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Abstract: Depression has gradually become the most common mental disorder in the world. The
accuracy of its diagnosis may be affected by many factors, while the primary diagnosis seems
to be difficult to define. Finding a way to identify depression by satisfying both objective and
effective conditions is an urgent issue. In this paper, a strategy for predicting depression based
on spatiotemporal features is proposed, and is expected to be used in the auxiliary diagnosis of
depression. Firstly, electroencephalogram (EEG) signals were denoised through the filter to obtain the
power spectra of the three corresponding frequency ranges, Theta, Alpha and Beta. Using orthogonal
projection, the spatial positions of the electrodes were mapped to the brainpower spectrum, thereby
obtaining three brain maps with spatial information. Then, the three brain maps were superimposed
on a new brain map with frequency domain and spatial characteristics. A Convolutional Neural
Network (CNN) and Gated Recurrent Unit (GRU) were applied to extract the sequential feature. The
proposed strategy was validated with a public EEG dataset, achieving an accuracy of 89.63% and an
accuracy of 88.56% with the private dataset. The network had less complexity with only six layers.
The results show that our strategy is credible, less complex and useful in predicting depression using
EEG signals.

Keywords: depression prediction; spatiotemporal features; deep learning; EEG signals; neural network

1. Introduction

According to the World Health Organization (WHO), depression is one of the major
disabilities causing mental disorders that affects around 322 million people, accounting
for 4.4% of the world’s population [1–3]. Depression not only leads to a series of physical
problem but also has a potentially high risk of suicide, which aggravates the burden on
patients, their families and society [4]. The diagnosis of depression is mainly based on the
10th revision of the International Classification of Diseases (ICD-10) developed by WHO [5]
and the 5th revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
established by the American Psychiatric Association (APA) [6]. At present, the diagnosis of
depression is still mainly based on the chief complaint of clinical symptoms, and there is no
specific laboratory or auxiliary diagnostic method. Due to a lack of awareness, unskilled
health-care practitioners, lack of resources, and inaccurate diagnoses, a shocking 50% of
persons with depression remain untreated. This disorder can be treated easily if diagnosed
in a timely manner and when diagnosed properly, so there is an urgent need to develop a
clear understanding of the etiology and pathogenesis of the disease, and to find an objective
and effective method with which to identify depression.

EEG, electrocardiography (ECG) and magnetic resonance imaging (MRI) have been
used for the diagnosis of various diseases. EEG has been explored as an effective biomarker
and diagnosis tool for the detection of neurological disorders such as depression, epilepsy,
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seizure, Alzheimer’s, Parkinson and in the analysis of emotions in comparison to others
because of its non-invasive and economical nature [7–16]. Research shows that different fre-
quency ranges and the spatial distributions of EEG are associated with different functional
states in the brain [17]. Various brain rhythms have been generalized, along with their
frequency ranges, regions of occurrence and characteristics [18–21]. An analysis of EEG
signals with different frequencies will help physicians to diagnose and identify patients
with depression effectively. Other research studies have used some brain rhythms depend-
ing upon the requirement of certain frequency bands for the analysis of the particular
application. For example, Beta can be used to classify the sleep stage, Alpha is used in
the study of emotion recognition, and both Alpha and Beta have been used in dementia
studies [22]. Alpha, Beta and Theta have been used for depression or stress recognition [23]
as the amplitude and frequency rhythm are related to differences in the brain function
between patients and healthy people. Koller-Schlaud et al. [24] discovered that in the
resting state, theta activity at the central electrode site is highly distinct and were able to
discriminate between healthy controls and bipolar depressed controls using an analysis of
variance model. Kang et al. [25] found that the greatest performance for the classification
model for diagnosing depression was achieved using alpha asymmetry images. For de-
pression patients, Liu et al. [26] found a substantial link between the long-distance edge of
the Beta band, which was distributed largely within the frontal brain areas and between
the frontal and parietal-occipital brain areas. Grin-Yatsenko et al. (2010) [27] also found
increased activity in theta, alpha and beta bands in occipital and parietal areas of the brain
of depressed subjects.

