrics and their average values. Our
method achieves the best values across all metrics, demonstrating its superior performance
in shadow compensation on real-world hyperspectral imagery.
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Figure 6 displays the result of different shadow compensation methods on the Houston
dataset. The MSR increases the overall spectral intensity, to some extent compensating for
material details in shadowed areas, thereby diminishing the difference between shadowed
and non-shadowed regions. The SC-CycleGAN alters the spectral characteristics of different
materials, resulting in unreasonable visual effects. Although MF preserves the original
features of ground object details, the compensation area still exhibits a certain degree of
spectral distortion overall. The ISR causes significant spectral distortion, which is primarily
attributed to the diversity and complexity of materials in the scene. In contrast, our method
effectively compensates shadowed areas without introducing spectral distortion, and the
overall false-color image shows consistent and reasonable colors. Unlike MF, our fusion
method takes into account spectral variance to better capture spectral features. Figure 7
demonstrates a detailed comparison of shadow compensation in different channels of
the Houston dataset, and our method demonstrates superior visual results. In channel
108, for example, the distinction between shadowed and non-shadowed areas is nearly
imperceptible, indicating that the proposed method effectively maintains spectral continuity
and visual consistency in hyperspectral images.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Shadow compensation results of different methods on the Houston dataset. (a) Original
image; (b–f) results from MSR [43], SC-CycleGAN [16], MF [8], ISR [44], and our method.
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Figure 7. The shadow compensation results for the Houston dataset are demonstrated through
pseudocolor images across various channels (36, 72, 108, and 144). This includes the Original image,
MSR [43], SC-CycleGAN [16], MF [8], ISR [44], and our method.

To further explore the spectral fidelity of shadow compensation methods for different
materials, we analyze the spectral similarity between the shadow materials processed
by different compensation methods and the non-shadow materials in the original image.
Figure 8 shows the spectral similarity metrics between the compensated shadow pixels and
the non-shadowed pixels in the original image of different materials in the Houston dataset.
The computation of the metrics is based on Figures 3b and 4b, where the average spectral
value of all pixels in the same material and state represents the spectrum of the material
in that state. Except for the slightly higher SAM of our method in Figure 8j compared to
the MF method, we achieve the best spectral similarity metrics among all other materials.
Compared with other methods in terms of spectral similarity metrics in different materials,
our method has a more stable spectral fidelity ability.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 8. Compute the spectral fidelity of different materials processed by different compensation
methods on the Houston dataset. (a) Healthy grass. (b) Stressed grass. (c) Trees. (d) Water. (e) Resi-
dential. (f) Commercial. (g) Road. (h) Highway. (i) Railway. (j) Parking lot 2. The values of SAM are
divided by 4 for display purposes. Lower MAE, RMSE, and SAM indicate better performance.

Shadow compensation, as an upstream task, aims to improve the quality of hyperspec-
tral images and facilitate the development of higher-level visual analysis of downstream
tasks. To demonstrate the spectral fidelity of our method in both non-shadowed and
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shadowed regions, we validate it using an improved downstream classification task. We
randomly select 15% of samples from each category located in the non-shadowed area of the
original image to form a training set. The SVM method is utilized to test samples in shad-
owed and non-shadowed areas separately. Table 2 shows the classification performance of
the SVM on the original image and the images processed by MSR, SC-CycleGAN, MF, ISR,
and our method, separately, including the classification performance of non-shadowed ar-
eas and shadowed areas. The MSR causes severe spectral distortion in both non-shadowed
and shadowed areas. SC-CycleGAN, MF, and our method avoid spectral distortion in
non-shadowed areas. In shadowed areas, the classification results of the original image are
not ideal. Compared with other methods, the shadow categories processed by our method
perform the best in terms of classification performance. Other methods performed poorly,
especially in the challenging ‘Water’ category, while our method improves the classification
performance. Similarly, in the categories of ‘Residential’, ‘Road’, and ‘Railway’, our method
significantly improves the classification accuracy in comparison to other methods. Com-
pared with the original image and the suboptimal method, our method improves the OA of
the shadowed area by 210.14% and 14%, respectively. Overall, our method can effectively
compensate for shadowed areas while ensuring that non-shadowed areas are not distorted.
This is precisely because the spectral characteristics of the shadowed materials processed
by our method are more similar to those of well-lit materials, which contributes to a better
classification performance and proves the effectiveness of our method.

