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Featured Application: Space target surveillance is a significant part of space defense, and is also
important for maintaining national security. Imaging of the space targets is the direct method used
to realize space target recognition. However, for long-range space targets, such as middle-and-high
altitude Earth satellites and space debris above 10,000 km, the resolution of the imaging system is
required to reach the milliarcsecond (mas) scale to obtain clear images. Because of the limitations
of telescope apertures, it is difficult for traditional wavefront imaging to satisfy this requirement.
In addition, the amplitude interferometer requires high accuracy from the instrument, which
makes it difficult to achieve a long baseline. The proposed ptychographic imaging correlography
removes the need to measure the phase information of the object. The ptychographic phase
retrieval algorithm is applied to restore the phase data to realize target reconstruction. This has
the advantages of low equipment accuracy and insensitivity to atmospheric turbulence. Therefore,
the proposed method in this work has great prospects in long-range imaging systems.

Abstract: Imaging correlography, an effective method for long-distance imaging, recovers an object
using only the knowledge of the Fourier modulus, without needing phase information. It is not
sensitive to atmospheric turbulence or optical imperfections. However, the unreliability of traditional
phase retrieval algorithms in imaging correlography has hindered their development. In this work,
we join imaging correlography and ptychography together to overcome such obstacles. Instead of
detecting the whole object, the object is measured part-by-part with a probe moving in a ptychographic
way. A flexible optimization framework is proposed to reconstruct the object rapidly and reliably
within a few iterations. In addition, novel image space denoising regularization is plugged into the
loss function to reduce the effects of input noise and improve the perceptual quality of the recovered
image. Experiments demonstrate that four-fold resolution gains are achievable for the proposed
imaging method. We can obtain satisfactory results for both visual and quantitative metrics with
one-sixth of the measurements in the conventional imaging correlography. Therefore, the proposed
imaging technique is more suitable for long-range practical applications.

Keywords: ptychography; imaging correlography; computational imaging; phase retrieval; Fourier optics

1. Introduction

The imaging correlography technique was first proposed by Idell and Fienup [1–3]. It can construct
a high-resolution image of a laser-illuminated object from the measurements of backscattered laser
speckle intensity patterns. Imaging correlography is based on the fact that the autocorrelation function
of the object’s brightness distribution can be estimated from the average energy spectrum of the
measured speckle intensity images. Previous work has demonstrated that the Fourier transform of
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the autocorrelation of the object’s brightness function is equal to the squared modulus of the Fourier
transform of the object [4]. If the phase information associated with this Fourier transform can be
retrieved, one can reconstruct the object by inverse Fourier transform of the synthesized Fourier data.
The imaging correlography technique can recover the object using only the knowledge of the Fourier
modulus, without needing phase information. It is insensitive to atmospheric turbulence and the
optical imperfection of the device [5,6]. To obtain a Fourier magnitude estimate that is acceptable
for reconstructing the object, in practical applications a large amount of speckle-intensity images
is required. Moreover, the estimated Fourier modulus is noisy and loses a lot of high-frequency
information, which makes it difficult for the phase retrieval algorithm to converge on the optimal
global value [7,8]. In recent years, Thurin et al. used imaging correlography for high-resolution retinal
imaging to overcome ocular aberrations [9]. Based on the shower curtain effect, Edrei et al. proposed
a novel speckle correlography protocol that is insensitive to turbid medium motions. Additionally,
they extended the correlography technique to transmitting or other nonscattering objects by illuminating
the object with a speckle pattern [10].

