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Samantaray et al. [1] introduced a new method for storing binary neuroimaging con-
nectivity data with the goal of providing a compact, space-saving representation of brain-
state connectivity, called the Unique Brain Network Identification Number (UBNIN). They
utilized UBNINs to present binary connectivity data, an adjacency matrix, derived from
structural brain MRI, which represented the strength of connections (edges) between areas
of the brain, divided into 56 nodes. Fifty-six nodes correspond to 55 × 56/2 = 1540 edges
and 21540 possible unique combinations of edges. The authors demonstrated how the
UBNIN could facilitate the storage of a unique combination of such an unwieldy number
of edges. Here, we provide a comparison of UBNIN with three other, more conventional
methods for storage of such brain-state data: binary, base 10, and base 16 (hexadecimal)
representations. We compare method procedures and the amount of space required in print
and in electronic storage to record these binary brain-state representations. Our focus here
is not on how to derive these binary matrices, but on how to best encode and store them.

The UBNIN method, as presented in Samantaray et al.’s paper [1], is actually three
related methods, which we call here the complete UBNIN (UBNIN-C), the rounded UBNIN
(UBNIN-R), and the truncated UBNIN (UBNIN-T). UBNIN-C encodes all of the information
in the adjacency matrix but can become too long to be managed easily. UBNIN-R is the value
of UBNIN-C rounded to a given precision, which in the paper was 15 digits. UBNIN-T is
the value derived by dropping the fractional portion of the number and keeping only the
integer portion. For large matrices, UBNIN-R and UBNIN-T provide a more compact and
manageable representation, at the cost of loss of information, as described below.

We begin by summarizing the complete UBNIN method, which is described in more
detail by the authors. The binary data from the adjacency matrix are organized into columns
that are represented by a base 10 number for each column (Figure 1). These numbers are
sequentially added together after the partial sums are first divided by increasing powers of
2 in such a way that after each iteration, the integer part of the partial sum is the number
from the last column added, and the fractional part contains the encoded information
from all of the other numbers added previously (Figure 2). It works out this way because
the quotient is always less than 1 after dividing by the increasing powers of 2. The final
UBNIN-C contains an integer part that is the base 10 representation of the edges for the
last column’s node. For example, consider a UBNIN derived from only the first four nodes
shown in Figure 1. Following the left-hand flowchart of Figure 2 we see that UBNIN(1) = 0;
UBNIN(2) = 1 + 0 = 1; UBNIN(3) = 3 + 0.5 × 1 = 3.5; and UBNIN(4) = 6 + 0.25 × 3.5 = 6.875.
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These are the UBNIN-C numbers shown in the second column of Table 1. The binary
number corresponding to UBNIN(4) is formed by concatenating the numbers 1, 11, and
110 (reading from bottom to top in columns 2, 3, and 4 of the adjacency matrix in Figure 1).
Conversion of this binary number, 111110, to base 10 and hexadecimal yields the numbers
shown in Table 1, corresponding to the number of nodes = 4.

Decoding this UBNIN-C recreates the base 10 numbers for each column of the ad-
jacency matrix by reversing the encoding process, multiplying the fractional part by the
appropriate power of 2 in a cyclical process until all of the original numbers are found,
in the integer parts of these decoded numbers. The last number found, corresponding to
column 2, must either be a 0 or 1, with no fractional part, so this provides a check for errors
in the fractional portion of the UBNIN-C value, or in the decoding process.
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Figure 1. The adjacency matrix example from Samantary et al. [1], showing the lower triangular
matrix in pink, in addition to the symmetrical upper triangular matrix that was used to generate the
UBNIN. Arrows show the direction chosen by the authors for reading the numbers, bottom-to-top,
followed by left-to-right. At the bottom are the base 10 representations for each column. We apply
the same reading direction for the construction of our binary, base 10, and hexadecimal numbers.

