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Abstract: Neurology is a quickly evolving specialty that requires clinicians to make precise and
prompt diagnoses and clinical decisions based on the latest evidence-based medicine practices. In
all Neurology subspecialties—Stroke and Epilepsy in particular—clinical decisions affecting patient
outcomes depend on neurologists accurately assessing patient disability. Artificial intelligence [AI]
can predict the expected neurological impairment from an AIS [Acute Ischemic Stroke], the possibility
of ICH [IntraCranial Hemorrhage] expansion, and the clinical outcomes of comatose patients. This
review article informs readers of artificial intelligence principles and methods. The article introduces
the basic terminology of artificial intelligence before reviewing current and developing AI applica-
tions in neurology practice. AI holds promise as a tool to ease a neurologist’s daily workflow and
supply unique diagnostic insights by analyzing data simultaneously from several sources, including
neurological history and examination, blood and CSF laboratory testing, CNS electrophysiologic
evaluations, and CNS imaging studies. AI-based methods are poised to complement the other tools
neurologists use to make prompt and precise decisions that lead to favorable patient outcomes.
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1. Introduction

In the coming years, the complexity of data used in Neurology’s clinical and research
aspects will proliferate. Electronic medical records hold vast amounts of information.
Major health systems rely on data-heavy technology to analyze clinical and genomic
information. Computer analysis of digital medical data could aid the neurologist in
making diagnoses, detecting disease patterns, and detecting health vulnerabilities. With
its sophisticated machine learning algorithms, AI offers efficient and practical tools to
clinicians to better interpret, access, and understand clinical information and narrow
differential diagnoses in simple and complex cases [1,2]. AI has demonstrated great clinical
utility in the management of Migraines as demonstrated by Torrente A. et al. [3]. Due to a
high incidence of Stroke and Epilepsy in United States, which have been leading causes of
morbidity and mortality, we would like to focus, exhibit, and discuss potential applications
of AI in these two fields specifically by presenting our literature review and innovations so
far, which can serve as great clinical adjuncts for clinicians which, in turn, can help deliver
excellent patient care. Artificial intelligence could aid the neurology subspecialties of stroke
and epilepsy by increasing the speed and consistency of analysis of clinical imaging studies
and other data and clinical decision-making. Artificial intelligence can use evidence-based
medicine practices to assure that the most modern and accepted medicine is being delivered.
Artificial intelligence systems draw on extensive data sets of clinical information and are
less prone than humans to have recency, recall, and other biases that can lead to inaccurate
conclusions or ranking of the likelihood of the various diagnoses in a differential diagnosis.
AI can help usher the era of personalized medicine into routine neurology clinical practice.
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2. Basic Terminology and Concepts of AI

Key AI terms include ‘Machine Learning’, ‘Supervised Learning’, ‘Unsupervised
Learning’, ‘Model and Training’, ‘Artificial Neural Network’, ‘Deep Neural Network’,
‘Convolutional Neural Network’, ‘Black Box’ and ‘Reinforcement Learning’ [4,5].

Machine Learning: Machine Learning [ML] is a field of AI associated with developing,
studying, and generalizing statistical algorithms over time to perform tasks without specific
instructions. A developed algorithm encodes statistical regularities extrapolated inherently
from a database of examples to assess parameters for future predictions [4,6].

Supervised Learning: Supervised Learning [SL] uses previously established expert-
labeled training examples to create an algorithm to assess parameters for future predictions.
Its paradigm is analogous to machine learning because input and output values are used to
train the algorithm model and derive the function relating input to output values. The SL
function analyzes new data and derives the expected output values. Because SL creates
a learning algorithm from training data, it may misinterpret data related to situations or
diagnoses not present in the training data. SL is susceptible to errors from incomplete
training data, so-called generalization errors [4,7].

Unsupervised Learning: Unsupervised Learning [UL] is less constrained than Super-
vised Learning because algorithms are learned and developed from the patterns in un-
labeled data. In UL, machine learning algorithms discover patterns or data groupings
without human intervention [4,8].

Modeling and Training: Modeling trains a machine-learning algorithm to make pre-
dictions from unseen data. Training coincides with modeling, where machine learning
algorithms are fed examples from a training data set to update and calibrate parameters for
future predictions. In model training, information types and their weights and bias fit into
a machine learning algorithm to improve function over the predictive range [4].