Ptychography is a popular phase imaging technique for reconstructing a high-resolution image
of a specimen from a series of diffraction patterns. It could only be applied to crystalline objects
when it was first proposed by Hoppe in the 1970s [11]. After the Wigner distribution deconvolution
method (WDMM) was proposed by Bates and Rodenburg, it could also be used to recover amorphous
objects [12]. A breakthrough in ptychography was achieved in 2004; that is, an iterative algorithm named
the ptychographic iterative engine (PIE) was applied to solve this phase problem [13]. In ptychography,
a light probe is fixed on a translation stage, which can shift laterally with respect to the optical
axis, such that probes at neighboring positions overlap with each other. The far-field diffraction
patterns are recorded at each probe position, and then the object can be reconstructed with an iterative
image reconstruction algorithm. This has been realized with electron beams [14], hard X-rays [15],
and visible light [16]. Compared with other phase imaging techniques, such as interferometers [17]
and digital holography [18], ptychography can obtain high-resolution and large field-of-view (FOV)
images without complex optical systems or precise imaging applications. In the previous microscopic
applications, the imaging targets for ptychography were thin biological samples that naturally
have a smooth phase. However, the imaging samples for long-distance imaging systems are daily
objects with “optically rough” surfaces. The variable height function of the surface introduces
the rapidly changed random phase for the object. Because of the self-interference of coherent light
backscattered from the object’s rough surface, the transmitted field forms as speckle patterns in the
detection plane [19–22]. Holloway et al. realized the reconstruction of optically rough objects with
Fourier ptychography [20,21]. Compared with conventional ptychography techniques, such as PIE,
low-resolution images are measured in the image plane rather than the far-field diffraction patterns.
A previous research studied utilized ptychography with a pseudothermal source [23]. However, their
imaging method requires the detector to measure the speckle patterns within the coherence time of
the intensity fluctuations. The intensity fluctuations for the thermal source are in the order of tens of
femtoseconds, meaning most detectors are not fast enough to record it. Gardner and Li et al. [24,25]
imaged extended objects using the ptychographic speckle correlation method, which is based on
the “memory effect” of speckles [26–28]. This method can realize noninvasive imaging with a single
speckle pattern. However, the illuminated area for each position is chosen to satisfy both the memory
effect range and practical limits of the detector. Therefore, it is more suitable for biomedical and
materials research.

In this work, we join imaging correlography and ptychography together. A practical
implementation of imaging correlography using ptychography is illustrated schematically in Figure 1.
The laser beam passes over a long distance to form an illumination spot of a certain size. Scanning
measurements can be realized by changing the illumination angle of the laser source. Different deflection
angles correspond to different overlapping areas. Here, red circles indicate scanning positions for
ptychographic measurements. The solid black line represents the imaging process for the first position,
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and the dotted blue line represents the imaging process for the second position with the change of
illumination angle. Instead of illuminating the whole object, we measure the object part-by-part in
a ptychographic way. Then, imaging correlography is used to estimate the Fourier modulus of each
part of the object based on the measured far-field speckle patterns. Finally, the phase retrieval algorithm
is applied to reconstruct the object. For Figure 1, the speckle patterns are formed by atmospheric
turbulence. In some cases, the atmospheric turbulence effect is not strong enough to provide sufficient
signal flux at the camera face. The independent patterns of the observed speckle intensity can be
measured by translating the detector or rotating the object [2,3,7,8,29]. These measurements can also
be achieved by directly illuminating the object with the speckle pattern, which is proposed in previous
work [10]. Reconstructing images from astronomical speckle data is analogous to recovering images
from speckle patterns as one rotates the object [8]. In both cases, the recorded speckle data can be
processed to obtain an estimate of the Fourier magnitude of the object. Then, by using a phase retrieval
algorithm, the object can be reconstructed.
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In the proposed imaging method, we make three contributions. Firstly, the correlography and
ptychography are joined together to solve the problem of inaccurate phase recovery in the imaging
correlography. Secondly, the Fourier magnitude is estimated for ptychographic reconstruction using
imaging correlography. Finally, the new initialization method and optimization framework are
employed to the ptychographic imaging correlography. Moreover, a novel image space denoising
regularization is plugged into the loss function to reduce the effects of reconstruction noise and improve
the perceptual quality of the recovered image.

2. Method

2.1. Image Formation Model for Imaging Correlography

Here, we assume that the rough-surfaced object is flood-illuminated with the laser beam.
Each realization of the field emerging from the object’s surface is randomly and coherently dephased,
which can be given by the product of

un(x, y) =
∣∣∣uo(x, y)

∣∣∣exp[ jϕn(x, y)] (1)

where n = 1, 2, . . .N represent the N independent speckle pattern realizations,
∣∣∣uo(x, y)

∣∣∣ is the object’s
field amplitude reflectivity, ϕn(x, y) is the phase of the reflected field associated with height profile of
the object’s random rough surface, and (x, y) are the lateral coordinates in the object plane. The n-th
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intensity measurement In(u, v) of a fully developed laser speckle pattern is recorded by the detectors
in the observation plane.