This potential for error checking means that UBNIN-Cs take up more space in print
and in electronic data storage than conversion to a base 10 number, as demonstrated in
Table 1 for the number of nodes from 2 to 10. The number of digits required for any base
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10 representation (using digits 0–9) of numbers as high as 2p would be the smallest integer
greater than k × p, where k = log10(2) ∼= 0.30 [2]. For hexadecimal representation, where
each digit corresponds to a four-digit binary number, the number of digits is divided by
4. For 56 nodes, with 21540 combinations, hexadecimal representation would be the most
efficient in print, requiring 0.25 × 1540 = 385 digits. Base 10 would require 464 digits, and
UBNIN-C, many more.

The exact number of digits for UBNIN-C can be calculated as follows. If we consider
dividing by 2q in terms of the equivalent multiplication by the reciprocals (0.5, 0.25, 0.125,
etc.), we see that the number of digits to the right of the decimal point for these reciprocals
is equal to q. The UBNIN-C’s digits to the right of the decimal point grow by the number
of digits to the right of the decimal point of the multiplied numbers, which means that
the total number of digits to the right of the decimal point would be given by the series
1 + 2 + 3 . . . + q = q × (q + 1)/2. Thus, for 56 nodes, the number of UBNIN-C digits required
would be 54 × 55/2 = 1485, in addition to up to 17 digits to the left of the decimal point,
not much less than the 1540 digits required for binary representation.
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Figure 2. Flowcharts for encoding (left) and decoding (right) a UBNIN-C for complete representation
of a brain-state adjacency matrix corresponding to the connections among N nodes. UBNIN(c) gives
the UBNIN-C corresponding to the matrix from columns 2 to c, and column_values(c) gives the base
10 value for column c as depicted in Figure 1. Integer(x) gives the integer part of x, and Fraction(x)
gives its fractional part. If a UBNIN-C has been successfully decoded, UBNIN(1), the fractional part
of UBNIN(2), will always be zero.
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Table 1. A comparison of the publication space and electronic storage space required to record the brain state for 2–10 nodes, using numbers provided by the authors
in their illustrative example of generating the Unique Brain Network Identification Number.

Number
of

Nodes

UBNIN a Binary b Base 10 c Hexadecimal d

Number e Digits f Bits g Number Digits Bits Number Digits Bits Number Digits Bits

2 1 1 1 1 1 1 1 1 1 8 1 4
3 3.5 2 6 111 3 3 7 1 3 E 1 4
4 6.875 4 13 111110 6 6 62 2 6 F8 2 8
5 13.859375 8 24 1111101101 10 10 1005 4 10 FB4 3 12
6 20.8662109375 12 38 111110110110100 15 15 32180 5 15 FB6A 4 16
7 60.652069091796875 17 56 111110110110100111100 21 21 2059580 7 21 FB6BE0 6 24
8 67.947688579559326171875 23 76 1111101101101001111001000011 28 28 263626307 9 28 FB6BE43 7 28
9 1.5308413170278072357177734375 29 94 111110110110111111100100001100000001 36 36 67488334593 11 36 FB6BE4301 9 36

10 321.005979848894639872014522552490234375 39 128 111110110110100111100100001100000001101000001 45 45 34554027311937 14 45 FB6BE4301A08 12 48

a UBNIN-C, the UBNIN form that allows reconstruction of the original binary matrix. b Binary representation, keeping leading zeros. c Base 10, suppressing leading zeros. d Hexadeximal,
keeping leading zeros, and adding terminal zeros as needed for the last hexadecimal digit. e The encoded binary matrix in numeric form. f Number of digits in the encoded number.
g Minimum number of bits required for computer storage, disregarding extra bits for UBNIN decimal point location.
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The base 10 and hexadecimal numbers would require approximately the same elec-
tronic storage space as the binary numbers, if stored as unsigned integers, because these
numbers are represented electronically in binary form. UBNIN-C would require much
more space than binary because of its large number of base 10 digits.