According to the frequency property of EEG signals, we preprocessed the original
signals and then used the deep learning framework to realize the automatic prediction of
depression which in turn could help more people to identify depression as early as possible.

EEG is the overall response of the electrophysiological activity of human brain nerve
cells in the cerebral cortex or scalp surface, which comprehensively reflects the functional
state of the brain and contains a high amount of physiological and disease-related in-
formation. Therefore, it is important for understanding how the human brain processes
information and in the diagnoses of mental diseases, and we can complete the diagnosis
and treatment of neurological diseases by detecting and recording human EEG signals [28].
Compared with CT and MRI, EEG has a higher temporal resolution [29]. EEG is a valuable
research and diagnostic tool, especially when specific studies require millisecond-level
temporal resolutions, such as those on anxiety, psychosis and depression [30]. Since EEG
data are graphically represented, researchers often use AI-based models to analyze such
data [31–34]. For example, Field and Diego [35] used a linear discriminant analysis to
process EEG data and achieved 67% accuracy in classifying normal and depressed patients.
In addition, Iosifescu et al. [36] used a support vector machine (SVM) to classify resting-
state EEG data from the 8-lead midpoint on the forehead of 88 subjects, and achieved a
classification accuracy of 70%. Bisch et al. [37] used logistic regression (LR) to classify 9-lead
EEG data of depression, with an 83.3%classification accuracy. Although EEG can be used
to simplify the data-collection process, it leads to information loss. More importantly, the
presence of a large number of untapped factors in EEG data can lead to a large amount of
noise in classification decisions. Therefore, the development of machine learning models
that are more suitable for EEG data will become the main research direction in the future.

Numerous studies have shown that there are significant differences in brain activity
between people with depression and healthy people. For example, the EEG signals of pa-
tients with depression are significantly different in amplitude, energy and other indicators
compared with healthy people [38]. Ahmadlou et al. presented a model with the combina-
tion of the Wavelet-Chaos method, Higuchi’s–Katz’s Fractal Dimension (HFD–KFD) and
Enhanced Probabilistic Neural Network (EPNN) for the diagnosis of Major Depression
Disorder (MDD) with an accuracy of 91.3% [39]. Hosseinifard et al., extracted non-linear
features and used the Logistic Regression Classifier to differentiate normal and depressed
classes and attained an accuracy of 90.05% [32]. Faust et al., performed wavelet packet de-
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composition on EEG signals and extracted non-linear features and entropy features. Then,
these features were fed into a Probabilistic Neural Network (PNN) classifier to categorize
normal and depressed patients, which reported an accuracy of 98.20% [40]. Bairy et al.
used a combination of wavelet entropies, energy features and a Support Vector Machine
classifier with a Radial Basis Kernel Function (SVM RBF) that reported an accuracy of
88.9% [41]. All the mentioned studies used handcrafted features, and the selection of an
appropriate feature set is a very complex task. Acharya et al. proposed a deep learning-
based 13-layer CNN model [42] and Ay et al., developed an 11-layer CNN-LSTM model
to automatically classify normal and depressed patients with much better accuracy [43].
Additionally, Geetanjali Sharma et al., proposed a Depression Hybrid Neural Network that
is accurate, less complex and uses CNN, windowing and LSTM [44].

To summarize, the initial research mainly relied on handcrafted feature extraction
such as wavelet entropies, DWT, etc. [34,39–41], but the process of manual extraction affects
the final classification results of the model. The CNN model proposed by Acharya has the
advantage of automatic feature extraction [42] and has a higher accuracy than previous
models. It uses 13 neural layers. The addition of the LSTM network to the CNN network
by Ay et al., achieved better results [43,44].

In this paper, a method for depression prediction based on spatial and temporal
characteristics is proposed.

1. In signal preprocessing, the signal frequency domain information, the space domain
information between the electrodes of the acquisition equipment, and timing char-
acteristics are fully utilized. The extraction of features with this strategy can be
implemented automatically without manual acquisition. The model explores the GRU
network with CNN layers whereby the CNN layers extract features and the GRU
block provides sequence learning.