In(u, v) =
∣∣∣F (un(x, y))

∣∣∣2 (2)

where F denotes the Fourier transform operator and (u, v) denotes the frequency coordinates in the
observation plane. The independent intensity measurements can be realized by rotating the object
slightly. From the previous research [30], the autocorrelation function of the object’s brightness
distribution function Γ(x, y) can be described as

Γ(x, y) =
1
N

N∑
n=1

∣∣∣∣F −1
{
In(u, v) − In

}∣∣∣∣2 (3)

where In is the ensemble (mean) intensity of the n-th speckle intensity patterns, F −1 is the inverse
Fourier transform operator, and N is the total number of speckle patterns. Then, a measure of the
object’s Fourier modulus can be estimated by Fourier transform of the autocorrelation function Γ(x, y),
followed by taking the square root.

U(u, v) =
√
F

{
Γ(x, y)

}
(4)

where U(u, v) denotes the Fourier magnitude of the object’s intensity distribution. Then, a phase
retrieval algorithm is applied to recover the phase associated with the U(u, v). By performing the
inverse Fourier transform on the synthesized Fourier data, people can reconstruct the image of the
object. Figure 2 is the block diagram of the imaging correlography.
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Figure 2. Block diagram of the imaging correlography.

For practical imaging correlography geometries, a single speckle pattern realization (N = 1)
yields a rather noisy estimate of the object’s Fourier magnitude. Therefore, in most cases, a series
of speckle pattern images are required to form a Fourier magnitude estimate that is acceptable for
reconstructing an image of the object. Figure 3a is applied to generate the speckle intensity patterns.
Figure 3b shows the actual autocorrelation function of the original image, and Figure 3c shows the
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actual Fourier magnitude of the original image. Figure 3d–f are estimated autocorrelation functions
Γ(x, y) from 200, 500, and 1000 speckle frames, respectively, and Figure 3g–i are estimated Fourier
magnitudes U(u, v) from 200, 500, and 1000 speckle frames, respectively. Compared with the actual
data and estimated data, it is clear that the autocorrelation function and Fourier magnitude estimated
in this manner are noisy. Especially at the higher spatial frequencies, the noise is pronounced and the
Fourier modulus is weak. With the number of speckle patterns increasing, the apparent noise at higher
spatial frequencies is reduced. It is quite difficult for the iterative phase retrieval algorithm to converge
to the global optimal solution with these noisy estimated Fourier modulus data.Appl. Sci. 2019, 10, x FOR PEER REVIEW  5 of 18 
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2.2. Imaging Correlography with Ptychography

The main problem with imaging correlography is that the estimated power spectrum has a very
low signal-to-noise ratio (SNR) for high spatial frequencies, making the phase recovery inaccurate.
Therefore, the recovered object suffers from low resolution. The ptychographic framework is used to
solve the problem of inaccurate phase recovery when using imaging correlography. The overlapping
region of subapertures can constrain the solution space of the reconstruction procedure. As the
ratio of intensity measurements to unknowns is increased, the likelihood of ambiguous solutions
existing reduces. In this subsection, we show how the ptychographic framework can be adapted to
imaging correlography.

Similar to ptychography, an aperture P(x, y) is introduced to measure the object part-by-part.
Here, the aperture is assumed to be a low pass filter with P(x, y) = 1 within a finite diameter, and is
recentered at m different locations

(
c j(x), c j(y)

)
, ( j = 1, 2, 3 . . .m) in the object domain. The n-th speckle

intensity pattern of the j-th section of the object can be described as



Appl. Sci. 2019, 9, 4377 6 of 18

I j
n(u, v) =

∣∣∣∣F{un(x, y)·P
(
x− c j(x), y− c j(y)

)}∣∣∣∣2 (5)

According to Equation (3), the autocorrelation function Γ j(x, y) of the j-th subobject can be
estimated from the average spectrum of N speckle intensity patterns.

Γ j(x, y) =
1
N

N∑
n=1

|F−1
{I j

n(u, v) − I j
n}|

2
(6)

where I j
n denotes the ensemble (mean) intensity of the n-th observed speckle pattern of the j-th subobject.

Since the Fourier transform of the autocorrelation of the object’s brightness function is equivalent to
the squared modulus of the Fourier transform of the brightness function [4], the Fourier magnitude of
the j-th subobject can be described by

U j(u, v) =
√

F
{
Γ j(x, y)

}
(7)