One advantage of UBNIN-C over other conceivable methods for adjacency matrix
encoding is that, with their paper, the authors have provided an unambiguous procedure
for how to encode and decode a UBNIN-C. Other methods would also require some sort of
extra error-checking information, similar to a checksum number when verifying that a large
file has been correctly downloaded [3]. Checksums are routinely employed in verifying
the validity of neuroimaging data [4]. However, decoding a UBNIN-C into an adjacency
matrix necessarily requires extra information concerning how many columns the adjacency
matrix contains, which determines the correct power of 2 for multiplication. Conversion
from base 10, with suppression of leading zeros, also requires this information. Binary and
hexadecimal data, assuming leading zeros are kept, would not require knowledge of the
number of columns because the length of their numbers would indicate the size of the
adjacency matrix. However, for the decoding in any form to make sense, the mapping of the
columns to their corresponding nodes would also need to be known. Table 2 summarizes
potential pros and cons for the use of UBNIN-C compared with binary, base 10, and
hexadecimal representations. With the exception of built-in error detection, UBNIN-C does
not appear to offer advantages over the other methods. Furthermore, this error detection
does not include the integer portion of the UBNIN, which is dropped in the first step of the
decoding process and therefore does not affect the final decimal portion for the check (=0,
as shown in the right-hand flowchart of Figure 2). Some additional error checking would
be needed to include the entire UBNIN-C.

Table 2. A comparison of properties for the complete brain-state representations discussed a.

Property UBNIN-C b Binary c Base 10 d Hexadecimal e

Built-in error detection Yes No No No
Can show brain connections in print No Yes No No

Minimizes print space No Possibly f No Yes
Minimizes electronic storage No Yes Yes Yes

Uncomplicated decoding back to 1’s and 0’s No Yes No Yes
Number of nodes required for decoding g Yes No Yes No

Column-node mapping required h Yes Yes Yes Yes
a Omitting the abbreviated variants, UBNIN-R and UBNIN-T. b UBNIN-C is the number generated by the
algorithm published by the authors. c Binary representation of the adjacency matrix, created by concatenating
together the binary values for each node. d Base 10 representation of the adjacency matrix, created by converting
the binary representation to base 10. e Hexadeximal representation of the adjacency matrix, created by converting
the binary representation to hexadeximal, padding with zeros at the end as needed for the last hexadeximal digit.
f Binary data can be compressed in print by representing them as light and dark squares, which could require
fewer pixels on paper than digits. g Representations that do not drop leading zeros unambiguously recreate the
adjacency matrix without prior knowledge of how many nodes were involved. h All representations require
knowledge of how the nodes were ordered in the adjacency matrix in order to meaningfully map the encoded
data back to the original data derived from the brain.

Interestingly, the UBNINs shown in the authors’ abstract only have an integer part,
which can only mean that the information for all of the nodes except the last one (column 56)
has been discarded and cannot be retrieved by decoding those UBNINs. This is the trun-
cated, UBNIN-T form. The authors explain that “for a larger 20 × 20 fully connected binary
matrix, . . . The UBNIN values hence obtained are rounded up . . . which is a computational
constraint.” By focusing on only the connections for a single node, the number of possi-
ble unique combinations of edges, assuming the binary edge values are independent of
each other, would drop from 21540 to the more manageable 255, requiring at most 17 digits
for UBNIN-T.

It is not clear exactly what the authors meant by “rounding”, but assuming that no data
corruption occurs, UBNIN-T is equivalent to a base 10 representation of the last column
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of the adjacency matrix, so no further analysis is required to understand its properties.
The authors apparently attempted to minimize the space needed for these UBNIN-Ts
by maximizing the number of leading zeros, which would not be written for these base
10 numbers. They chose to read the numbers from the adjacency matrix from bottom to top
because they found that their UBNINs were smaller that way: “The top-to-bottom approach
for this methodology was also attempted for multiple adjacency matrices; however, the
UBNIN thus obtained was larger than that from bottom-to-top.” Toward this end, it is worth
noting that reordering the sequence of the nodes could greatly promote leading zeros. For
example, if the node with the greatest number of zero-edges were chosen as the last column,
and the other nodes were ordered to position those zeros at the bottom of the column,
then leading zeros would be maximized, resulting in minimized base 10 representations of
that column.