Artificial Neural Network [ANN]: A machine learning technique that amalgamates and
processes many layers of information, each holding essential parameters extracted incre-
mentally from training data. Brain neuron network organization inspired this concept.
Signals travel from input to output after traversing all layers multiple times [4,9].

Deep Neural Network: A deep neural network [DNN] is an artificial neural network
[ANN] with multiple layers between the input and output layers. The various types of
neural networks share these components: neurons, synapses, weights, biases, and functions.
These components function together like brain neural networks. A DNN can be trained
like other ML algorithms [4,10].

Convolutional Neural Network: Like the human visual cortex, the convolutional neural
network displays connectivity patterns. It is a feed-forward neural network that learns
feature engineering via filter optimization [4,11].

Black Box: Black box AI models arrive at conclusions or decisions without explaining
how they were reached. The precise steps leading to the Black Box model’s predictions
cannot be explained because the predictions arise from unexplained parameters being
processed by a highly complex analysis maze that is machine-derived and not a direct
product of human consciousness and thought processes [4].

Reinforcement Learning

Reinforcement learning [RL] is a machine learning training method that develops
decision algorithms by rewarding desired behaviors and punishing undesired ones. RL
depends on environmental interactions. The algorithm receives rewards or penalties
according to the desirability of behaviors and learns through this editing to make better
decisions over time. The RL algorithm completes tasks without earlier instructions. It can
learn while failing to complete the task. It derives basic rules guiding future predictions
from experience performing the task [5].
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3. Methods

To write this review, we searched PubMed using the key words “Artificial Intelligence”,
“Acute Ischemic Stroke”, “Epilepsy”, “Clinical Decision Making” and “Intracranial Hem-
orrhage (ICH)” for articles published on these subjects between 2000 and 2023 (Figure 1).
From these articles, we decided which papers utilized AI in their decision-making. Articles
describing studies that answered research questions about the clinical utility of AI methods
were then selected and reported in tabular format (Tables 1–3). The Quality Improve-
ment method of the Plan-Do-Check-Act was suggested as a way for ongoing testing and
improving of AI algorithms used in clinical practice (Table 4).
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Figure 1. Flow diagram of the search strategy.

Table 1. Summary of some studies showing the application of AI for initial neuroimaging in AIS
[Acute Ischemic Stroke] between 2000 and 2023.

Year Authors Research Question Outcomes Measures/Conclusions

2023 [12] Field N. et al.
Does supplying an LVO detection algorithm

notification to the thrombectomy team’s cell phone
improve ischemic stroke workflow?

Transfer time and Mechanical
Thrombectomy [MT] Initiation

time decreased.

2023 [13] Zhaou X. et al.
Does CTA derived from CT Perfusion

[CTA-DF-CTP] give better image quality and
diagnostic accuracy than traditional CTA in AIS?

CTA derived from CTA-DF-CTP had
diagnostic accuracy comparable to
traditional CTA and CTA-DF-CTP.

2023 [14] Xiang et al.

Is it feasible to apply computed tomography
perfusion [CTP] imaging-guided mechanical

thrombectomy in acute ischemic stroke patients
with LVO beyond the therapeutic time window?

NIHSS of MT group-CTP guided [at
6 h, 24 h, 7 days, and 30 days] was

significantly better [p < 0.05];
however, infarct core volume

approximation was too high or too
low for this group.
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Table 1. Cont.

Year Authors Research Question Outcomes Measures/Conclusions

2023 [15] Du B. et al.

In patients with ICAS [Intracranial Atherosclerotic
Stenosis] in the anterior circulation, is AI based on

CBF [Cerebral Blood Flow] or sCoV [Spatial
Coefficient of Variation] better for predicting

vascular cognitive impairment?

Cognitive impairment seems better
predicted by AI analysis of sCoV

than CBF.

2023 [16] Farsani S. et al.
Can AG-DCNN [Attention Gated Deep

Convoluted Neural Network] predict infarct
volume and size?

AG-DCNN, using only admission
DWI, predicted infarct volumes at

3–7 days after stroke onset with
accuracy like models using DWI

and PWI.

2022 [17] Kossen T. et al.

How can modern machine learning methods such
as generative adversarial networks [GANs]
automate perfusion map generation from

[DSC-MR] Dynamic Susceptibility Contrasted MR
in AIS on an expert level without manual

validation?

DSC-MR using machine learning can
speed up patient stratification by

perfusion mapping in AIS.

2022 [18] Long Le et al.

Can an advanced deep learning-based method
accurately and rapidly assess collateral perfusion
in AIS by automatically generating a multiphase

collateral imaging map from dynamic
susceptibility contrast-enhanced MR perfusion

[DSC-MRP] images?