Note that the estimated U j(u, v) can be treated as the measured intensity pattern in the far field
plane for ptychography. Then, people can reconstruct the object using ptychographic phase retrieval
algorithms. Figure 4 is the block diagram of the imaging correlography with ptychography. Compared
with Figures 2 and 4, the overlap of adjacent sections in the original object is crucial to provide
redundant constraints. It can effectively solve the multiple solution problems and avoid converging to
local optimal solutions for the conventional imaging correlography. Figure 5a is an original image, and
the red circle area is the first scan position ( j = 1). Figure 5b is the far-field diffraction pattern of the
red circle area. It can be regarded as the measured data from conventional ptychography under ideal
conditions. Then, the rapidly changed random numbers (−π,π) are used for the phase of the optical
field to simulate the phase perturbation. Figure 5c shows the recorded far-field diffraction pattern in
this case. Compared with Figure 5b, the measured data in Figure 5c is very noisy. However, we can
re-estimate the far-field diffraction pattern (Figure 5d) from a series of noisy measurements (Figure 5c)
using the imaging correlography method. Figure 5d is the estimated far-field diffraction pattern via
correlography. Figure 5e is the ptychographic reconstruction results of the first scan position with
estimated far-field diffraction patterns. Therefore, one can re-estimate the far-field diffraction pattern
using imaging correlography if the directly measured data are noisy.
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(d) The estimated far-field diffraction pattern via correlography. (e) The ptychographic reconstruction
results of the first scan position with estimated far-field diffraction patterns.

2.3. Optimization Framework

The U j estimated in the above ptychographic imaging correlography manner can only provide
the Fourier magnitude of the j-th subobject. To obtain the image of the entire object, a reconstruction
algorithm is required to retrieve the phase information associated with U j. Here, the Wiener filter is
introduced before invoking the phase retrieval algorithms, which produces the minimum mean-square
estimate of Fourier magnitude from the recorded speckle patterns [2,7]. This can greatly improve the
visual quality of the recovered image. The filtered Fourier modulus is described by

φ j(u, v) = W(u, v)U j(u, v) (8)

where W(u, v) is the Wiener filter operator and is given as

W(u, v) =
OTF(u, v)Es(u, v)∣∣∣OTF(u, v)

∣∣∣2Es(u, v) + En

(9)

where OTF(u, v) is the aperture transfer function, Es(u, v) is an estimate of the object’s power spectrum,
and En is an estimate of the noise-energy spectrum. For this work, the parameters of the Wiener filter
are estimated from the data recorded at the central position. The OTF is taken to be the autocorrelation
of the subaperture. The squared Fourier modulus [U(u, v)]2 is used in place of Es(u, v). En is assumed
to be a constant, whose value is obtained by averaging the squared Fourier modulus estimate over
those high spatial frequencies. According to the actual situation, one can control the suppression of the
high-frequency noise by adjusting the value of En.

2.3.1. Image Recovery and Regularization

The error reduction (ER) algorithm [31] and hybrid input–output (HIO) algorithm [32] are
commonly used phase retrieval methods for imaging correlography. They use a similar method,
iterating between frequency and spatial domains with a set of constraints in both. The main difference
between them is that the HIO algorithm applies a feedback function outside the object’s support.
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In fact, the conventional ptychographic iterative engine (PIE) for ptychographic imaging can be seen as
using the ER algorithm for each probe position sequentially if the probe is assumed as a finite support.
The main difference between PIE and ER is that PIE updates the subobject sequentially in each iteration,
while the ER updates the entire object in each iteration.

In this work, we introduce the amplitude flow optimization framework [33] for ptychographic
reconstruction and incorporate a regularizer named as regularization by denoising (RED) [34] to
suppress noise. This method was first proposed by Metzler in the research [35]. It is suitable for various
system models and suppresses noise well. As with the relationship between PIE and ER, our work
updates the subobject sequentially in each iteration, while the research [35] updates the entire object in
each iteration. The amplitude flow algorithm is a recently reported method used to recover the solution

x to a system based on the magnitude measurements y j =
{∣∣∣∣〈a j, x

〉∣∣∣∣}m

j=1
, where a j is the feature or

sensing vector, x is the wanted unknown signal, and y j is the given observation. Previous research has
demonstrated that this lower-order loss function based on absolute magnitude has great advantages in
statistical and computational efficiency. Additionally, the gradient of the amplitude loss function is
very similar to that of the Poisson log-likelihood [36]. In our case, the physical process of data detection
corresponds to counting the number of electrons and photons hitting the sensor. Measurements in such
a process are known to contain the Poisson distribution of noise [37]. Therefore, the amplitude-based
reconstruction framework is reasonable for the proposed imaging process. To extend this framework
to our reconstruction, the formulation of the proposed imaging model is rewritten as

y j =
∣∣∣A jz

∣∣∣ (10)

where y j denotes the filtered Fourier magnitude φ j(u, v) of the subobject in Equation (8), and z denotes
the desired recovery object. A j denotes the relation between the reconstruction value z and the
estimated Fourier magnitude y j, which corresponds to two sequential operations: (i) downsampling of
the object caused by aperture function; (ii) estimation of the Fourier magnitude of the subobject via
imaging correlography. Following the least-squares criterion, the problem of solving Equation (10) is
recast as a minimization problem

min L(z) =
1

2m

m∑
j=1

(∣∣∣A jz
∣∣∣− y j

)2
(11)