It is interesting to note that the authors’ “UBNINT=10” value of 321.005979848895 is
not the actual UBNIN value that would result from the UBNIN method as described. A
comparison with the UBNIN-C value for 10 nodes from Table 1 shows that the authors’
UBNINT=10 value has been rounded to 15 digits, which may be due to the limitations
of floating-point calculations using double precision. Spreadsheet programs such as Mi-
crosoft Excel and LibreOffice Calc, for example, limit numbers to 15 digits [5]. Decoding
321.005979848895 yields the correct base 10 numbers for each column of the adjacency
matrix, with the exception of the second column result of 1.02474780672 rather than exactly
1. Thus, by forgoing UBNIN-C’s error-checking capability, it may be possible to round off
a UBNIN-C value to save space, provided that the number of digits remaining exceeds
d = n(n − 1)log10(2)/2 [2], where n is the number of nodes. Some additional questions
concerning the processing of such rounded UBNIN values would have to be worked out,
however, such as when to round up or down and how close to d we can round such values
while maintaining the accuracy of the decoded values for the adjacency matrix. The details
of such an analysis lie beyond the scope of the current paper.

What matrix size would be ideal for each UBNIN variant? If, for convenience, we
use Microsoft Excel or another program that limits numbers to 15 digits, then UBNIN-C
would be limited to 6 nodes, because 7 nodes would require a UBNIN-C spanning 17 digits
(Table 1). UBNIN-R would not work with more than 10 nodes because 11 nodes would
require 17 digits for base 10 representation (exceeding d = n(n − 1)log10(2)/2), resulting
in loss of information from the original binary matrix with UBNIN-R when rounding to
15 digits. UBNIN-T, limited to 15 base 10 digits, would allow up to 49 nodes (249 distinct
binary numbers) by only providing information for a single node, and a higher number of
nodes would require a switch to a program that can process numbers longer than 15 digits.

Finally, the word “unique” in the name of the authors’ method requires clarification.
The number of possible combinations of edges corresponding to 56 nodes is so large that it
seems extremely unlikely that any two individuals would have the exact same adjacency
matrix or even the same last column, but technically, their UBNINs are not guaranteed to
differ. Even MRI scans for the same person would very likely differ due to scanner drift [6],
so in this sense, a UBNIN would be unique for each scan, not for each person. Binary data,
if displayed in the original matrix form, retain information concerning connections between
nodes. However, information concerning the connections between nodes is not apparent in
a UBNIN, so until it is decoded, its primary value would be as a form of storage.

In summary, Samantaray et al. [1] have proposed a new method for representing
binary connectivity data, the Unique Brain Network Identification Number. To assist
the imaging community in choosing the best method for storage of such data for their
needs, we provide a comparison with data stored in binary, base 10, and hexadecimal
forms. The authors’ method has three variants: UBNIN-C for small adjacency matrices,
UBNIN-R for medium-sized matrices, and UBNIN-T for the largest ones. The advantages of
UBNIN-C are that the authors provide a detailed procedure for its encoding and decoding,
and it comes with built-in error-checking capability. Disadvantages are that it takes more
space in print and in electronic storage than base 10 and hexadecimal representations, and
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in its encoded form, UBNIN-C no longer provides detailed information concerning the
connections between nodes. UBNIN-R allows a more compact representation of matrices,
at the cost of losing the error-checking capability, and it can never be more compact than
a base 10 representation. For large adjacency matrices, the UBNIN-T method essentially
defaults to a base 10 representation of a single node only, which can provide a more compact
representation by discarding data from the other nodes and suppressing leading zeros.
The uniqueness of adjacency matrices expressed in any UBNIN form is not guaranteed,
any more than it would be if expressed in binary, base 10, or hexadecimal forms; however,
given the huge number of possible combinations of edges corresponding to 56 nodes, as in
the authors’ example, it seems reasonable to assume that no two MRI scans would result in
the same UBNIN.
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