DSC-Enhanced MR Perfusion
improved accuracy and sped the

assessment of the collateral perfusion.

2021 [19] Neeves G et al.
Can a machine-learning [ML] algorithm grade
digital subtraction angiograms [DSA] by the

mTICI scale?

ML of complete cerebral DSA
predicted mTICI scores following

EVT of MCA occlusions.

2020 [20] Grosser M. et al.

In AIS patients, how do predictions of machine
learning models based on local [regional] tissue
susceptibility to ischemia compare with those of

machine learning models based on global
brain imaging?

Compared to single global machine
learning models, locally trained

machine learning models can lead to
better prediction of lesion outcomes

in AIS patients.

2019 [21] Satish R. et al.
Can Convolutional Neural Network analysis of
Multisequence MRI in AIS predict the ischemic

core and penumbra?

CNN analysis experimentally
confirmed local changes.

2019 [22] Reid M. et al.

For detecting early severe ischemia, how does
NCCT compare with multiphase computed
tomography angiography [mCTA] regional
leptomeningeal score [mCTA-rLMC] and an

mCTA venous [mCTA-venous] perfusion lesion?

An assessment blinded to clinical
information in patients undergoing

endovascular therapy [EVT] showed
that mCTA-venous more accurately

detected early ischemia and predicted
clinical outcomes than NCCT and the

mCTA-rLMC score.

2018 [23] Nielsen A. et al. In AIS, can Deep Learning improve Tissue
Outcome and Treatment Effect predictions?

Deep Learning improves predictions
of final neurological outcome and

lesion volume.

2018 [24] Chung-Ho. et al.

Can imaging features and advanced machine
learning use the TSS [Time Since Stroke]

classification to characterize the Acute Ischemic
Stroke Onset Time?

Demonstrates the potential benefit of
using advanced machine learning

methods in TSS classification.

2017 [25] Yu. Y. et al.

Can machine learning models trained on
perfusion-weighted magnetic resonance imaging
[PWI] and diffusion-weighted MRI scans predict
HT [hemorrhagic transformation] occurrence and

location in AIS?

HT prediction was a
machine-learning problem.

Specifically, the model learned to
extract imaging markers of HT

directly from source PWI images.
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Table 1. Cont.

Year Authors Research Question Outcomes Measures/Conclusions

2016 [26] Tian X. et al.

Can clinically acceptable PCT [dynamic cerebral
Perfusion Computed Tomography] images be

created from low-dose CT images restored with a
coupled dictionary learning [CDL] method in

chronic and AIS patients?

CDL increased kinetic enhanced
details and improved diagnostic
hemodynamic parameter maps

2013 [27] Fang R. et al.

Will the robust sparse perfusion deconvolution
method [SPD] accurately estimate cerebral blood

flow [CBF] in CTP performed at a low
radiation dose?

SPD was superior to existing methods
for CBF and helped differentiate

normal and ischemic brain tissue.

2010 [28] Mendrick A.
et al.

Can the diagnostic yield of CTP in cerebrovascular
diseases be expanded by combining arterial and

venous segmentation and
vessel-enhanced volume?

This artery and vein segmentation
method was accurate for arteries and

veins with normal perfusion.
Combining the artery and vein

segmentation with the
vessel-enhanced volume produced an

arteriogram and venogram,
extending the diagnostic yield of CTP

scans and making a CTA
scan unnecessary.

2007 [29] Meyer-Baese A.
et al.

Do five unsupervised clustering techniques help
analyze dynamic susceptibility contrast MRI

time series?

Clustering is a valuable tool for
analyzing and visualizing brain
regional perfusion properties.

Table 2. Studies applying AI to diagnosing and managing ICH [IntraCranial Hemorrhage] between
2000 and 2023.

Year Authors Research Question Outcome Measures/Conclusions

2023 [30] Feng H. et al.

Can AI use the GCS score, NIH stroke scale,
INR, BUN, hemorrhage location,

hematoma volume, modified Rankin score,
and other risk factors to construct a

prediction model for the prognosis of ICH
at discharge, 3 months, and 12 months?

The study showed that prediction models for
modified Rankin scores showed a relatively

high predictive performance. Also, the study
found risk factors and constructed a prediction
model to predict poor modified-Rankin score

outcomes and mortality at discharge, 3 months,
and 12 months in ICH patients.