2. A model was proposed with relatively few layers (6 layers), and consequently, a
relatively low level of complexity.

The rest of this article is organized as follows. In Section 2, the dataset and the
proposed framework are explained. In Section 3, the results of this study are reported.
Section 4 includes a discussion. Additionally, the conclusion is provided in Section 5.

2. Materials and Methods
2.1. Subjects

A public dataset provided by H. Cai et al., (MODMA dataset [45]) was utilized to
evaluate the proposed method of depression prediction. The dataset was published by the
UAIS laboratory of Lanzhou University in 2020, which contains EEG data from patients
with clinical depression, as well as data from normal controls. Before the experiment,
the self-reported Patient Health Questionnaire-9item (PHQ-9) and Generalized Anxiety
Disorder-7 (GAD-7) were self-rated by all subjects. All patients were carefully selected by
the hospital’s professional psychiatrist. The EEG dataset includes 128 channels of resting
EEG signals collected from 53 subjects using HydroCel Geodesic Sensor Net (HCGSN). The
53 participants included 24 major depressive patients and 29 normal controls. The sampling
rate was 250 Hz.

A further private data set was provided by the psychiatric department of a 3Agrade
hospital in China, and was used to verify the effectiveness of the model, which enrolled
32 subjects,16 of which had a medically confirmed diagnosis of depression. The EEG signals
were recorded with 16 cup electrodes mounted on a special cap in the following positions:
Fp1-Fp2, F3-F4, F7-F8, C3-C4, T3-T4, T5-T6, P3-P4, O1-O2 according to the international
10–20 system. The sampling rate was 100 Hz. All participants were asked to remain in the
resting state in a quiet room with their eyes closed and awake, a process which required
4 min. Labels for classification were assigned according to the presence or absence of
depression diagnosis. In cases of missing data, the label was derived from the BDI result
according to whether it exceeds the minimal range (score of 1–13). Table 1 describes the
two datasets in detail.
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Table 1. Properties of datasets with data.

Properties MODMA Dataset Private Dataset

No. of participants 53 32
No. of depression cases 24 16
Depression diagnostics Diagnosis Diagnosis, BDI

Male/female ratio 33/20 16/16
No. of channels 128 16

Sampling rate, Hz 250 100

2.2. Proposed Classification Method

Many previous studies demonstrate that deep learning and EEG can be used to
recognize depression [46,47]. In order to prevent mild depression from worsening into
moderate or major depression, we should pay more attention to mild depression and detect
early symptoms of depression. As we know, EEG signals communicate spatial information,
but this information has rarely been considered. Figure 1 illustrates the overview of the
proposed framework for predicting depression. As shown in Figure 1, the proposed method
contains EEG signal preprocessing, CNN, GRU and classification steps. In the first step,
the spatial and frequency information of EEG signals was extracted to generate brain map
sequences. Next, the CNN module was used to extract the feature automatically, and then
the GRU module was connected to learn sequential information. The network structure
and parameters of the strategy in this paper are shown in Figure 2. Finally, the classification
module was trained and validated with the features that were extracted in the previous
steps and contained spatial, frequency and temporal information.
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2.2.1. EEG Signal Preprocessing

Since there were only 53 or 32 raw data samples, the classification was not ideal in
this case. Therefore, the intercepted data were divided into 10 segments of 1 s. Finally, we
obtained 530 and 320 samples.