Table 1. Spectral similarity of different compensation methods on the Airport dataset.

Metrics Original MSR SC-Cyc. MF ISR Ours

MAE (20 px) 0.0344 0.1299 0.0114 0.0150 0.0113 0.0082
RMSE (20 px) 0.0382 0.1383 0.0119 0.0159 0.0131 0.0099
SAM (20 px) 0.6867 0.0856 0.0598 0.1789 0.1655 0.0490

MAE (50 px) 0.0333 0.1362 0.0089 0.0137 0.0103 0.0077
RMSE (50 px) 0.0369 0.1462 0.0094 0.0146 0.0122 0.0094
SAM (50 px) 0.6702 0.0984 0.0513 0.1725 0.1615 0.0500

MAE (100 px) 0.0346 0.1394 0.0101 0.0140 0.0102 0.0078
RMSE (100 px) 0.0383 0.1497 0.0106 0.0149 0.0121 0.0095
SAM (100 px) 0.6760 0.0988 0.0550 0.1749 0.1628 0.0511

Lower MAE, RMSE, and SAM mean better performance, with optimal values in bold.

To deeply analyze the reasons for the superiority of our shadow compensation method
in solving the nonlinear spectral attenuation problem, we conducted ablation experiments
on the fusion weights in the multi-exposure fusion method, as shown in Figure 9. Two
pixels located at (1729, 76) and (1738, 68) are selected to represent the same material in
shadowed and non-shadowed states, respectively. A portion of the image from column
1557 to column 1905 in the Houston dataset is cropped for display, with the two pixel
positions highlighted with a blue dot and a red dot, respectively. As shown in Figure 9a,c,f,
without considering spectral variance, the spectral curves of the compensated shadowed
areas are only linearly enhanced compared to the original spectra. This enhancement
ignores the spectral characteristics of materials at some peaks. In fact, for materials affected
by shadows, nonlinear attenuation is more severe in spectral bands with high values
and large fluctuations. The experimental results using spectral variance indicate that the
spectral curve of the material in the compensated shadowed area more accurately reflects
the spectral characteristics of the materials, especially at several peaks with severe spectral
attenuation. In summary, our compensation method utilizes the correlation between bands
to better address the nonlinear attenuation caused by shadows and restore the spectral
characteristics of the material.
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(a) Contrast (b) Variance

(c) Exposure (d) Contrast, Variance

(e) Variance, Exposure (f) Contrast, Exposure

(g) Contrast, Variance, Exposure

Figure 9. Fusion weight ablation study based on the Houston dataset. (a) Only contrast. (b) Only
variance. (c) Only exposure. (d) Contrast and variance. (e) Variance and exposure. (f) Contrast and
exposure. (g) Contrast, variance, and exposure. The red and blue dots represent the selected pixels in
the non-shadowed and shadowed areas, respectively.

Table 2. Classification accuracy of different methods in both shadowed and non-shadowed states
after training on non-shadowed samples on the Houston dataset.

Accuracies of Non-Shadowed (%) Accuracies of Shadowed (%)
Class Name Origi. MSR SC-Cyc. MF ISR Ours Origi. MSR SC-Cyc. MF ISR Ours

Healthy grass 98.08 0.00 97.75 97.81 97.91 97.86 12.92 0.00 25.28 54.49 16.85 51.12
Stressed grass 98.27 0.00 98.32 98.43 98.38 98.22 18.29 0.00 32.93 54.88 47.56 75.00
Synthetic grass 88.46 0.00 88.49 88.79 88.46 88.03 - - - - - -

Trees 98.12 0.00 97.96 98.37 98.38 98.17 41.13 0.00 42.74 75.00 37.10 67.74
Soil 91.42 0.00 91.46 86.15 85.25 91.82 - - - - - -

Water 98.11 0.00 98.11 97.67 97.67 98.53 12.50 0.00 5.00 2.50 0.00 22.50
Residential 72.73 0.00 72.76 75.27 74.73 71.79 10.00 0.00 16.25 51.25 18.75 71.25
Commercial 55.34 11.19 54.51 55.84 56.14 55.72 53.73 0.00 69.96 71.49 70.61 74.78

Road 67.48 0.00 67.39 66.86 66.69 68.19 8.11 18.92 2.70 29.73 16.22 56.76
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Table 2. Cont.