As mentioned above, imaging objects in this method results in noisy reconstructions. To further
suppress noise, the RED framework is applied during the reconstruction. RED is an efficient and flexible
approach used to solve inverse imaging problems. It can incorporate an arbitrary denoiser to regularize
an arbitrary inverse imaging problem. Another advantage of RED is that it employs the denoising
engine in defining the regularization of the inverse problem to make the overall reconstruction function
clearer and better defined. Then the loss function for our reconstruction algorithm is constructed of
the form

argmin E(z) =
1

2m

m∑
j=1

(∣∣∣A jz
∣∣∣− y j

)2
+
λ
2

zH[z−D(z)] (12)

The first term following the form of Equation (11) is the data fidelity term, which encourages the
estimated Fourier modulus

∣∣∣A jz
∣∣∣ to match the measured data y j. The second term λ

2 zH[z−D(z)] is the
RED term defined in the research [31]. Here, zH is the transposed conjugate matrix of the recovered
object z, λ is the regularization parameter, and D(z) is the denoising engine that can incorporate
an arbitrary filter to plug in the regular term. The RED regularizer not only penalizes residual difference
between the reconstruction data and its denoised self but also serves to prevent D(z) from removing
the structure from z. It is clear that if the denoised engine removes structure from the recovered
data, this structure will show up in the residual difference [35]. The gradient of the data fidelity
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term is easily computable, and the gradient of the RED engine is described in previous research [34].
Then, the gradient of the loss function is given in the form

∇zE(z) =
1
m

m∑
j=1

(A jz− y j A jz∣∣∣A jz
∣∣∣ )(A j

)H
+ λ[z−D(z)] (13)

where A jz
|A jz|

is the sign function for nonzero arguments ( A jz
|A jz|

= 0, which is adopted if A jz = 0), and
(
A j

)H

is the transposed conjugate matrix of A j. The update formula for the loss function is described as

zt+1 = zt − µ∇zE(z)
∣∣∣
zt = zt − µ

 1
m

∑
j=1

m

A jz− y j A jz∣∣∣A jz
∣∣∣
(A j

)H
+ λ[z−D(z)]


∣∣∣∣∣∣∣∣
zt

(14)

where t is the iterate count, and µ is the step size. The imaging reconstruction framework is summarized
in Algorithm 1.

Algorithm 1: The reconstruction framework for ptychographic imaging correlography.

Input: Estimated Fourier magnitudes y j =
{
φ j

}m

j=1
; sampling matrix

{
A j

}m

j=1
.

Output: Recovered image z.

1 Parameters:

Maximum number of iterations T; step size µ;
Regularization parameter λ.

2 Initialization:

(1) Run HIO algorithm 50 times with random initialization to form 50 estimates of the signal:
ẑ1, ẑ2 . . . ẑ50.

(2) Use the estimates {ẑ1}
50
i=1 with the lowest residual 1

2m
∑m

j=1

(∣∣∣A jẑi
∣∣∣− y j

)2
as an initialization

for HIO.
(3) Run HIO 50 times again, and the result is z0.

3 Loop: for t = 0 to T − 1

zt+1 = zt − µ

 1
m

m∑
j=1

A jz− y j A jz∣∣∣A jz
∣∣∣
(A j

)H
+ λ[z−D(z)]


∣∣∣∣∣∣∣∣
zt

, all 1 ≤ j ≤ m.t := t + 1;

end

2.3.2. Initialization

The setting of initial value z0 is also critical to our reconstruction. An initial guess close
enough to the optimal solution can avoid image artifacts and speed up the phase retrieval
process. Previous research [35,38] demonstrated that various spectral initializers were ineffective for
Fourier measurements, although were successful for Gaussian measurements and coded diffraction
measurements (CDP) [39]. Bian et al. used the captured data under normal incident light (center image)
as the initial value for their Fourier ptychography setup [40,41]. A random matrix has also been
employed previously as the coarse initialization [23]. In this work, the setting of initial value was
similar to the research [35,42], which is more reliable for Fourier measurements. The HIO is first run
50 times using random initialization to obtain 50 estimates of the original data. We then choose the
HIO estimate value with the lowest residual as an initialization for the HIO algorithm. The HIO is run
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a further 50 times, and the result is used to initialize the proposed reconstruction algorithm. The whole
algorithm for ptychographic imaging correlography is described in Algorithm 1.