The process of EEG signal acquisition may be interfered with by careless human
operation, an external environment interference, and electromagnetic interference of the
device itself, which may lead to different types of noise in the collected data. While the
amplifier in acquisition equipment can reduce the influence of some interference noises,
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there are still many artifacts such as eye blinks and movement, muscular activities, channel
noise and power line noise. Therefore, EEG signals need to reduce the noise and suppress
destructive artifacts with preprocessing. During the recording, a 0.5 Hz high-pass filter,
a 100 Hz low-pass filter and a 50 Hz notch filter were considered to remove the low-
frequency noise, irrelevant signals and the baseline noise from the data, respectively.
The fast independent component analysis (Fast ICA) algorithm was used to calculate
independent components of the filtered signals to remove artifacts resulting from muscles
and eye movements within the EEG signals. The main steps of Fast ICA were as follows:

a. The EEG signal was processed by Fast ICA to obtain several independent compo-
nents whereby the independent components include the independent component
containing the EEG artifact and the independent component without the EEG artifact;

b. Wavelet transforms and the differential evolution algorithm were used to process the
independent component containing the artifact to obtain the artifact component;

c. Based on wavelet reconstruction and inverse transformation, an EEG signal was
obtained to remove the artifacts according to the artifact component.

After removing the artifacts, the signal was cut at one second to extract the feature of
EEG signals.

The potential activity of electrodes at different spatial sites has a correlation rule in
the analysis of EEG signals, indicating synchronous and asynchronous electrical activity
of the cerebral cortex potential. As a result, spatial characteristics are extremely useful
in the character analysis of EEG signals. EEG is a sequence of time series collected on
the scalp at different spatial locations, so the spatial characteristics of EEG signals can
be obtained by mapping the position of its electrodes from a three-dimensional space
onto a two-dimensional surface. The spatial characteristics are acquired using Azimuth
Equidistant Projection (AEP) [48]. Research [22] shows that there are considerable changes
in the θ (4–8 Hz), α (8–13 Hz) and β (13–30 Hz) spectrums between patients with de-
pression and healthy people. Therefore, by extracting the θ, α and β spectrum of EEG
signals, respectively, and using Bicubic interpolation we were able to obtain three brain
maps [49], which contain frequency domain information. Then, the three images were
superimposed to produce a new brain map as the last step of signal preprocessing. The new
brain map sequences will be the input to the next model, containing temporal, frequency
and spatial information of EEG signals. Figure 3 depicts a schematic diagram of EEG
signals preprocessing.
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2.2.2. Extraction Using CNN

CNN is a type of feed-forward neural network with convolutional computations and
a deep structure. The convolution process is performed by sliding the specific kernels over
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the input data to obtain the feature map. The convolved output is generated using the
following equation:

g(x, y) = f (x, y) ∗ C(u, v) (1)

where g, f and C denote the output feature map, input data and filter, respectively. The
process is depicted in Figure 4.
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The CNN has representational learning ability and can classify the input information
according to its hierarchical structure. In particular, the brain map sequences, which were
the results extracted with EEG signal processing as input signals have abundant spatial
and frequency domain information. Additionally, CNN can amplify the difference in input
signals. In our work, the input of the convolution layer was 28× 28× 3 and the convolution
kernels’ size was 3 × 3 × 3 with 32 filters. We employed the Leaky Rectified Linear Unit
(Leaky ReLU) as the activation function because it can speed up the learning ability and
improve classification accuracy. A max-pooling layer with a kernel size of 3× 3 was applied
to reduce data sensitivity and computational complexity on the basis of reserving the data
information. As shown in Figure 2 (CNN module), after the convolution calculation, we
obtained a sequence of one-dimensional vectors(x1~xn) containing temporal, frequency
and spatial information for space–time features.

2.2.3. Learning Model with GRU

The CNN model can automatically extract features, but it cannot feedback the output
to the network and the model has poor performance when learning time-series information.
EEG-signal classification is a typical sequence model task. As shown in Figure 2 (GRU mod-
ule), we proposed a hybrid model that uses CNN and GRU at the same time. The GRU
architecture was proposed by Cho et al. [50] in 2014 and is simpler and requires less time
than LSTM. The specific implementation of this model is shown in Figure 5, which has
specific hidden units called memory cells that are used to remember the previous input for
a long period of time.
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Figure 5 shows that, at the t time step, there are two kinds of gate operations in one
hidden node of GRU, namely the update gate zt and the reset gate rt. Similar to LSTM, the
currently hidden output ht is computed based on the current input xt and the previously
hidden output ht−1.