Accuracies of Non-Shadowed (%) Accuracies of Shadowed (%)
Class Name Origi. MSR SC-Cyc. MF ISR Ours Origi. MSR SC-Cyc. MF ISR Ours

Highway 43.68 0.00 43.34 45.11 43.93 43.55 4.29 0.00 3.07 78.53 6.13 85.28
Railway 60.61 0.00 61.01 53.22 51.34 60.34 3.91 0.00 3.26 47.88 8.14 67.10

Parking lot 1 48.16 0.00 48.17 49.13 47.80 47.88 - - - - - -
Parking lot 2 15.46 0.00 13.20 16.35 17.23 16.35 0.00 5.00 0.00 10.00 5.00 15.00
Tennis court 85.64 0.00 85.19 85.89 85.61 85.08 - - - - - -

Running track 99.10 0.00 99.02 89.97 98.31 99.11 - - - - - -
OA 77.12 5.93 77.05 76.43 75.96 77.09 22.58 0.46 29.27 61.43 31.35 70.03
AA 71.30 6.25 71.18 70.65 70.30 71.32 16.49 2.39 20.12 47.58 22.64 58.65

Kappa 75.22 0.00 75.14 74.47 73.96 75.18 7.38 0.00 15.39 53.86 17.88 64.15
Higher OA, AA, and Kappa values indicate a better performance, with optimal values in bold. ’-’ represents that
there is no such category in the shadowed area.

4.5. Discussion of Limitations and Future Analysis

It is necessary to analyze the limitations of the proposed method, which can provide
ideas for future work. There are two limitations worthy of further discussion. The first
point is that the performance of our detection method is affected by the contextual sensi-
tivity of the background. This is because the inter-class variance between the foreground
and background affects the effective segmentation of Otsu’s method. Inaccurate shadow
detection results lead to subsequent compensation methods being unable to handle missed
and false detection pixels. Therefore, it is necessary to improve the adaptability of shadow
detection methods to background information. The second point is that when process-
ing hyperspectral data with a large amount of information, it is necessary to improve
computational efficiency to promote practical applications. The exposure fusion stage in
the compensation method processes the entire image, but in reality, only the shadowed
areas need to be processed. Excess data calculations reduce efficiency and require further
improvement.

To explore and overcome the limitations of the proposed method, we conduct exper-
imental analysis and improvement with regard to the two points mentioned above. By
cropping non-shadowed areas in the original image, we investigate the impact of contextual
sensitivity of the background on shadow detection performance. Figure 10 shows the false
color images and shadow detection images under different backgrounds based on the
Airport and Houston datasets, indicating that the shadow detection results are sensitive to
changes in the background. To improve the adaptability of the shadow detection method,
we explore Formula (1) in Section 3.2. This formula constructs the shadow feature map,
which is the key to detecting shadows. It is improved as follows

F =
H + α

I + β
· δ (20)

where α, β and δ are fine-tuning parameters. Figure 11 compares the effect of fine-tuning
parameters on the shadow detection result. We use the same fine-tuning parameters
for images in the same dataset, and the detection performance is significantly improved
compared to that achieved without fine-tuning parameters. This indicates that using fine-
tuning parameters can improve the shadow feature map, thereby reducing the limitations of
background contextual sensitivity on the shadow detection method. However, improving
adaptability can lead to a decrease in some detection results. Balancing the adaptability and
detection accuracy of the detection method will be a key research direction in the future.
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(a) (b) (c)

(d)

(e) (f)
Figure 10. The impact of contextual sensitivity of background on shadow detection. Based on
the Airport dataset, the shadow detection result (a) of the original; (b) with the minority of the
background removed; (c) with the majority of the background removed. Based on the Houston
dataset, the shadow detection result (d) of the original; (e) with the minority of background removed;
(f) with the majority of background removed.