The convergence of the proposed algorithm with different initializations is validated on a series of
images. The comparison methods include random initialization, spectral methods, and our initialization
(HIO results). Because of the limited space, here we only show the results of four test images, including
letters, numbers, and simple geometric figures. Figure 6 shows the original test images. The structural
similarity index (SSIM) is used to quantitatively evaluate the reconstruction quality. Table 1 is the SSIM
and iterations of the proposed algorithm with different initialization methods. The best reconstruction
result for each test image is bolded in the Table 1. It is clear that the initialization method has a great
impact on the reconstruction results. The spectral method mostly fails for the proposed imaging model,
although occasionally a good result is obtained. The random matrix and the proposed initialization
produce similar reconstructions, but the proposed initial method requires fewer iterations. Since the
random initial value is far away from the truth data, it is difficult for the random method to find the
steepest descent direction. The proposed initial method converges much faster than other methods.
Actually, it can achieve relatively satisfactory results in about 20 iterations.
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Figure 6. Four test images, including letters, numbers, and simple geometric figures. (a) WORLD.
(b) 258. (c) Smile. (d) Star.

Table 1. SSIM 1 and iterations of the proposed algorithm with different initialization methods.

Test Images
Random Spectral HIO 2 Results

SSIM Iteration SSIM Iteration SSIM Iteration

‘WORLD’ 0.730 180 0.404 200 0.742 60
‘258’ 0.748 250 0.492 500 0.743 40

‘Smile’ 0.670 450 0.749 250 0.792 50
‘Star’ 0.672 230 0.624 150 0.694 35

1 SSIM is the structural similarity index. 2 HIO is the hybrid input-output algorithm.

3. Experiments and Results

In this section, a series of experiments are conducted to investigate the advantages of the proposed
imaging mechanism. We first compare the performance of conventional imaging correlography with
ptychographic imaging correlography, and then analyze the effects of the number of speckle patterns
on the proposed imaging method. Finally, we compare the performance of different reconstruction
algorithms, including error reduction (ER), Wirtinger flow (WF), amplitude flow (AF), and amplitude
flow with RED (AF-RED).

3.1. Numerical Simulation and Criterion

In simulation experiments, we assume that the object with the optically rough surface is illuminated
with the laser. The amplitude of the object field is simulated by taking the square root of the test
images. A simple way of modeling the surface roughness is to apply a random phase term to the
object. The optical field is then propagated to the far field, and the square magnitude is taken to
get the object speckle pattern. Independent speckle pattern realizations are obtained by computing
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the optical phase with different random numbers. Toward the ptychographic imaging methods,
an aperture function is introduced to select a subsection of the object, which has been described
previously. Similar to conventional imaging correlography, each section of the object obtains its
corresponding speckle patterns. By using Equation (6), one can obtain the autocorrelation function
of the subobject. The subobject’s Fourier magnitude is directly estimated according to Equation (7).
People can then reconstruct the image of the object from the Fourier modulus by using the proposed
ptychographic reconstruction algorithm. Intuitively, reconstruction quality is improved as the amount
of overlap increases. The previous research indicates that a relative overlap of 60% yields high-quality
reconstruction of the scanned object area [43]. The support size for conventional correlography is
set to be consistent with the scanning range of the ptychographic measurements. The measured
speckle frames for conventional imaging correlography are 1200, and the measured speckle frames
for the proposed method are 150 at each position. The data processing steps used for the proposed
ptychographic imaging correlography are presented in the flow chart in Figure 7.Appl. Sci. 2019, 10, x FOR PEER REVIEW  11 of 18 
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Figure 7. The data processing flow chart for ptychographic imaging correlography. Note: AF = amplitude
flow; RED = regularization by denoising.

In addition to the visual results, the structural similarity index (SSIM) [44] is used as a quantitative
criterion to assess the quality of reconstruction appropriately. Instead of using a straightforward
distance metric, the SSIM compares the restored image with the ground truth in terms of structure,
contrast, and luminance.