2023 [31] Maghami M.
et al.

Are machine learning methods for
detecting ICH from non-contrast CT scans

sufficiently precise to be considered
acceptable diagnostic tests of

accuracy [DTA]?

This meta-analysis showed that assessing
noncontract CT scans using ML algorithms for

detecting ICH had acceptable DTA.

2023 [32] Vacek A. et al. Can E-ASPECTS delineate the extent and
distribution of ICH from brain CT?

AI software-Brainomix Ltd. (Oxford, UK)
excellently delineated ICH extent- on stroke

CTs by AI software in about 71% of cases. ICH
extent was more likely to be over or

underestimated when ICH was extensive,
intraventricular, or extra-axial.

2023 [33] Chen Y. et al.

Can a convolutional neural network [CNN]
create a clinical imaging perfusion model

predicting the short-term neurological
outcomes of ICH patients?

The CNN prognostication prediction model
was more effective than ICH scales in

predicting neurological outcomes and ICH
patients at discharge. Predictions improved

slightly after including clinical data.
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Table 2. Cont.

Year Authors Research Question Outcome Measures/Conclusions

2023 [34] MacIntosh B.
et al.

Can Viola AI estimate the number and
volume of hematoma clusters in traumatic

brain injury and ICH patients?

The automated total hemorrhage volume
estimate correlated with the per-participant

hemorrhage cluster count. This tool may help
evaluate various types of ICH in the future.

2023 [35] Kotovich D.
et al.

Did implementing a commercial artificial
intelligence solution in a level 1 trauma

center emergency room affect ICH’s
clinical outcome?

Artificial intelligence computer-aided triage
and prioritization software in the emergency

room setting was associated with a significant
reduction in 30 day and 120 day all-cause

mortality and morbidity in ICH patients. It
was also associated with a significant reduction

in modified Rankin score on discharge.

2023 [36] Li. Y. et al.

Can ML predict early perihematomal
edema expansion [PHE] from non-contrast

CT scan data in patients with
spontaneous ICH?

This model was the best marker for predicting
prior hematoma edema expansion in patients
with ICH. It could predict early perihematomal

edema expansion and improve the
discrimination of early identification of
spontaneous ICH in patients at risk of

PHE expansion.

2023 [37] Mastoukas S.,
et al.

What are AI methods’ reported sensitivity,
specificity, and accuracy for detecting ICH

and chronic cerebral microbleeds?

In 40 studies, overall sensitivity, specificity, and
accuracy were more than 90% for ICH and

cerebral microbleed detection. AI algorithms
were developed from large data sets,

volumetric analysis of imaging examinations,
fine-tuning, and false-positivity reduction.

2022 [38] Lim M. et al.

How do deep neural networks [DNN] and
support vector machines [SVM] compare

with clinical prognostic scores for
prognosticating 30-day mortality and

90-day poor functional outcome [PFO] in
spontaneous intracerebral

hemorrhage [SICH]?

The SVM model performed significantly better
than clinical prognostic scores in predicting

90-day PFO in SICH.

2021 [39] Heit J. et al.

What is the accuracy of RAPID ICH,
2D/3D, a volitional neural network

application designed to detect ICH, in
detecting and measuring ICH volume?

Rapid ICH was highly accurate in detecting
ICH and quantifying the volume of

intraparenchymal and intraventricular
hemorrhages.

Table 3. Studies applying AI to diagnosing and managing Epilepsy between 2000 and 2023.

Year Authors Research Questions Outcome Measures/Conclusions

2023 [40] Zheng Z. et al.

Can EEG Deep Features and Machine Learning
Classifiers assess and prognostically analyze

KCNQ2 patients by combining the two well-trained
models, RESNET-15 and RESNET-18, to extract deep

features of EEG?

An outcome of 79% accuracy was
reported in pediatric patients.

2023 [41] Wang H. et al.

Can the multi-technique deep learning method
WAE-Net use clinical data and multi-contrast MR
imaging [T2WI and FLAIR images combined as

FLAIR3 images] to forecast antiseizure medication
treatment in a retrospective study involving

300 children with tuberous sclerosis
complex-related epilepsy?

The hybrid technique of FLAIR3
could accurately localize tuberous
sclerosis complex lesions, and the

proposed method achieved the best
performance [area under the

curve = 0.908 and accuracy of 0.847]
in the testing cohort among the

compared methods.
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Table 3. Cont.

Year Authors Research Questions Outcome Measures/Conclusions

2023 [42] Asadi-Pooya A.
et al.