By comparing the running time of our method with those of other methods, and
combining the characteristics of our method, we improve the computational efficiency.
Because the shadow area is identified when compensating for shadows in our method,
we can improve the computational efficiency by only compensating for necessary shadow
areas. We optimize the input of the compensation method based on the shadow detection
and optimize the Airport dataset from 400 × 400 to 180 × 185 with (125, 65) as the top left
corner and (305, 250) as the bottom right corner. We also optimize the Houston dataset
from 349 × 1905 to 349 × 800 between columns 985 and 1785. Table 3 shows the runtime
of different methods based on two datasets. Due to SC-CycleGAN being a training-based
deep learning method, its runtime considers the training duration. Our improved method
has improved computational efficiency by 57.56% and 56.8% for the Airport and Houston
datasets, respectively. Compared to the MF method with the highest efficiency before
improvement, it has increased by 38.2% and 41.34%, respectively. With rough optimization
of the input data volume, the computational efficiency has been greatly improved. A
future direction for performance improvement is to fully utilize detection results, avoid
unnecessary resource waste, and improve practical application capabilities.
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(a) α = β = 1, δ = 0.01 (b) α = β = 1, δ = 0.01 (c) α = β = 1, δ = 0.01

(d) α = β = 0, δ = 0.125

(e) α = β = 0, δ = 0.125 (f) α = β = 0, δ = 0.125
Figure 11. The impact of fine-tuning parameters on shadow detection. Based on the Airport dataset,
the change in the shadow detection result (a) of the original; (b) with the minority of the background
removed; (c) with the majority of the background removed. Based on the Houston dataset, the change
in the shadow detection result (d) of the original; (e) with the minority of the background removed;
(f) with the majority of the background removed.

Table 3. The runtime (s) of different methods based on the Airport and Houston datasets.

Datasets MSR SC-Cyc. MF ISR Ours 1 Ours 2

Airport 68.21 2375.14 13.22 921.35 19.25 8.17
Houston 237.31 101,723.52 172.48 6632.19 234.23 101.18

Lower running time, with optimal values in bold. 1 Before improvement. 2 After improvement.

5. Conclusions

In this work, we propose an adaptive shadow compensation method for hyperspectral
images based on multi-exposure fusion and edge fusion. The method converts images
to HSI color space to map shadows based on their unique high hue and low intensity,
then uses an adaptive threshold to identify shadow regions. In the compensation phase,
we use multi-exposure fusion for overall improvement and merge compensated shadows
into the original image through edge fusion, which is guided by shadow detection results.
Exposure coefficients for multi-exposure fusion are adaptively derived from the reflectance
differences between shadowed and non-shadowed areas. Fusion weights consider the
correlation between bands, utilizing spectral variance as the weight to reflect intensity
variations within the spectral neighborhood, which to some extent addresses the issue
of nonlinear attenuation caused by shadows across different bands. Edge fusion uses a
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p-Laplacian operator, based on image gradients, to identify pixel transitions near shadow
edges. It selects optimal pixels for replacement, guided by spectral similarity and spatial
distance, seamlessly merging shadowed and non-shadowed regions. To validate the effec-
tiveness of our method and the spectral fidelity of various approaches, a new hyperspectral
image dataset is proposed. The experimental results indicate that our method has higher
spectral fidelity. Our method demonstrates competitive results in the improved down-
stream classification task. Adaptability and computational efficiency are the focus of our
future work.
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The following abbreviations are used in this manuscript:

NIR Near-infrared
CycleGAN Cycle-Consistent Generative Adversarial Network
IOOPL Inner-Outer Outline Profile Line
SC-CycleGAN Shadow compensation via cycle-consistent adversarial networks
HSI Hue, Saturation, and Intensity
TAM Tricolor Attenuation Model
DSM Digital Surface Model
SVM Support Vector Machine
GMM Gaussian Mixture Models
GRSS IEEE Geoscience and Remote Sensing Society
OA Overall Accuracy
AA Average Accuracy
MAE Mean Absolute Error
RMSE Root Mean Squared Error
SAM Spectral Angle Mapper
MSR Multi-scale Retinex
MF Multi-exposure Fusion
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