3.2. Results

3.2.1. Recovery Performance Analysis

To compare the recovery performance of the conventional imaging correlography with
the ptychographic imaging correlography, we perform the experimental simulations using
a 512 pixel × 512 pixel resolution chart, described in Figure 8a. The resolution chart contains
line pairs with varying widths from 20 pixels down to 1 pixel, corresponding to line pairs per pixel
in the range [0.025, 0.5]. The contrast for the horizontal and vertical bars belonging to each group is
computed to quantify the reconstruction performance. The contrast C is given as

C =
w− b

w + b
(15)

where b and w are the average intensity of the black and white bars, respectively. To aid our discussion,
the limit of resolvability is defined to be when the contrast of a group drops below 20% (MTF 20%).
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MTF is the modulation transfer function of the imaging system. In the first simulation, we capture
a 8 × 8 grid of images with 66.7% overlap between the neighboring positions. Figure 8b shows the
ptychographic measurements for the resolution chart. The recovered image for conventional imaging
correlography is shown in Figure 8c, and the recovered image for ptychographic imaging correlography
is shown in Figure 8d. The plot in Figure 8e shows the contrast of the groups in the recovered
images. The recovered results for conventional imaging correlography cannot resolve the features that
have widths of 20 pixels (0.025 line pairs/pixel) before the contrast drops below 20%. However, we
are able to recover elements that are only 5 pixels wide (0.100 line pairs/pixel) using ptychographic
imaging correlography. Compared with conventional imaging correlography, ptychographic imaging
correlography improves the resolution of the object four-fold via the ptychographic measurements and
the proposed optimization framework.Appl. Sci. 2019, 10, x FOR PEER REVIEW  12 of 18 
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Figure 8. (a) Ground truth resolution chart. (b) Ptychographic measurements for the resolution chart.
(c) Recovered image for conventional imaging correlography. (d) Recovered image for ptychographic
imaging correlography. (e) The contrast of the groups in the recovered images.
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The four images in Figure 6 are employed as the original test images to analyze the recovery
performance again. Here, the size of the images is 256 × 256 pixels, the overlap ratio between
two adjacent positions is 69%, the number of vertical and horizontal measurements is m = 5 × 5,
and the measured speckle pattern for each subobject is N = 150. In Figure 9, we visually compare
the reconstruction results using the conventional method and ptychographic method, respectively.
The previous research demonstrated that the Fourier transform of a function with finite support
could be uniquely estimated using analytic continuation. However, it is difficult for the conventional
method to recover the original image, since a small error in the estimated Fourier component could
produce a large error in the recovered values. Many estimated extrapolations are consistent with
the real data, with results apparently being superimposed, upside down, or showing twin images
during the reconstruction. From the reconstruction results, we can see that the ptychographic imaging
correlography outperforms the conventional methods. This method successfully recovers all images.
The redundant data provided by adjacent measurements means the algorithm converges with the
global optimum with a high probability. The overlapping region of subapertures can constrain the
solution space of the reconstruction procedure. As the ratio of intensity measurements to unknowns
is increased, the likelihood of ambiguous solutions existing reduces. Therefore, the resolution of
the recovered objects is improved. Since there is almost no recoverable signal at higher frequencies,
the reconstruction results with the ptychographic method still have few cloudy features surrounding
the recovered image.
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3.2.2. Effect of the Number of Speckle Patterns

Next, we analyze the effects of the number of speckle patterns on the proposed imaging method. In
the proposed ptychographic imaging setup, a series of speckle patterns of the subobject are required to
estimate the corresponding Fourier modulus. As mentioned above, the high-quality power spectrum can
be obtained with the increase of speckle frames. Compared with conventional imaging correlography,
the ptychographic imaging correlography theoretically requires a large amount of calculation because
of the scanning measurements. We experiment with various speckle frames and find that the proposed
imaging implementation is not sensitive to the number of speckle frames. Since a large amount of
redundant data is provided by the adjacent measurements, ptychographic imaging correlography can
significantly reduce the requirement for speckle patterns. Figures 10 and 11 are reconstruction results
of ptychographic imaging correlography with various speckle frames. It is clear that the effects of
the number of speckle patterns on reconstructed images are much lower than conventional imaging
correlography. The proposed method can recover the object using only 50 speckle frames, although
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the results have some noise and blurred edges. Note that it is impossible for conventional imaging
correlography to reconstruct the object with only 50 speckle frames. To achieve low noise and a smooth
image, the speckle patterns of each subobject are set to 150 in most cases, which is about one-sixth of
the conventional method.
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Figure 11. Visual reconstruction results of ptychographic imaging correlography with various
speckle frames.