Can AI machine learning methods reliably
differentiate idiopathic generalized epilepsy from

focal epilepsy using easily accessible and applicable
clinical history and physical examination data?

This algorithm aimed at easing
epilepsy classification for individuals
whose epilepsy began at age 10 and
older. The stacking classifier led to

better results than the base classifier
in general. Precision was 81%,

sensitivity was 81%, and specificity
was close to 77%.

2023 [43] Tveit J. et al.

Can the artificial intelligence program SCORE-AI
[Standardized Computer-based Organizing

Reporting of EEG] be developed and validated to
distinguish abnormal from normal EEGs, detect

focal epilepsy epileptiform discharges and
generalized epilepsy, and distinguish focal

nonepileptiform and diffuse nonepileptiform EEGs?

SCORE-AI accuracy approached
human expert-level and fully

automated interpretation of routine
EEGs. Accuracy was approximately
88.3%, significantly higher than the
three previously published models
comparing EEG interpretation to

human experts.

2023
[44]

Gustavo T.
et al.

In patients diagnosed with epilepsy wearing the
mjn-SERAS brain activity sensor, can AI create a

personalized mathematical model for the
programmed recognition of oncoming seizures

before they start using patient-specific EEG
training data?

The AI program accurately detected
pre- and interictal EEG segments in

drug-resistant epilepsy patients.

Table 4. PDCA [Plan-Do-Check-Act] Concept Extrapolation for AI [45].

Extrapolation of PDCA in AI

Plan
Explore and discuss the question, assess the potential solution, and make use of the various machine learning models or methods as
described above, set the endpoint in the objectives and goals, identify the potential metrics to use for implementation and quality

measurement, prepare the action plan which includes implementation along with a potential route to reevaluate as needed.

Do
Evaluate earlier models; train or retrain and test different machine learning models; assess and see if known machine learning

solutions and components of the AI protocol can be improved or changed; test the overall solution to assess its integrity; review the
code and filter out older ML models which did not work.

Check
Monitor the model for fairness; assess for bias and variance; monitor the stability precisely to ascertain clarity and results;

implement split testing of two methodologies; compare them head-to-head and assess to see which performs better.

Act
The goal is standardization and continuous improvement, deploying the solution and continuing to monitor for biasing and

variance, evaluating for areas of improvement in active machine learning algorithms and machine learning components,
standardizing data, and features, and continuing the PDCA cycle accordingly.

4. Discussion

A growing body of literature suggests that artificial intelligence is becoming an invalu-
able tool for stroke and epilepsy clinicians. Studies report AI applications complementing
traditional neurological care and improving diagnostic accuracy and clinical outcomes.
As discussed above, early AI applications in the 2000s used clustering to analyze MRI
sequences for regional brain perfusion properties. AI applications are standard care tools at
the major level in CSCs [Comprehensive Stroke Centers] for analyzing CT perfusion studies
and detecting large vessel occlusion [LVO]. The field of Stroke Neurology has improved its
care systems by perfecting diagnostics and hastening stroke care. For example, AI tools can
help minimize transfer time and improve outcomes by shortening the time to treatment
with thrombolytics or mechanical thrombectomy. CT perfusion studies hold data critical
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to evaluating the cerebral vascular physiology after a stroke. A fundamental measure is
rCBF [relative Cerebral Blood Flow], the flow rate through the vasculature in the brain
region of interest [ROI]. Other measures include rCBV [relative Cerebral Blood Volume], the
volume of blood within the ROI vasculature; MTT [Mean Transit Time], the average time
for arterial-to-venous blood transit through infarcted tissue; and TTP [Time-To-Peak] the
time interval between first appearance to peak enhancement of contrast-containing blood in
the arterial vessels [46]. These CT perfusion imaging factors help assess the Mismatch Ratio
and the infarct Core. Clinical decisions on the likelihood of improvement with mechanical
thrombectomy consider these measures and the Modified Ranking Score [mRS]. AI assures
clinical decisions are evidence-based, consistent with diagnostic and treatment guidelines,
and give proper weight to relevant diagnostic and prognostic factors.

Acute decision-making in AIS uses AI for rapid and reliable analysis of perfusion and
vessel imaging [Table 1—via PubMed search]. AI has vessel-imaging applications beyond
the AIS setting. For example, in the setting of intracranial atheromatous disease or multiple
vascular risk factors, AI can help predict cognitive impairment and other patient outcomes
in a patient. Physicians can explore the nonemergent role of AI in vessel imaging by using
Deep Convoluted Neural Networks and Generative Adversarial Networks to generate
automated perfusion maps that stratify a patient’s AIS risk.