rt = σ(Wrxt + Urht−1 + br) (2)

The update gate is expressed as follows:

zt = σ(Wzxt + Uzht−1 + bz) (3)

The hidden state (memory) is presented as follows:{
ht = (1− zt)

⊙
ht−1 + zt

⊙
h̃t

h̃t = tanh[Wxt + U(rt
⊙

ht−1) + b]
(4)

In Equations (2)–(4), Wr, Wz, W and W0 are the weight matrices of GRU neural
networks related to the input xt; Ur, Uz and U are the weight matrices of GRU neural
networks related to hidden state hte1; br, bz, b and b0 are the biases; xt is the input vector;
the operation

⊙
stands for the Hadamard product; σ represents the logistic sigmoid

function, and tanh represents the hyperbolic function.
Then, the output from the fully connected layers to the output layer uses Leaky ReLU

as the exponential linear unit. To avoid overfitting, the dropout layer is introduced. The
output layer chooses softmax as a classifier to classify the output.

2.2.4. Validation

To validate the reliability and generalization of classifiers and datasets, an independent
test was used in this paper. For the independent dataset test, each dataset was divided
into two parts, a training set and a testing set. Two-thirds of the samples were chosen
randomly and assigned as the training set and the remainder were used in the testing set.
The Leave-One-Out Cross-Validation (LOOCV) method was applied in the classification of
training data and the genetic algorithm was applied for feature selection. The results of
classifiers on the test datasets are shown in Section 3.3.

The experimental environment was an Inter(R) Core (TM) i7 processor, with 16G
memory, 64-bit Windows 10 system. All experiments were implemented with the Keras
framework TensorFlow backend using Python 3.7.

Since there were only 32 raw data samples in the private setting and 53 raw data
samples in MODMA, the classification was not ideal in this case. Therefore, the intercepted
data were divided by 1 s. To investigate the overall classification performance, the average
and the standard deviation of the evaluation metrics were considered. The evaluation
metrics used in this study were accuracy (AC), sensitivity (SE), specificity (SP) and the
F1-score (F1), which are defined as follows:

AC =
TP + TN

TP + FN + TN + FP′
(5)

SE =
TP

TP + FN′
(6)

SP =
TN

FP + TN′
(7)

F1 =
2TP

2TP + FP + FN′
(8)

where TP is the number of depression samples that are correctly classified, FN is the number
of depression samples that are incorrectly classified as healthy samples, FP is the number
of healthy samples that are incorrectly classified as depression cases, and TN is the number
of healthy cases that are correctly classified.
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Meanwhile, the binary cross-entropy loss function was used to measure the perfor-
mance of the model.

3. Results

In this section, the performance of the proposed machine learning method to predict
depression based on EEG signals is evaluated in several aspects. In the first part, the effect
of the data augmentation procedure on the proposed framework is analyzed. Next, the
obtained results of the proposed method are compared with the previous approaches.
Finally, the proposed method was evaluated using another independent dataset, and its
results are reported in the last subsection.

3.1. The Effect of Data Augmentation

In order to analyze the effect of data augmentation on the performance of the pro-
posed method, EEG signals with different segment lengths were applied to the proposed
classification framework. The proposed framework was tested with 1 s, 2 s and 3 s EEG
segments. The obtained results of these simulations are reported in Table 2.

Table 2. Comparison of the classification results of the proposed method using the data augmentation procedure.

Method Data Set AC (Mean ± Std) SE (Mean ± Std) SP (Mean ± Std) F1 (Mean ± Std)

1s slicing MODMA 89.63 ± 1.3 90.24 ±1.9 89.63 ± 1.3 90.19 ± 1.3
private dataset 88.56 ± 1.3 88.56 ± 1.5 88.54 ± 1.8 88.68 ± 1.5

2s slicing MODMA 90.62 ± 2.1 87.81 ± 3.2 87.48 ± 2.1 88.79 ± 2.1
private dataset 89.84 ± 2.1 87.82 ± 3.4 87.36 ± 1.7 88.79 ± 2.1

3s slicing MODMA 87.01 ± 1.5 87.01 ± 1.5 87.01 ± 1.5 88.01 ± 1.5
private dataset 87.72 ± 1.6 87.32 ± 1.6 86.72 ± 1.6 88.72 ± 1.6

As shown in Table 2, the proposed method that included all of the data-augmentation
strategies achieved a better classification performance and a considerable difference was
not observed. Too many samples from one sample may not provide a good estimate of the
generalization of the results. So, according to the result, it can be interpreted that the data
augmentation procedure with 1s slicing led to the best classification performance.