3.2.3. Effect of the Reconstruction Algorithm

At last, we compare the proposed optimization framework (AF-RED) with three other
reconstruction algorithms, including error reduction (ER) [31], Wirtinger flow (WF) [40], and amplitude
flow (AF) [33]. ER is a baseline algorithm for ptychographic reconstruction. WF and AF are both new
phase retrieval algorithms. The Wirtinger flow optimization is based on intensity measurements,
while the AF optimization is based on amplitude measurements. Because the gradient of the Poisson
log-likelihood function is very similar to amplitude-based loss function, PWF [44] is not included in
the comparison algorithms. Regarding the proposed reconstruction algorithm (AF-RED), the wavelet
filter is employed as the denoiser in the regularization.

Figure 12a shows the ptychographic measurements for the original object. The circles describe
different aperture positions, and the red circle is the central position. Figure 12b is one of the measured
speckle patterns for the central probe. Figure 12c–f are the reconstruction results with ER, WF, AF,
and AF-RED, respectively. All comparison algorithms use the same initial method described before.
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The Fourier modulus estimated by imaging correlography is not as accurate as that directly measured
by ptychographic imaging in microscopy. It contains noise and loses a lot of high-frequency information.
Therefore, the recovered data with ER suffer from apparent noise because they are sensitive to input
noise. The WF phase retrieval algorithm is based on the Gaussian assumption, which is suitable for
microscopic imaging. Regarding the long-distance ptychographic imaging correlography, the main
noises are Poisson noise and speckle noise. Thus, there are obvious cloudy features surrounding the
recovered object in Figure 12d. The AF reconstruction algorithm constructed by lower-order loss
function has great advantages in statistical and computation efficiency compared to Wirtinger flow
optimization. Therefore, the noise in Figure 12e is weaker than Figure 12d. The proposed reconstruction
method outperforms the other three algorithms significantly by incorporating the advantages of AF
and RED frameworks. It not only adopts the lower-order loss function to reconstruct the true solution
with high probability, but also recognizes and filters the outliers using the RED framework. Figure 13
is the quantitative comparison of the reconstruction results using different algorithms. We can see that
the convergence curve of the proposed algorithm is faster and smoother.
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Figure 12. (a) Ptychographic measurements for the original object. (b) One of the measured speckle
patterns for the center aperture (red circle area (a)). (c) The reconstruction results for the error
reduction (ER) algorithm. (d) The reconstruction results for the Wirtinger flow (WF) algorithm. (e) The
reconstruction results for the amplitude flow (AF) algorithm. (f) The reconstruction results for the
proposed amplitude flow regularization by denoising (AF-RED) algorithm.
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4. Discussion

In this work, a new ptychographic imaging correlography framework is proposed to realize
long-range, high-resolution imaging. The redundant information provided by ptychography can
sufficiently solve the phase retrieval challenges of conventional imaging correlography, including the
apparent superimposed, upside down, and twin images. Moreover, the proposed method removes
the requirement for detecting the speckle patterns within one coherence moment of the intensity
fluctuations, which is impractical for the thermal source. Ptychographic imaging correlography is
not constrained by the memory effect of speckles either. Therefore, there is no strict limit on the
illumination probe and scattering medium. The number of speckle patterns required to recover
a target is only one-sixth of the conventional imaging correlography. Therefore, the introduction of
ptychography does not increase the storage burden of the system. Additionally, a flexible optimization
algorithm combining the AF and RED frameworks is introduced into our reconstruction process. Given
an appropriate initial value, the proposed algorithm can quickly converge on the global optimal value.
Furthermore, the using of the RED regularizer can sufficiently suppress noise during reconstruction
and maintain image details. A series of experiments demonstrate that the reconstruction results of the
proposed imaging model are far superior to the conventional imaging correlography on both visual
and quantitative metrics.

Although the proposed work significantly improves the reconstruction resolution, it still faces
some challenges. Measurement for redundant information results in low time resolution for the system.
New data processing methods are required to improve the time resolution. For coherent illumination,
speckles will form when the amplitude of the background is not zero. Therefore, objects with strong
contrast between the foreground and background amplitudes have better reconstruction results than
those where the background and foreground amplitude values are similar. In future work, an optical
experiment will be performed to further verify the performance of the proposed method. Besides,
we will analyze the effect of target contrast on reconstruction results and try to restore objects with
low contrast.
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