Convoluted Deep Neural Networks have been used extensively to predict the prog-
nosis of ICH patients [Table 2—via PubMed search]. In addition, AI software can detect
ICH and chronic cerebral microbleeds, ascertain ICH volume, and predict the rate of ICH
expansion. AI can aid in emergency room intake neuroimaging of patients with suspected
ICH. AI methods give clinicians precise volumetric and quantitative analysis of ICH’s
intraparenchymal and intraventricular components, guiding treatment that may lower
the morbidity and mortality of ICH in these patients. Additionally, AI analysis of serial
imaging in an ICU-level setting may guide physician prognostication of ICH expansion or
stability and patient outcome. Some AI studies estimate the functional outcomes of ICH
patients. A physician knowing the outcome AI predicts and the relevant prognostic clinical
information not considered by the AI can give patients’ families an evidence-based view of
the expected ICH outcome that aids decision-making.

In Epilepsy, AI can detect ictal and interictal patterns in routine and long-term EEGs.
AI-based EEG analysis can be applied to adult and pediatric epilepsy patients [Table 3—via
PubMed search]. AI programs may provide clinicians with information about which AED
regimen would lead to better seizure control for patients with known epilepsy syndromes
or genetic mutations predisposing patients to epilepsy. Also, using AI, the risk of epilep-
togenicity of focal MRI lesions can be predicted by routine or 1 h EEGs. This information
can guide the decision for advanced neuroimaging for epilepsy patients who are epilepsy
surgery candidates. This would be key in the current era given the significant evolu-
tion of surgical application in treatment refractory epilepsy patients and severely morbid
conditions leading to epilepsy including Tuberous Sclerosis and Rasmussen’s Encephalitis.

Artificial intelligence’s continued adoption in neurology depends on clinicians and
researchers continuing to test and improve AI prediction models. The quality improvement
models used in industry can be used to continually improve AI by reducing diagnostic
and other experience-based prediction errors. As new AI methods and protocols evolve,
medical experts should iteratively compare expected and actual results to judge their
validity, accuracy, and clinical value. Designing an AI algorithm is a plan, or hypothesis,
that the algorithm will be of clinical value. However, testing an AI algorithm allows
iterative scientific hypothesis testing and revision until the hypothesis fits the data. After
the final version of the algorithm fits the practice data set, the algorithm is tested with new
data to assess its accuracy and error rate. After that, the algorithm is revised as necessary
using quality improvement methods. The quality improvement steps are [1] Plan, [4] Do, [6]
Check, and [7] Act- PDCA cycle [Table 4] [45].

A sole human clinician can only see a tiny fraction of the patients covered by an
extensive healthcare system and knows his patient outcomes, those reported by his col-
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leagues, and those reported in the clinical literature. AI can potentially draw upon data
from the entire healthcare system to derive diagnostic and prognostic information that can
fill gaps in a neurologist’s experience or serve as reminders before decision-making. AI
can retrospectively mine data for suspected and unsuspected factors leading to an AIS or
ICH that could inform future medical treatment of at-risk individuals in a neurologist’s
and primary care physician’s practice.

The PDCA quality improvement cycle rigorously reviews the predicted and actual
outcomes of AI-based methods, leading to their progressive updating and improvement.
The AI models from practice data sets are tested with new clinical information and revised
appropriately. Testing of mature AI models with new data assesses their clinical value
and error rate. AI models can be revised and re-tested iteratively until their accuracy is
clinically valuable. Many organizations and companies adopted the Deming PDCA cycle
to improve their systems and functional outcomes. Implementing the PDCA concept can
ensure AI-based protocols have continued quality improvement, regular checks to assess
their outcomes, and are developed into clinically valuable and reliable products.

5. Conclusions

AI is a diagnostic and prognostic tool to help neurologists assess patients more effi-
ciently and treat them more effectively. AI can usher in a new era in clinical neurology
by supplying a complementary tool in stroke and epilepsy that improves diagnostics and
systemic efficiency, enabling better and more predictable functional patient outcomes. From
a futuristic standpoint, as more data is collected by various systems-based practices in the
field of medicine, with the implementation of PDCA and more efficient AI-based stroke
and epilepsy protocols, implementation systems can be utilized as adjuncts to clinical
evaluation in the field of Neurology.
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