3.2. The Influence of The number of CNN Layers

In order to quantify the benefits of a lower number of CNN layers, different layers
were applied to the classification framework, including 1 layer, 2 layers and 3 layers. The
obtained results of these simulations are reported in Table 3.

Table 3. Comparison of the classification results between difference CNN layers.

Layers Time (s) Parameters AC SE SP F1

1 172 896 87.98 88.38 88.98 87.79
2 224 10,272 86.68 85.46 85.48 85.63
3 340 28,768 75.68 78.18 78.16 78.58

As shown in Table 3, due to the limited sample size, the increase in the number of CNN
layers not only increased the time required but also significantly increased the number of
parameters. When the number of layers increased to three, it can be seen that the accuracy
decreased, which indicates over-fitting due to the depth of layers. So, according to the
results, it can be interpreted that our model using a one-layer CNN network, which has the
advantages of less time and lowers model complexity obtains better accuracy results. We
can also infer that the proposed strategy is suitable for smaller data sets.
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3.3. Comparison with Other Methods

In order to compare the performance of the proposed method with other approaches,
we implemented the methods described in (S. Sun et al., (2020) [51]; Wang Y et al.,
(2021) [52]). For a fair comparison, all of the methods were validated using LOOCV.
Table 4 provides the obtained numerical results of the proposed method as well as the
previous ones for the automatic prediction of depression based on EEG signals of the
MODMA dataset. Sun et al. [51] extracted different types of EEG features, including linear,
nonlinear and functional connectivity features (Phase lag index, PLI), comprehensively
analyzing the EEG signals of major depressive patients. Wang et al. [52] used an alternative
time-frequency-analysis technique based on intrinsic time-scale decomposition (ITD) with
TCN and L-TCN and obtained a better result. Compared with the above features, the
brain-map-extracted frequency domain and spatial characteristics in the preprocessing of
EEG signals was effective and achieved a better prediction performance for depression.
Its accuracy was higher than in other studies, which demonstrates the effectiveness of the
proposed strategy, as shown in Table 4.

Table 4. Comparison of the classification results between the proposed method and previous works.

Methods Features Accuracy (%)

LR + ReliefF [51] linear 66.40
LR + ReliefF [51] nonlinear 67.17
LR + ReliefF [51] PLI 82.31
LR + ReliefF [51] Linear + PLI 80.99
LR + ReliefF [51] Nonlinear + PLI 81.79

TCN [52] ITD + statistical features 85.23
L-TCN [52] ITD + statistical features 86.87

BrainMap + CNN + GRU BrainMap features 89.63

Table 5 provides a comparison of the classification results between the different models
with the MODMA dataset and the private dataset. According to the summarized results in
Table 5, deep learning models are relatively better than SVM, and the time series model
is more suitable for EEG signals. Moreover, we can see that the strategy for this work
significantly improved compared to others both in accuracy, sensitivity, specificity and the
F1 score.

Table 5. Comparison of the classification results between difference models.

Method Dataset AC SE SP F1

SVM
MODMA 78.12 78.12 78.12 77.31

Private dataset 75.18 74.92 75.12 74.31

GRU
MODMA 83.12 86.67 76.57 87.55

Private dataset 81.36 82.49 78.91 82.55

CNN
MODMA 84.32 85.76 79.86 87.96

Private dataset 82.34 84.35 79.91 83.31

TCN
MODMA 85.23 89.67 76.57 87.55

Private dataset 82.38 82.47 82.47 82.55

L-TCN
MODMA 86.87 90.15 83.83 90.51

Private dataset 85.64 85.87 81.23 86.55

BrainMap + CNN MODMA 87.34 89.48 88.56 87.37
Private dataset 83.65 82.59 82.31 82.55

BrainMap + CNN
+ GRU

MODMA 89.63 90.24 89.63 90.19
Private dataset 88.56 88.56 88.54 88.68
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4. Discussion

In this study, we proposed a novel EEG feature called the brain map, which contains
temporal, frequency and spatial information, and compared the brain map with other
features that have been applied in previous depression studies, including linear, nonlinear,
PLI and ITD features. Moreover, previous studies about the discrimination between
depression patients and normal subjects seldom considered spatial features based on a
machine learning approach. In our study, we used the brain map feature with a frequency
domain and spatial characteristics and found that it is able to achieve higher accuracy than
other features. At present, the number of depression-related studies amounts to relatively
few, and most of the research adopts the method of data segmentation to expand the data
set. Table 2 provides a comparison of the classification results of the proposed method using
the data-augmentation procedure. The proposed method with all of the data-augmentation
strategies achieved a better classification performance and a considerable difference was
not detected. However, an increase in sample size will increase the time required for data
processing due to the projection of the operation from 3D to 2D during data preparation.
So, we calculated features for a 1s segment to reduce the computation time. Table 3 shows
that a one-layer CNN may achieve an accuracy rate of 87.98 percent. The number of
CNN layers increases not only the time required but also the number of parameters by
a significant amount. When the number of layers was increased to three, the accuracy
declined, indicating over-fitting as a result of the depth of layers. Then, the addition of
GRU introduced a special long-term memory in the CNN architecture to use sequence
information. Table 5 shows that a CNN followed by a GRU network can increase network
performance and improve the accuracy of the final prediction.

The proposed strategy has several advantages. First, it can achieve a higher classifica-
tion accuracy than the existing methods for classification between depression patients and
normal subjects which used the same MODMA dataset. Second, a low complexity network
architecture (one layer CNN and one layer GRU) was applied, and according to the result,
it can be interpreted that effectively extracted features during pre-processing could obtain
good classification results using a simple neural network, especially for limitation samples.

The depression-prediction strategy was tested and validated with a private EEG
dataset and a public EEG dataset. It was able to classify healthy and depressed patients
with a very high accuracy of 89.63% for the MODMA dataset and 88.56% for the private
dataset and effectively distinguish between depression and healthy individuals.

The automatic prediction method of depression proposed in this study not only solves
the problem of the difficulty and low efficiency of manual diagnosis in the early clinical
stage but also improves the prediction accuracy. As a simple and efficient method by which
to measure the brain electrophysiological signal, the proposed strategy-based EEG feature
seems to have the potential to assist psychiatrists in the diagnosis of depression.

5. Conclusions

This paper presents a signal preprocessing method by which to transform EEG signals
into a brain map that contains temporal, frequency, and spatial information that attempts
to make full use of the characteristics of EEG data. Then, a low complexity network
architecture (one layer CNN and one layer GRU) was proposed to classify depression and
healthy individuals. The lower CNN layer for limitation samples can help to overcome
overfitting and improve the model’s generalization ability. The proposed strategy works
well compared to other baseline models using the MODMA dataset.

Nevertheless, several follow-up studies will be required. First, only 53 subjects partic-
ipated in the current study. To further validate the proposed method, more participants
are needed in the future. Second, although the current results suggest that the frequency
and spatial features are useful in the classification between depression patients and healthy
controls, a combination of facial expressions, speech, and other features might achieve an
even higher classification accuracy. Finally, the EEGs were recorded in the resting state in
the current study. However, EEGs recorded in a different state may result in better per-
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formance for classifying depression patients and healthy controls. Moreover, the analysis
in this study was mainly based on EEG data, and therefore its clinical interpretability is
not very strong. In the future, we plan to cooperate with the hospital to enhance clinical
interpretability with the help of expert knowledge.
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